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Predictive structured–unstructured interactions in EHR
models: A case study of suicide prediction
Ilkin Bayramli1,2, Victor Castro 3,4, Yuval Barak-Corren 1, Emily M. Madsen5,6, Matthew K. Nock4,7,8, Jordan W. Smoller5,6,9,10 and
Ben Y. Reis 1,9,10✉

Clinical risk prediction models powered by electronic health records (EHRs) are becoming increasingly widespread in clinical practice.
With suicide-related mortality rates rising in recent years, it is becoming increasingly urgent to understand, predict, and prevent
suicidal behavior. Here, we compare the predictive value of structured and unstructured EHR data for predicting suicide risk. We find
that Naive Bayes Classifier (NBC) and Random Forest (RF) models trained on structured EHR data perform better than those based on
unstructured EHR data. An NBC model trained on both structured and unstructured data yields similar performance (AUC= 0.743) to
an NBC model trained on structured data alone (0.742, p= 0.668), while an RF model trained on both data types yields significantly
better results (AUC= 0.903) than an RF model trained on structured data alone (0.887, p < 0.001), likely due to the RF model’s ability to
capture interactions between the two data types. To investigate these interactions, we propose and implement a general framework
for identifying specific structured-unstructured feature pairs whose interactions differ between case and non-case cohorts, and thus
have the potential to improve predictive performance and increase understanding of clinical risk. We find that such feature pairs tend
to capture heterogeneous pairs of general concepts, rather than homogeneous pairs of specific concepts. These findings and this
framework can be used to improve current and future EHR-based clinical modeling efforts.
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INTRODUCTION
In recent years there has been a proliferation of clinical prediction
models powered by electronic health records (EHRs). Many
prediction models rely primarily on structured data from the
EHR, which typically includes diagnostic, laboratory, medication,
and procedure codes. Yet most EHRs also contain unstructured
data such as clinician notes, which may include information
already captured in the structured data, as well as information not
present in the structured data (Fig. 1). Unstructured EHR data have
been used for clinical predictive tasks, both as a standalone
feature-set and in combination with structured data1–4.
In order to optimally integrate both structured and unstructured

data and improve predictive performance, it is important to
understand the predictive value of each data type. It is also
important to understand the interactions between these two data
types and identify instances where the nature of these interac-
tions differs between case and non-case populations. Such
differences can be valuable for deepening our understanding of
clinical risk and for improving clinical risk prediction in models
that are able to capture these interactions.
As a case study, we focus on suicide prediction. Approximately

800,000 people die by suicide every year worldwide, accounting
for 1.5% of all deaths5. Suicide is the tenth leading cause of death
in North America and a leading cause of death globally among
persons 15–24 years of age6. With suicide-related mortality rates
rising in recent years7, it is becoming increasingly urgent to
understand, predict, and prevent suicidal behavior. Early and
accurate identification of individuals with elevated risk for suicide
attempts is critical for developing effective suicide prevention

strategies. Predicting suicide risk, however, is a complex challenge.
The intuition of clinicians for detecting at-risk individuals is no
better than random chance8, underscoring the potential value of
algorithmic approaches to this challenge.
In recent years, rapidly growing quantities of electronic health

data along with advancements in statistical learning methods
have enabled the development of suicide risk prediction models.
We recently developed one such model using data from over 1.7
million patients in a large healthcare system (Mass General
Brigham)9; the model detected 45% of suicide attempts an
average of 3–4 years in advance, with a specificity of 90% and an
area under the receiver operating curve (AUC) of 0.77. Since
structured EHR data capture only some elements of clinical
presentation, in the present study, we seek to improve upon this
prediction accuracy by examining features extracted using natural
language processing (NLP) from unstructured clinician notes. (For
simplicity, we refer to these as “unstructured features”.)
The goals of this study are threefold: (1) To compare the

predictive value of structured and unstructured EHR data as
standalone datasets for predicting suicide risk; (2) to evaluate the
increase in prediction performance when integrating both
structured and unstructured data using various models; and (3)
to identify structured-unstructured feature pairs in which the
interaction between the two features differs substantially between
case and non-case populations, and which may thus have the
potential to improve predictive performance. To achieve the latter,
we propose a framework for identifying structured-unstructured
feature pairs in which the interaction between the two features
differs significantly between case and non-case cohorts.
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RESULTS
Study population
Approximately 2,303,376 individuals did not have sufficient
number of visits to be included in the analysis. Of these, 11,316

had a suicide attempt (0.5%). Many of the excluded individuals
had a single emergency department visit, hospitalization, or
medical concept recorded over the 20 year course of the dataset.
Applying the inclusion and exclusion criteria to the extracted data
yielded 1,625,350 training subjects for the NBC models, which
included 1,608,806 non-cases (99%) and 16,544 cases (1%) (Fig. 2).
The testing set consisted of 697,411 subjects, including 7,155
cases. For the BRFC models, the dataset included 140,000 subjects
for each of the training and testing populations, with the former
having 16,538 cases (12%, due to the sampling approach
mentioned above) and the latter having 1,384 (1%, reflecting
the prevalence in the clinical population). For case subjects, the
median time between the penultimate hospital visit and first
suicide attempt was 35 days and the mean was 286 days. Figure 3
shows the distribution of time between the penultimate visit and
first suicide attempt.
For both experiments, we had the same set of 45,808 features

which included 43,435 structured features (95%) and 2,373
features derived from unstructured data using NLP (5%). Table 1
shows the correspondence between structured and unstructured
codes for several sample concepts.

