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Integrative analysis of multi-omics data can elucidate valuable insights into complex molecular mecha-
nisms for various diseases. However, due to their different modalities and high dimension, utilizing and
integrating different types of omics data suffers from great challenges. There is an urgent need to develop
a powerful method to improve survival prediction and detect functional gene modules from multi-omics
data. To deal with these problems, we present DeepOmix (a scalable and interpretable multi-Omics Deep
learning framework and application in cancer survival analysis), a flexible, scalable, and interpretable
method for extracting relationships between the clinical survival time and multi-omics data based on
a deep learning framework. DeepOmix enables the non-linear combination of variables from different
omics datasets and incorporates prior biological information defined by users (such as signaling path-
ways and tissue networks). Benchmark experiments demonstrate that DeepOmix outperforms the other
five cutting-edge prediction methods. Besides, Lower Grade Glioma (LGG) is taken as the case study to
perform the prognosis prediction and illustrate the functional module nodes which are associated with
the prognostic result in the prediction model.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The advent of high-throughput omics technologies, such as the
next-generation sequencing [1], DNA microarrays [2], and DNA
methylation arrays [3] enable the measurement of thousands of
molecules at the same time from a biological sample comprehen-
sively. Each type of omics data provides unbiased characterization
on one aspect of genome, transcriptome, and epigenome, which
raises opportunities for biological and medical research explo-
rations [4,5]. However, analysis of single omics data is limited to
exploring the underlying biological mechanisms and capturing
intricacy for various complex diseases, which only can explain its
molecular field respectively [6]. Therefore, integrating multi-
omics data at different levels yields a better understanding of over-
all disease alterations, has an enormous impact in cancer profiling,
diagnosis, and treatment, and elucidates the relationships among
different types of omics data for one specific disease [7].

Developing accurate survival prediction models of cancer bene-
fits the identification of effective prognostic biomarkers, improve-
ment of risk stratification, and personalized treatment. With the
accumulation of a tremendous number of multiple omics data in
the past decades, it brings opportunities to build the prediction
model and infer the systematic underlying biological mechanisms
through making an integrative analysis. However, it raises new
computational challenges in the data integration due to the hetero-
geneous characteristics and distribution of different types of data,
the high dimensionality of each level of a molecular dataset, and a
limited number of observations [8–10]. To address these issues, a
variety of regression methods have been proposed to build the
prognostic model through integrating multi-omics data [11].

There are mainly four kinds of approaches to predict the sur-
vival time, namely penalized regression, boosting, random forest,
and deep learning-based methods [12]. Integrative LASSO with
Penalty Factors (IPF-LASSO) [13], an extension of LASSO method,
is designed to make the L1-penalized regression analysis by using
different penalty weights for each type of omics data to train the
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model. Component-wise gradient boosting with a generalized lin-
ear model (glmboost) is proposed for regression, time-to-event,
classification analysis with variable selection [14]. Both glmboost
and IPF-LASSO can be applied to multi-omics data with high
dimension, which perform the feature selection and reduce the
complexity of the model. However, they could only detect the lin-
ear relationships between features and outcome variables through
fitting linear models. Block forest, a variant from random forest,
incorporates the block structure of multi-omics data and makes
the non-linear prediction of the clinical outcomes [15]. The limita-
tion of block forest is that they can’t extrapolate the data.

Some deep learning-based methods were also applied to train
the survival model. DeepSurv was a method of the deep feed-
forward neural network to perform a prediction of time-to-event
to make personalized treatment recommendations. It estimated
each sample’s effect on their hazard rates concerning parametrized
weights of the network, which was configurable with multiple
numbers of hidden layers [16]. DeepHIT was a deep neural net-
work architecture to learn the joint distribution of survival time
and event directly without making assumptions about the underly-
ing stochastic process [17]. The parameters of the model and the
form of the stochastic process depended on the features of the
input dataset used for survival analysis. However, these two meth-
ods were not designed for integrating multi-omics data and lacked
interpretability. It was urgent to propose an interpretable nonlin-
ear model for multi-omics data integration and survival prediction.