Fig. 1 Information overlap in EHR data. Electronic health records
contain both structured and unstructured data. These two types of
data contain both unique and overlapping information.

Fig. 2 Data and modeling workflow. The diagram describes the filtering and processing steps taken to arrive at the final datasets used for
training and testing different models described in this paper. STR—Structured Data; NLP—Unstructured data processed by Natural Language
Processing; NBC—Naïve Bayesian Classifier; BRFC—Balanced Random Forest Classifier.
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Model performance
The results of training and testing are presented in Tables 2 and 3
and Fig. 4. We found that for both NBC and BRFC modeling
approaches, training on structured data features resulted in higher
predictive performance than training on features derived from
unstructured data, with an improvement in AUC of 2–3% (p <
0.001).
For the NBC model, training on both structured and unstruc-

tured data yielded no significant improvement over training on
structured data alone (p-value= 0.67). However, for BRFCs,
training with both structured and unstructured data led to a
moderate but significant 1.6% increase in AUC relative to training
on structured data alone (p-value < 0.001). The combined struc-
tured and unstructured BRFC model also exhibited moderate
increases in PPV and sensitivity from the structured-data-only
model across all specificity thresholds, with a 4% increase in
sensitivity at both 0.90 and 0.95 specificity, in addition to increases
in PPV.

Contingency analysis
Tables 4 and 5 shows structured-unstructured feature pairs in
which the relationship between the two features differed most
between case and non-case cohorts—namely, those with the
highest interaction heterogeneity. Table 4 shows feature pairs in
which the structured feature A was associated with greater suicide
risk (i.e., feature A occurred more frequently in the case cohort
than in the non-case cohort). These include drug and opioid use,
suicidal ideation, and borderline personality disorder which are

associated with various high-risk NLP features including schizo-
phrenia, self-reported suicide attempts, imprisonment, and
homelessness.
Table 5 shows feature pairs in which the structured feature A

was associated with lower suicide risk (i.e., A occurred less
frequently in the case cohort than in the non-case cohort). These
include concepts such as annual exams, mammograms, and tumor
screenings that are associated with NLP concepts such as impulse-
control disorder and use of hallucinogenic and psychoactive drugs
derived from psilocybin mushrooms (referred to as “vacuuming” in
informal parlance). In many cases, structured codes such as
mammograms and tumor screenings are confounded with older
age which is protective of suicide attempt risk. Hence lower
suicide attempt risk associated with interaction of these structured
variables with high-risk concepts such as impulse-control disorder
and hallucinogenic drug use is to be expected. (In Tables 4 and 5,
“AB Expected” corresponds to E[ai] used in computation of the Ti
statistic defined above.)

Fig. 3 Distribution of time between penultimate hospital visit and
first suicide attempt, in days. As the distribution was highly
skewed, the x-axis was capped at 100 days for clarity. A few patients
had several years between their last recorded visit and suicide
attempt.

Table 1. Correspondence between structured and unstructured codes.

Concept Struct. Unstruct. Both Total

Impulse control disorder 145 (19%) 688 (86%) 37 (5%) 796

Unspecified bipolar disorder 1,322 (30%) 4,053 (94%) 1,051 (24%) 4,324

Schizo-affective disorder 250 (42%) 522 (88%) 177 (30%) 595

Opioid dependence or abuse 1,183 (27%) 3,893 (90%) 761 (17%) 4,315

The number of patients that have a structured EHR code for a given concept (first column), an NLP code (based on a free-text mention of that concept in their
unstructured clinician notes, second column), and both a structured code and an NLP code for the given concept. Since NLP concepts are more general, each
row includes one NLP code but several structured codes with similar descriptions. Furthermore, “opioid dependence” and “opioid abuse” codes were merged
into one code since many EHR codes mention both opioid dependence and abuse.

Table 2. Performance of NBC models on the test set.

Unstructured Structured Both

Specificity PPV Sensitivity PPV Sensitivity PPV Sensitivity

0.99 0.070 0.079 0.072 0.076 0.088 0.092

0.95 0.046 0.254 0.047 0.239 0.051 0.260

0.90 0.035 0.378 0.036 0.365 0.039 0.391

0.80 0.024 0.520 0.026 0.530 0.027 0.540

AUC 0.714 0.742 0.743

There is no significant increase (p= 0.688) in AUC between the model
based on structured-data-only and the model based on both structured
and unstructured data.

Table 3. Performance of BRF models on the test set.

Unstructured Structured Both

Specificity PPV Sensitivity PPV Sensitivity PPV Sensitivity

0.99 0.142 0.168 0.191 0.246 0.219 0.267

0.95 0.082 0.447 0.092 0.507 0.097 0.545

0.90 0.057 0.608 0.063 0.657 0.066 0.697

0.80 0.037 0.766 0.040 0.820 0.041 0.845

AUC 0.868 0.887 0.902

There is a significant increase (p < 0.001) in AUC between the model based
on structured-data-only and the model based on both structured and
unstructured data. There are also substantial increases in sensitivity.
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As described above, interaction heterogeneity (IH) provides a
summary measure of the difference in the overall shape of the
contingency tables between case and non-case populations. In
order to provide a more intuitive understanding of IH, Tables 6
and 7 provide illustrative examples of contingency tables for two
structured-unstructured feature pairs AB: One with a high IH value
of 77.55 (“Other, mixed, or unspecified drug abuse, unspecified
use” & “suicide attempts”), and the other with a low IH value of
3.95 (“Opioid abuse, unspecified use” & “junk (heroin)”). For
simplicity, we refer to the number of individuals who had both A
and B in the cases cohort as ABcases, and to the number of people
who had A but did not have B in the cases cohort as A~Bcases, and
so forth.
The values for ABcases and ABnon-cases are similar for both pairs of

contingency tables (Tables 6 and 7), as are the values for ~ABcases
and ~ABnon-cases. However, the differences between A~Bcases and
A~Bnon-cases, and the differences between ~A~Bcases and ~A~Bnon-
cases are greater in Table 6 than in Table 7. Thus, the overall shape
of the contingency table in Table 6 changes more between case
and non-case populations than the contingency in Table 7. This
yields a larger IH value for Table 6 and a smaller IH value for Table
7, indicating that the interaction of concepts in Table 6 is more
strongly associated with the suicide-attempt outcome.
In order to study the difference between IH and more

traditional measures of risk, Fig. 5 plots IH versus the joint suicide
attempt risk of features A and B (defined as the log of the ratio of
the expected joint occurrences of AB in the case vs. non-case
cohorts). As mentioned, IH is a measure of whether the interaction
between features A and B differs significantly between case and
non-case cohorts. The joint suicide attempt risk provides a
summary measure of association between the features and the
outcome, reflecting the difference in the number of occurrences
of A and B between case and non-case cohorts. (To reduce noise,
we only included feature pairs AB with at least 10 joint
occurrences in either case or non-case cohorts.) Figure 5 shows
that many feature pairs with similar joint suicide risk have a large
variation in IH—highlighting the fact that IH can reveal variation in
feature interactions that the ratio of expected occurrences does
not capture.
This is illustrated further in Tables 8 and 9, which presents

interactions that correspond to the rightmost cluster in Fig. 5 (i.e.,
feature pairs with joint suicide risk between 1.7 and 2.3). Within
this cluster, Table 8 presents the 20 feature interactions with the

highest values of IH, and Table 9 presents the 20 feature
interactions with the lowest values of IH. Although the joint
suicide risk values are approximately the same in both tables, we
see that the nature of interactions is different between Tables 8
and 9. Table 8 contains mostly general substance-abuse structured
features (e.g., “Other, mixed, or unspecified drug abuse, unspeci-
fied use”), while Table 9 includes specific substance-abuse
structured features such as cocaine, methadone, barbiturate, and
opioid consumption. Furthermore, the substance abuse codes in
Table 8 interact mostly with non-substance-abuse unstructured
features such as “lack of domicile”, “schizophrenia” and “imprison-
ment”, while the substance-abuse codes in Table 9 interact mostly
with other substance-abuse-related unstructured features—most
prominently, heroine and thioridazine. Thus, interactions between
features that are near-synonyms show less difference between
case and non-case cohorts than interactions between features
that are more heterogeneous.

DISCUSSION
We found that models trained only on features derived from
structured-data perform better than models trained only on
features derived from unstructured data. The performance gap
between models trained with structured data and those trained
with unstructured data is quite small, considering the compact
size of the unstructured data.
Combining unstructured data with structured data provided

almost no performance benefit with the NBC model, whereas the
BRFC model showed a significant increase in AUC. The fact that
the NBC model only negligibly benefitted from the addition of
NLP concepts is not surprising; while interactions between
structured and unstructured features could contain useful signals,
NBCs assume conditional independence among features, and so
cannot exploit these interactions to improve predictive perfor-
mance. On the other hand, BRFCs are designed to capture
interactions between features, and are thus able to deliver a
significant improvement in predictive performance. Indeed,
examining trees in the BRFC model, we found many examples
where splits based on NLP concepts were either preceded or
followed by structured-data-based splits, bearing evidence that
the BRFC models captured useful structured-unstructured
interactions.
Structured-unstructured feature pairs whose interactions dif-

fered most between suicidal and non-suicidal populations were
those that described heterogeneous pairs of general concepts,
rather than pairs of similar concepts. In particular, interactions
between concepts related to mental health issues, drug abuse,
excessive alcohol consumption, and psychiatric disorders were
predictive of suicide risk. Although links between these concepts
have been previously established, features derived from unstruc-
tured data further strengthen these associations. Unstructured
data also helps capture complementary information about the
well-being of patients that structured data may not provide: The
interaction of structured concepts with concepts derived from
unstructured data for environmental risk factors (e.g., “living on
the street”, “undomiciled”, “prison”), services that occur outside
the health system (e.g., “methadone maintenance”), and diag-
noses such as “delusions” and “impulse-control disorder” were
found to be highly predictive of suicide. Similarly, interactions
between medical screenings and general examinations were
observed to be protective of suicide risk, although it is unclear
whether it was the examinations themselves or other confounding
factors related to the examinations that were protective of suicide
risk. As seen from the examples in Table 1, many patients who had
NLP codes recorded for some concepts did not have the
corresponding structured codes in their EHR records which shows
that unstructured data can help capture information about a
patient that structured data misses. Such insights into the