To fill the gaps of the algorithm in this field, we presented Dee-
pOmix, a scalable and interpretable deep learning framework for
multi-omics data integration and survival prediction. DeepOmix
learned meaningful information by incorporating prior biological
knowledge of gene functional module networks as the function
module layer since genes perform functions in cells in the form
of a synergistic and regulatory system [18]. Getting the low-
dimensional representations in the functional module layer facili-
tates extracting significant modules corresponding to the prognos-
tic prediction result. The functional modules can be defined by
users, including tissue networks [19], gene co-expression networks
[20], or prior biological signaling pathways [21]. We performed
experiments of benchmark comparison and elucidated that the
performance of DeepOmix outperformed other existing state of
art prediction models. Then, Low-Grade Glioma (LGG) was taken
as the case study. Patients were grouped into two subtypes with
significant differences in survival time based on the output layer
of the prediction result. The difference of functional nodes on the
module layers in these subtypes was tested and top-ranked func-
tional modules were detected. DeepOmix can integrate multi-
omics data by incorporating prior biological knowledge to conduct
prognosis prediction and learn the low representations on the
module layers to understand the underlying mechanisms for fur-
ther study.
2. Results

2.1. DeepOmix: A multi-omics scalable and interpretable prognosis
prediction framework

DeepOmix efficiently implemented a non-linear combination of
variables from different omics datasets (Fig. 1A) and incorporated
prior biological information defined by users (Fig. 1B) (such as sig-
naling pathways and tissue networks). The deep learning frame-
work of DeepOmix was designed as in Fig. 1C, the detail of which
was in the method section.

DeepOmix integrated different omics data as input gene layer
and the gene layer nodes were connected with functional layer
according to the prior information from pathways or functional
2720
modules as input defined. The basic idea behind this model was
that in different biological processes, genes exercised their func-
tions in the form of functional modules instead of working alone.
The functional module layer was the low-dimensional representa-
tions, and each node was a non-linear function of the values at the
different molecular levels (mutations, copy number alterations,
gene expressions, and DNA methylation) of the genes it contained.
Meanwhile, the relationships were various due to different dis-
eases or biological processes. Users can define their own functional
modules according to their clinical needs or trail experiments and
signaling pathway gene sets were used in our analysis.

After training the model, samples would be classified into two
groups, namely high-risk and low risk, according to the values in
the output layer (Fig. 1D). Then, the nodes in the functional module
layer were treated as the low-dimensional representations, namely
new features to elucidate the underlying mechanisms among these
two groups with different prognoses. To adumbrate the prognosis
result and interpretability of DeepOmix, LGG was taken as the case
study.
2.2. Performance comparison with other methods

We compared DeepOmix with other five state-of-the-art meth-
ods on eight different cancer datasets. According to the evaluation
review published recently [12], top-ranked methods for multi-
omics data integration and survival time prediction were selected
in our comparison, including IPF-LASSO [13], glmboost [14], and
block forest [15]. Besides, two widely used deep learning-based
survival time prediction methods, DeepSurv [16] and DeepHIT
[17] were also included. Eight different cancer types from The Can-
cer Genome Atlas (TCGA) project included bladder urothelial carci-
noma (BLCA), breast invasive carcinoma (BRAC), head-and-neck
squamous cell carcinoma (HNSCC), lower grade glioma (LGG), kid-
ney renal clear cell carcinoma (KIRC), lung adenocarcinoma
(LUAD), ovarian serous cystadenocarcinoma (OV) and stomach
adenocarcinoma (STAD).