Fig. 4 Performance of NBC and BRFC models, by type of data
used. BRFC models perform considerably better than NBC models in
terms of AUC across all three datasets. Combining structured and
unstructured data yields better performance than using structured
data alone, which itself performs better than using unstructured
data only.
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changing nature of feature interactions between case and non-
case cohorts can help to improve predictive performance and
provide a deeper understanding of clinical risk.
This study is subject to a number of limitations. We analyzed 20

years of longitudinal healthcare data from a single healthcare
system including hospital admissions, observational stays, emer-
gency department visits, and outpatient encounters. Visits outside
this geographical setting, time period, and network of hospitals
were not included, and therefore this study dataset may be

missing some encounters which could have potentially been
useful for predicting suicide attempts. Moreover, some of these
excluded visits may have been for suicidal behavior, meaning that
some patients may have been incorrectly identified as non-case
subjects or correctly identified as case subjects but given incorrect
onset times. For patient diagnoses, we included both ICD-9 and
ICD-10 codes since both encoding standards were used in the
RPDR during the last 20 years. Due to this, there are some
concepts for which both ICD-9 and ICD-10 definitions have been
included in the dataset, adding extra computational burden. Since

Table 5. Structured-unstructured feature pairs AB with high interaction heterogeneity (IH), where A is a strong protective factor against suicide.

Features Cases Non-cases

Structured (A) Unstructured (B) A B AB expected AB actual A B AB expected AB actual IH

Screening mammogram for malignant
neoplasm of breast

Imp. Cont. Dis. 89 661 2.50 51 2091 3658 325.03 875 110.08

Annual Exam Imp. Cont. Dis. 171 661 4.80 81 2596 3658 403.53 1249 94.20

Screening mammogram for malignant
neoplasm of breast

vacuuming 89 231 0.87 25 2091 1546 137.37 374 93.77

Screening digital breast tomosynthesis,
bilateral

Imp. Cont. Dis 103 661 2.89 46 1656 3658 257.41 730 71.63

Encounter for screening, unspec. Imp. Cont. Dis 55 661 1.54 30 809 3658 125.75 344 66.36

Screening digital breast tomosynthesis,
bilateral

vacuuming 103 231 1.01 23 1656 1546 108.79 332 62.36

Encounter for screening for malignant
neoplasm of colon

Imp. Cont. Dis 61 661 1.71 31 1399 3658 217.46 620 57.69

Screening mammogram for malignant
neoplasm of breast

Imp. Cont. Dis 89 2019 7.64 80 2091 10987 976.24 1765 53.97

Pure hypercholesterolemia, unsp. Imp. Cont. Dis 64 661 1.80 30 1328 3658 206.43 596 49.89

Screening digital breast tomosynthesis,
bilateral

Imp. Cont. Dis 103 2019 8.84 82 1656 10987 773.15 1422 44.84

Annual Exam vacuuming 171 231 1.68 23 2596 1546 170.54 423 44.53

Physical therapy evaluation low complex
20mins

Imp. Cont. Dis 36 661 1.01 22 678 3658 105.39 325 44.29

Screening, malig. neopl. colon vacuuming 61 231 0.60 14 1399 1546 91.91 269 43.32

Screening, malig. neopl. breast Imp. Cont. Dis 30 661 0.84 18 571 3658 88.76 272 36.53

Other hemorrhoids Imp. Cont. Dis 37 661 1.04 17 559 3658 86.89 236 33.29

Age-related osteoporosis without current
pathological fracture

Imp. Cont. Dis 32 661 0.90 18 549 3658 85.34 271 32.33

Asymptomatic menopausal state vacuuming 20 231 0.20 7 387 1546 25.42 81 29.70

Other melanin hyperpigmentation vacuuming 25 231 0.25 8 699 1546 45.92 156 29.59

Screening, unspecified Imp. Cont. Dis 55 2019 4.72 46 809 10987 377.70 692 29.58

Mod sed same phys/qhp each addl 15mins Imp. Cont. Dis 28 661 0.79 13 822 3658 127.77 329 28.45

A high IH value indicates that the relationship between A and B changes significantly between case and non-case populations. Among the unstructured
concepts, “Imp. Cont. Dis” refers to impulse-control disorder, and “vacuuming” refers to use of hallucinogenic and psychoactive drugs derived from psilocybin
mushrooms.

Table 6. Contingency tables for the structured-unstructured pair
“Other, mixed, or unspecified drug abuse, unspecified use” (A) and
“suicide attempts” (B).

Cases Non-cases

Concept B: 1 B: 0 Concept B: 1 B: 0

A: 1 0.0401 0.0541 A: 1 0.0021 0.004

A: 0 0.1095 0.7376 A: 0 0.0204 0.9150

This feature pair has a high interaction heterogeneity (IH) value of 77.55.
Values shown are proportions of the total number of samples (23,566) for
each bin.

Table 7. Contingency tables for the structured-unstructured pair
“Opioid abuse, unspecified use” (A) and “junk (heroin)” (B).