Concordance index (C-index) [22], a widely used performance
metric of the survival prognosis prediction model was applied in
the evaluation of the experiments. The performance results for
six algorithms on eight datasets mentioned above were summa-
rized in Supplementary Table 2. Each method was conducted on
eight datasets, and the eight calculated metric values of the C-
index were used to evaluate its performance. C-index differences
between the other five methods and DeepOmix were shown in
Fig. 2A, and statistical method of one-tailed t-test was carried
out to elucidate that the mean differences were significantly smal-
ler than zero within all the comparisons. On six out of eight data-
sets, DeepOmix performed best with the highest average C-index
(Fig. 2B). The comparison result showed that DeepOmix was robust
and outperformed other methods significantly.
2.3. Case study

2.3.1. Prognosis prediction result of DeepOmix on LGG (Lower Grade
Glioma)

Dataset of LGG was taken as an example to perform the case
study. First, DeepOmix was applied to the LGG dataset to make
the prediction. Then, patient samples were classified into two sub-
types with two different prognostic status, namely high-risk and
low-risk, according to the values of the output layer. Fig. 3A
showed that the difference of survival time was significantly differ-
ent between these two subgroups (Kaplan-Meier curve) through
cox-PH model. Multi-Dimensional Scaling (MDS) was conducted
on the second hidden layer nodes for further visualization on the
lower dimensional space (Fig. 3B). The features were scaled into



Fig. 1. Workflow of DeepOmix. A. Multi-omics data at the gene-level was used as the input data on the input gene layer. B. Functional module gene sets defined by users
determines the number of nodes in the functional module layer and the edges between this layer and the input gene layer. C. The framework in DeepOmix. It includes five
layers, namely the input gene layer, functional module layer, two hidden layers, and the output layer. The functional module layer is the low-dimensional representations of
the gene layer, which is a non-linear function of the gene nodes. D. Samples were classified into high and low risk subgroups according to the output layer, treated as the
prognostic values. Kolmogorov-Smirnov test was performed to rank the meaningful pathways and visualization of nodes on hidden layers among two groups.

Fig. 2. Performance comparison between DeepOmix and five other methods (A) Boxplot of Differences between the average C-index of other methods and
DeepMusicsBoxplot of C-index difference between other methods and DeepOmix. One-tailed t-test was applied to test the difference of the means of the differential C-
index for each comparison. (B) Differences between the average C-index of other methods and DeepOmix on each cancer dataset.
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two dimensions, and the scatter plot shown that samples in the
two groups of different prognosis prediction results were split.

2.3.2. Detection of the functional modules significantly different
among two prognostic groups for LGG

DeepOmix was biologically interpretable since the functional
module information was incorporated as the functional layer. It
was able to capture the nonlinear and hierarchical effects of biolog-
ical pathways associated with survival time. The nodes in the func-
tional layer were used as the lower representations for the
patients. For each node of the functional module, the
Kolmogorov-Smirnov test [23] was performed to test whether the
distribution was significantly different between the previously
2721
defined groups of samples. The top pathways were listed in Table 1
and Supplementary Table 3.

The top one pathway, formation of incision complex in GG-NER
participates the process of DNA repair, participates the process of
DNA repair and affects the sensitivity to cancer therapeutics [24].
A recent study elucidated that DDR-related cytokines had prognos-
tic implications on glioma patients [25] and it affected the malig-
nant progression of LGG after temozolomide treatment [26].

Interestingly, Advanced Glycosylation End-product Receptor
(AGER) signaling pathway, helped amyloid-beta peptide (Ab) and
mediated Ab neurotoxicity, and promoted Ab influx into the brain
[27]. Ab was accumulated naturally in glioma tumors and nearby
blood vessels in a mouse model of glioma [28]. The Folate



Fig. 3. Prognosis prediction result of DeepOmix on LGG. A. Kaplan-Meier plot for two different survival risk groups. B. Visualization of Multi-Dimensional Scaling (MDS) result
of the second hidden layer in the two different prognostic groups.

Table 1
Ten top-ranked pathways in LGG.

Pathway name p-value Bonferroni adjusted
p-value

Formation of Incision Complex In
GG-NER

1.90E-14 1.63E-11

Glycoprotein Hormones 5.73E-14 4.93E-11
KEGG of Colorectal Cancer 2.69E-12 2.32E-09
Adenylate Cyclase Inhibitory Pathway 3.94E-11 3.39E-08
Advanced Glycosylation End-product

Receptor Signalling
1.03E-10 8.89E-08

KEGG of Acute Myeloid Leukaemia 5.61E-09 4.83E-06
RNA Pol III Chain Elongation 7.42E-09 6.38E-06
Folate Biosynthesis 6.31E-08 5.43E-05
KEGG of Alpha Linolenic Acid

Metabolism
6.36E-08 5.47E-05

HS GAG Biosynthesis 9.85E-08 8.47E-05
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Biosynthesis pathway was reported to be at risk of childhood brain
tumors [29]. Regulation of insulin secretion by acetylcholine was
reported that insulin-mediated signaling facilitates resistance to
PDGFR inhibition in pro-neural hPDGFB-driven gliomas [30]. SNPs
in gene ADCY, the key gene in the Adenylate Cyclase (ADCY) inhi-
bitory pathway, affected glioma risk in a sex-specific fashion, ele-
vating the risk for females while protecting males [31].
3. Methods

3.1. Overview

The core principle behind DeepOmix is to learn the representa-
tions of the modules by integrating multi-omics data and user-
defined functional modules. Each module is represented by a
non-linear function of the multiple omics’ values of genes it con-
tains. Embedding is conducted to learning each module represen-
tation on the lower dimension for each input sample.
3.2. Data acquisition and pre-processing

Three kinds of data were used to train the model, namely
patients’ multi-omics data, their clinical survival time data, and
functional module data defined by users. The top eight cancer data-
sets by the sample size available of multi-omics and survival time
data were obtained from LinkedOmics [32], which contains multi-
2722
omics data and clinical data of patients from The Cancer Genome
Atlas (TCGA) project. For one certain cancer, only the samples with
four types of omics data, including somatic mutation data, copy
number alteration data, gene expression data, and DNA methyla-
tion data, were used in the following analysis. Prior biological
knowledge, signaling pathways were taken as the functional mod-
ule input in our research. KEGG and Reactome [33,34] pathway
gene sets were obtained from Molecular Signatures Database
(MSigDB) [35]. Pathways with over 200 genes or less than 20 genes
were excluded since small pathways might be redundant with
other larger pathways and large pathways might be related to
the general biological pathways, rather than specific to a certain
disease [36].

For one certain cancer, the processing of the datasets consists of
two steps. First, four types of omics data at the gene-level were col-
lected (details in Fig. 4), and variables in each type of omics data
were filtered by overlapping with the genes in the functional mod-
ules respectively. For mRNA data, protein-coding genes were
selected from the raw counts of mRNA expression data, and genes
with zero read counts in more than 20% samples were filtered out.
Then, the original raw read counts of RNAseq data were normal-
ized through conducting the R package DESeq2 [37], and read
counts were transferred into the logarithmic space through ‘‘log2(-
counts + 1)”. Second, since variables in the gene expression value of
mRNA data, beta-value of methylation data, and log2 ratio of GIS-
TIC2 [38] of CNA data were continuous, we processed these three
types of omics data in the same way. We kept the top 5000 vari-
ables according to their standard deviations among the patients.
Each variable was normalized into a standard normal distribution
through the R function scale.
3.3. Model construction

DeepOmix was designed as a feed-forward neural network,
built with five layers (Fig. 1), including the input layer, one func-
tional module layer, two hidden layers, and the output layer of sur-
vival time. The input layer was composed of the normalized four
different omics data. For the i-th sample, xigk represent the k-th
omics data of gene g (k = 4 in our analysis). The second layer rep-
resented the gene functional modules, the number of nodes in
which was the number of functional modules (signaling pathways
in our analysis). The edges between the gene layer and functional
layer were constructed based on the prior knowledge of pathway
gene sets. If the gene belongs to the pathway, an edge was added



Fig. 4. The pre-process of multi-omics data and the pipeline of performance evaluation experiments.
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between the g-th gene and p-th pathway. The features of the path-
way layer were constructed through an encoder qpðxÞ of the gene
layer with a non-fully connected network: Sip ¼ qp xð Þ ¼
U
P

g2pathwayp
wgkp � xigk
� �� �

, where U zð Þ ¼ tanh zð Þ ¼ ez�e�z

ezþe�z as the

activation function in our analysis. Then, the pathway features
were transformed to the next two hidden layers, and finally to
the output layer of the survival data composed of survival time
and status with the fully connected networks.