Cases Non-cases

Concept B: 1 B: 0 Concept B: 1 B: 0

A: 1 0.0443 0.0079 A: 1 0.0022 0.0010

A: 0 0.1071 0.7820 A: 0 0.0297 0.9085

This feature pair has a low IH value of 3.95. Values shown are proportions
of the total number of samples (23,566) for each bin. The differences
between the two distributions are smaller in Table 7 than in Table 6,
resulting in a lower IH value.
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the goal of this research was to investigate properties of
structured and unstructured data, we compared predictive
performance of NBCs and BRFCs, which are relatively easy to
interpret. To achieve a potentially superior predictive model, it
would also be worthwhile to consider other modeling approaches

such as XGBoost, neural networks, and support vector machines,
as well as complex feature selection techniques such as PCA and
t-SNE. However, these modeling methods are more difficult to
interpret, making them less suitable for the present study. They
are potential avenues for future work.

Fig. 5 Interaction heterogeneity versus joint suicide risk. A comparison of joint suicide attempt risk and interaction heterogeneity. Each
data point corresponds to a structured-unstructured feature pair AB. The x-axis shows the joint suicide risk of features A and B, defined as the
log of the ratio of the expected joint occurrences of AB in the case vs. non case cohorts. The y-axis shows the interaction heterogeneity, a
measure of how much the interaction between A and B differs between case and non-case cohorts. The plot shows that feature pairs with
similar joint suicide attempt risk can have very different interaction heterogeneity.

Table 8. Structured-unstructured feature pairs A-B with high interaction heterogeneity (IH) values.

Structured feature (A) Unstructured feature (B) Joint suicide attempt risk IH

Other, mixed, or unspecified drug abuse, unspecified use Suicide attempts 2.02 77.55

Other, mixed, or unspecified drug abuse, unspecified use Section XII 2.08 74.72

Other, mixed, or unspecified drug abuse, unspecified use Living on the street 2.06 66.66

Other, mixed, or unspecified drug abuse, unspecified use Prison 1.96 62.57

Other, mixed, or unspecified drug abuse, unspecified use Undomiciled 2.02 61.18

Other, mixed, or unspecified drug abuse, unspecified use Intoxications 1.96 60.56

Suicidal ideation Section XII 2.03 54.69

Other, mixed, or unspecified drug abuse, unspecified use Undomiciled 1.96 54.50

Other, mixed, or unspecified drug abuse, unspecified use Opioid dependence 2.12 53.86

Suicidal ideation Schizoaffective schizophrenia 1.91 52.75

Other, mixed, or unspecified drug abuse, unspecified use Sober 1.91 52.29

Opioid abuse, unspecified use Methadone 2.02 48.85

Other, mixed, or unspecified drug abuse, unspecified use Unspecified bipolar disorder 1.90 48.53

Suicidal ideation Delusions 1.86 48.32

Other, mixed, or unspecified drug abuse, unspecified use Methadone 2.00 46.72

Other, mixed, or unspecified drug abuse, unspecified use Schizoaffective schizophrenia 1.96 46.44

Opioid abuse, unspecified use Sober 1.93 46.09

Other, mixed, or unspecified drug abuse, unspecified use Methadone 1.86 45.55

Cocaine abuse, unspecified use Methadone 1.97 43.78

Borderline personality Methadone 1.88 43.59

The joint suicide attempt risk of features A and B is defined as the log of the ratio of the expected joint occurrences of AB in the case vs. non case cohorts.
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Another limitation is that suicide attempt risk predictions were
performed only on the penultimate visits prior to a suicide
attempt. This was done to reduce the complexity and computa-
tional burden of the prediction task while allowing us to focus on
differences between structured and unstructured features. As a
result, the specific models developed here are designed to
predicting risk in later visits of patients and may not predict
suicide risk sufficiently in advance if used in earlier visits.
Predictive models trained for practical purposes would be
designed for predicting at any point during the patient’s
longitudinal history. One approach for doing this with random
forests is to sample random visits in the patient’s medical timeline
and include cumulative feature history up until that visit as
“snapshots.” We have explored such multi-temporal suicide risk
predictions with random forests in a separate study10.
It is likely that some patients who attempted suicide did not

have their suicide attempts recorded in the electronic medical
record, either due to failures in diagnosis, errors in recording the
suicide attempt, or simply because the patient did not have an
encounter with the health system around the suicide attempt.
Therefore, the actual misclassification rate of case subjects by our
models could be higher than reported. This limitation with case
labeling is inherent to any study on suicide risk prediction based
on EHR data. Although in this study only the structured codes
were used in case definitions, future work can also consider using

suicide attempt concepts in clinician notes when labeling cases.
This way, NLP concepts would not only expand the feature set of
the patients, but also expand the list of cases for training and
testing. Given the imbalanced 1/99 case—non-case ratio, this
could improve the predictive accuracy of trained models. Future
work could also compare the performance of these models on
different demographic, socio-economic, and time cohort sub-
groups. It would also be worthwhile to consider stratifying models
by variables known to be confounded with suicide attempt risk
such as age.
When developing the models for this study, we constrained

ourselves to methods that are relatively easy to interpret. We also
tried to keep the complexity of our models and NLP pipeline
relatively low for better clinical generalizability. Therefore, our
rule-based NLP pipeline and NBC models are highly interpretable.
Although the training process of RF models can be obscure due to
the randomness and ensembling involved, trees can be easily
visualized to justify decisions made by the model during
inference. However, if the interpretability constraint were waived,
it would be worthwhile to explore other modeling approaches,
including deep learning artificial neural network (ANN) models, for
both NLP feature extraction and predictive modeling. Although
such models are typically harder to interpret, deep learning
models have exhibited superior predictive performance compared
to statistical and machine learning models in a number of
computational tasks. In particular, recent advancements made in
recurrent neural networks (RNNs) and attention-based transformer
networks have proven great potential in many types of natural
language tasks. ANNs are able to extract abstract representations
from different modes of input data, without any feature
engineering involved and fuse them efficiently for optimal
predictive performance. ANNs have already been employed for
many medical prediction tasks involving structured and unstruc-
tured data. In the suicide prediction workflow described in this
study, both our NLP feature extraction pipeline and RF-based risk
modeling could be replaced with deep-learning approaches for

Table 9. Structured-unstructured feature pairs A-B with low interaction heterogeneity (IH) values.

Structured feature (A) Unstructured feature (B) Joint suicide risk IH

Opioid type dependence, continuous use Hearing voices 2.03 0.05

Opioid type dependence, continuous use Suicidality 1.98 0.05

Methadone tab 40mg Junk (heroin) 1.73 0.05

Barbiturate and similarly acting sedative or hypnotic abuse, unspecified use Mugged (assault) 1.96 0.04

Unspecified neurotic disorder VH (visual hallucinations) 1.89 0.04

Other, mixed, or unspecified drug abuse, unspecified use Judgment impaired 2.12 0.03

Barbiturate and similarly acting sedative or hypnotic abuse, unspecified use Prison 2.04 0.03

Opioid type dependence, continuous use Junk (heroin) 1.83 0.02

Cocaine abuse, unspecified use Blackouts 1.88 0.02

Methadone tab 40mg Junk (heroin) 1.83 0.02

Opioid type dependence, continuous use Thioridazine 1.99 0.02

Barbiturate and similarly acting sedative or hypnotic abuse, unspecified use Junk (heroin) 2.11 0.01

Acute alcoholic intoxication in alcoholism, continuous drinking behavior Hallucinosis 1.99 0.01

Suicidal ideation Crack 2.02 0.01

Methadone tab 40mg Stolen 1.73 0.01

Unspecified neurotic disorder Sexual assaults 1.81 0.01

Depressive Neuroses (MS v24) Sober 1.96 0.00

Depressive Neuroses (MS v24) Prison 2.01 0.00

Unspecified neurotic disorder VH 1.85 0.00

Cocaine abuse, continuous use VH 1.95 0.00

The joint suicide attempt risk of features A and B is defined as the log of the ratio of the expected joint occurrences of AB in the case vs. non case cohorts.

Table 10. Contingency tables of structured-unstructured concept
pairs A-B, for case and non-case cohorts.

Cases Non-cases

Concept B: 1 B: 0 Concept B: 1 B: 0

A: 1 a1 b1 A: 1 a0 b0
A: 0 c1 d1 A: 0 c0 d0
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greater predictive performance. Future work could explore the
application of deep learning to NLP feature extraction and
prediction of suicide attempt risk11–16.
Previous studies have examined the use of unstructured EHR

data in clinical prediction models in general, and in suicide
prediction models in particular. Tsui et al.1 showed that the use of
NLP features extracted from clinician notes significantly improved
the AUC of an ensemble of extreme gradient boosting models and
of a Lasso model over a structured-data only baseline model.
Poulin et al. used keywords extracted from unstructured clinician
notes to predict suicide risk among US veterans with an accuracy
of 65%4. Carson et al constructed a random forest model trained
on structured and unstructured EHR data of psychiatrically
hospitalized adolescents to predict suicidal behavior with an
AUC of 0.6817.
In the present study, we examined the integration of features

derived from unstructured clinician notes into structured-data-
based suicide risk prediction models. We showed that a model
that assumes independence among variables (NBC) does not
significantly benefit from the addition of unstructured features,
whereas models such as Balanced Random Forest Classifiers that
explicitly capture interactions exhibit performance increases when
unstructured features are added. We also proposed and imple-
mented a framework for identifying specific structured-
unstructured feature pairs whose interaction patterns differ with
respect to a patient’s suicide risk, and thus have the potential to
improve predictive performance and increase understanding of
clinical risk. Many of the interactions identified are expected,
which serves to validate our proposed approach for identifying
meaningful interactions that can help further elucidate the risk
factors of clinical conditions. These findings and this framework
can be used to improve current and future EHR-based clinical
prediction models, which are becoming increasingly widespread
in clinical settings.

METHODS
Data processing
We analyzed data from the Mass General Brigham Research Patient Data
Registry (RPDR)18, an EHR data warehouse covering 4.6 million patients
from two large academic medical centers in Boston, MA, USA (Massachu-
setts General Hospital and Brigham and Women’s Hospital), as well as their
affiliated community and specialty hospitals in the Boston area. The RPDR
was queried for all inpatient and outpatient visits occurring from 1998
through 2018 by individuals who met the inclusion criteria of: Three or
more total visits recorded in the EHR, 30 days or more between the first
and last visits, and the existence of at least one encounter after age 10 and
before age 90. For each patient, we analyzed all demographic, diagnostic,
procedure, laboratory, and medication data recorded at each visit, as well
the unstructured clinician notes.
The structured data extracted from the RPDR was retrieved in a format

wherein each row corresponded to a specific feature recorded during a
specific encounter. All datasets had the following columns: de-identified
subject number, encounter number, concept code, concept start date, and
site of encounter. Lab results data had a “valueflag” column representing
the recorded outcome of a given test (low, normal, high, abnormal,
undetermined) which was merged into the lab features column. This
transformed each lab feature into multiple “dummy” features. For example,
instead of a feature “test_1”, we had five features: “test_1|L”, “test_1|N”,
“test_1|H”, “test_1|U”, “test_1|A”. Each NLP concept was appended with the
mention type of the concept (positive; negative; family history; negative
family history), which quadrupled the number of NLP features. The
“Concept start date” column was used for filtering patients by age along
with demograpihcs data, and for removing data recorded following the
first suicide attempt for cases.

Natural language processing
In order to derive features from the unstructured clinician notes, we
created a custom lexicon of suicide-relevant and psychiatric concepts
using a variety of approaches including: (1) selecting signs and symptoms,

and mental and behavioral process semantic types from the Unified
Medical Language System (UMLS)19; (2) mapping DSM symptoms and
concepts from structured instruments20; (3) automatically extracting
features from public sources including Wikipedia and MedScape; (4)
incorporating RDoC domain matrix terms20; (5) selecting predictive
features from coded suicide attempt prediction models21; and (6) manual
annotation of terms by expert clinicians. This lexicon was linked to UMLS
concepts and included 480 distinct semantic concepts and 1,273 tokens or
phrases. Using this lexicon, we ran the HiTex22 NLP named-entity
extraction pipeline to identify concepts in over 120 million clinical notes.
For each note, we identified the presence of a concept (e.g., symptom,
disease, mental process) and further tagged concepts as negated (NEG),
family history mention (FH) or negated family history (NFH). For negation
and family history pipeline components, we utilized the ConText
algorithm23.

Case definition
We have previously described the development of an EHR-based case
definition for suicide9. In summary, with the help of three expert clinicians,
we identified codes from International Classification of Diseases, Ninth
Revision (ICD-9) and International Classification of Diseases, Tenth Revision
(ICD-10) that reliably captured suicide attempts with a positive predictive
value (PPV) of greater than 0.70. Subjects having at least one of these
codes were included in the case population. For cases, we also removed all
data following the first suicide attempt (the index event) and made
predictions at the penultimate visit prior to the index event. For the
purpose of this study, the case definition was based solely on structured
diagnostic information and did not include information derived from the
clinician notes when classifying individuals as cases versus non-cases.

Model training
We split our data into training and testing sets with a 70/30 ratio,
respectively. For each individual, we included all visits available in that
patient’s EHR. For individuals labeled as cases, we included only visits up to
and including the penultimate visit prior to the visit on which the
individual first met the case definition. This restriction was not applied to
non-cases. We applied two modeling approaches for suicide prediction.
The first was a Naive Bayes Classifier (NBC) model, described in detail
elsewhere24. NBCs are a subclass of Bayesian networks that assume strong
conditional independence of all input features, greatly reducing model
complexity25. NBCs have been shown to be well-suited for clinical decision
support tasks and are highly scalable and interpretable; they compute a
risk score for each concept using the odds ratios of its prevalence in case
and non-case populations, ignoring interactions with other variables.
During validation, the NBC risk scores for each concept in a patient’s visit
history were added together to compute a cumulative suicide risk measure
for the subject. If a patient had multiple instances of the same predictor
over multiple visits, that predictor was counted multiple times at different
visits of the patient. The NBC model was trained using R version 3.6.0 and
the R packages pROC and tidyverse.
The second modeling approach was a Balanced Random Forest Classifier

(BRFC)26, which unlike NBCs is capable of capturing interactions between
features. Balanced Random Forests are an extension of Random Forest27

models, which work well with label-imbalanced datasets. Due to
computational constraints, the BRFCs were trained and tested on a smaller
subset of 140,000 subjects of the RPDR data. The occurrence rate of suicide
attempts in our dataset is very low, at about 1%, resulting in low positive
predictive values (PPV) on test sets with regular Random Forests. BRFCs
balance the classes by either downsampling the majority class, upsampling
the minority class, or resampling both classes with replacement during
bootstrap draws until a specified ratio of classes is met. During the
sampling of training data, we ensured that the proportion of cases was
lifted from 1% to around 12%. The test set was left intact with the natural
1% suicide attempt rate. The data pipeline for arriving at training and
testing sets for all described models is illustrated in Fig. 2.
For selecting the parameters of the model, we performed a grid search

with 5-fold cross-validation on the BRFC parameter space. Based on the
grid search results, we arrived at a model with 30 trees, 50% of all features
sampled for each tree, bootstrap sample size equal to the total number of
samples, and 1:4 ratio of case to non-cases in every bootstrap sample,
achieved with random undersampling of the majority class. Even after
undersampling non-cases to 1:4 case:non-case ratio, the size of bootstrap
samples remained sufficiently large due to the relatively high case
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prevalence (12%) in the training data. We used Python version 3.6.9 with
the libraries scikit-learn, imblearn, numpy, pandas, and matplotlib. The
packages imblearn and scikit-learn were useful for training and testing
balanced random forests. Libraries numpy and pandas were helpful for
data transformations and analyses. Paper visualizations were produced
using matplotlib.
We used area under the receiver operating characteristic curve (AUC) as

the primary predictive performance metric. In order to create confidence
intervals and enable comparison of AUC values of different models, we
used the percentile bootstrapping method with a simulation size of 1,000.
We also measured PPV and sensitivity over a range of specificities. Since
the primary goal of our work was to investigate properties of the NLP
dataset rather than to build an optimal predictive model, we maximized
simplicity in the study design: All predictions were made at the visit prior
to the first suicide attempt for cases, and the last visit recorded for non-
cases.

Contingency analysis
In order to better understand the interactions between structured and
unstructured data, we performed a separate contingency analysis to
identify interactions between structured and unstructured features that
differed substantially between case and non-case populations. To account
for possible effects of sample size differences between case and non-case
populations, we randomly sampled two equal cohorts—one with 23,566
cases and the other with 23,566 non-cases. (These cohorts were sampled
from the original dataset before training and testing splits were made.) To
simplify analysis, we counted each feature only at its first occurrence for
each subject.
For simplicity in the following discussion, we will refer to a feature

derived from structured data as A, and a feature derived from NLP of
unstructured data as B. For each feature pair A-B, we computed
contingency tables for both case and non-case populations (Table 10).
To measure the strength of association between feature A and feature B
within each cohort, we performed a Chi-squared test of independence. The
null hypothesis was that A is independent of B, while the alternative
hypothesis was that there is an association between A and B. Equation (1)
shows the computation of the statistic Ti for both case and non-case
populations:

Ti ¼
Pai�E ai½ �

E ai½ � ; E ai½ � ¼ aiþcið Þ aiþbið Þ
n ; n ¼ ai þ bi þ ci þ di

Ti � χ21
(1)

where a, b, c, and d are as defined in Table 10. Under the null hypothesis, Ti
follows a Chi-squared distribution with one degree of freedom. This value
can be used to compute p-values from the Chi-squared quantile function.
In order to determine whether the interactions between feature A and

feature B differed between case and non-case populations, we used
Woolf’s method for testing for homogeneity28. The null hypothesis was
that the odds ratios computed on each of the case and non-case
populations were equal, while the alternative hypothesis was that these
differed significantly. We calculated Woolf’s test statistic (X2HOM) as shown
in Eq. 2:

log cORi
� �

¼ log aidi
bi ci

� �

Var log cORi
� �� �h i�1

¼ wi ¼ 1
ai
þ 1

bi
þ 1

ci
þ 1

di

� ��1

logOR ¼
Pk

i¼1
wi log bORi

� �

Pk

i¼1
wi

X2
HOM ¼ Pk

i¼1
wi log cORi � logOR
� �2

X2
HOM �asym χ2k�1

(2)

For k= 0, under the null hypothesis, X2HOM follows a Chi-squared
distribution with one degree of freedom. For clarity, we will refer to Woolf’s
test statistic X2HOM as Interaction Heterogeneity (IH). Interaction hetero-
geneity provides a summary measure of the difference in the overall shape
of the contingency table between case and non-case populations.
Next, we examined the joint distribution p(AB|Y), conditional on the case

variable Y (suicide vs. non-suicide). Using Bayes’ rule, this distribution can
be used to derive the more clinically interesting distribution p(Y|AB)—
specifically P(Y= 1|A= 1, B= 1)—which is the probability of the patient
attempting suicide in the future given that the patient has both features A

and B:

P Y j A; Bð Þ ¼ P AjY;Bð ÞP YjBð Þ
P AjBð Þ

P A ¼ 1 j Y ¼ 1; B ¼ 1ð Þ ¼ a1
a1þb1

P Y ¼ 1 j B ¼ 1ð Þ ¼ a1þb1
a0þb0þa1þb1

P A ¼ 1 j B ¼ 1ð Þ ¼ a1þa0
a1þb1þa0þb0

P Y ¼ 1 j A ¼ 1; B ¼ 1ð Þ ¼
a1

a1þb1

� �
a1þb1

a0þb0þa1þb1

� �

a1þa0
a1þb1þa0þb0

(3)

The variables ai, bi, ci, di shown in Eq. 3 are as in Table 10, except that the
entries in the contingency table of cases have been divided by 100 to
reflect the 1/99 case-non-case ratio encountered in the clinical population.
Thus, using Woolf’s method, we are able to identify specific structured-
unstructured feature interactions that are most different between case and
non-case cohorts, and thus have the most potential for improving
predictive performance.
Combining the above methods, we assembled a list of structured-

unstructured feature pairs AB in which: (1) Both A and B were among the
top 200 most important features as ranked by the absolute value of the
NBC feature risk scores; (2) the joint occurrence of A and B were
significantly different from the expected value under the null within both
case and non-case cohorts, as measured using the Chi-squared statistic Ti;
and (3) the interaction between A and B was significantly different
(heterogeneous) between the case population and the non-case popula-
tion—as measured by interaction heterogeneity (IH). For ease of
interpretation, we included only unstructured features that were either
“positive” or “positive family history” mentions, and excluded “negative”
and “negative family history” mentions.
Since the goal of this analysis was not to simply find meaningful

interactions in the dataset, but rather to identify meaningful interactions
between structured and unstructured features, we performed the
contingency analysis on structured-unstructured feature pairs, but not on
structured–structured or unstructured–unstructured feature pairs.
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