DeepOmix optimized the parameters by minimizing the aver-
age negative log partial likelihood with L2 regularization, and the
objective function of the average negative log partial likelihood
was defined as:

l hð Þ ¼ � 1
nS

X
i2S

hid� log
X

j2R Tið Þ
ehjd

 !
þ k khk22
� �

where h is the second hidden layer’s outputs; S is a set of uncen-
sored samples; and nS is the total number of uncensored samples.
R Tið Þ ¼ ijTi � tf g is a set of samples at risk of failure at time t.

khk22 is the L2-norms of d;Wf gtogether. d is the weight between
the last hidden layer and the clinical layer; and W is a union of
the weight matrices. k is a regularization hyper-parameter to con-
trol sensitivity (k > 0). We optimized the model by partially train-
ing small sub-networks with sparse coding. Training a small
2723
subnetwork guaranteed feasible optimization, with a small set of
parameters in each epoch.

3.4. Performance evaluation

The predictive performance of DeepOmix was evaluated by
comparing it with the other five state-of-the-art methods men-
tioned above, namely glmboost, IPF-LASSO, block forest, DeepHIT,
and DeepSurv. To evaluate the survival result predicted by differ-
ent algorithms, the overall performance was assessed via the con-
cordance index (C-index) [22]. C-index is the most widely used
metric that measures the discriminative power of the model by
comparing the predicting results with the real survival time. We
calculated C-index using function concordance index in R package
survcomp [39].

3.5. Experiments with cross validation

For each method, we repeated 10-fold cross validation ten times
to measure the performance on multi-omics data of each type of
cancer for the reproducibility of model performance. For each iter-
ation in the repetition of cross validation, first, the samples were
randomly grouped into ten subsets, 10% left-out samples for the
test data, and the remaining 90% for building the model and tuning
the (hyper-) parameters. Then, the remaining 90% samples were
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split into five subsets randomly with ensuring the same censoring
percentage to perform 5-fold cross validation, and every round,
one dataset for validation datasets while four for training data.
The model was built on the training data and (hyper-)parameters
were tuned by the use of the validation dataset. Finally, once the
prediction model was well-trained, the test data were used as
input data to perform the prediction and calculate the predictive
performance C-index [22]. Finally, the average of the C-index
across all the iterations and repetitions was calculated as the final
metric.

3.6. Algorithm configurations

IPF-Lasso was performed via R package ipflasso [13]. Every type
of omics data was input as a block, and the penalty factors for dif-
ferent blocks were selected through 5-fold cross validation.

Block forest was fitted via R package blockForest [15]. Block
information of different omics data was provided. For blocks with
more than 2500 variables, the variables were selected with the
smallest p-values from the univariate Cox proportional hazards
(cox-PH) regression model [40] (coxph function in the R package
survival). The parameters were set as nsets = 300, num.trees.pre =
1500 and nu,.trees = 2000 as the paper [15] suggested.

The method of glmboost was conducted via function glmboost in
the R package mboost [14]. The family argument was set as CoxPH
(). The parameter of the number of boosting steps (mstop) was
selected on a grid from 1 to 2000 through 5-fold cross validation.

For the two deep learning-based methods, four types of omics
data were integrated as one input data X, and each feature from
the four datasets was treated as one covariate. Samples were
grouped into training, testing, and validation subsets. For DeepSurv
[16], we chose ReLU as an optimal activation layer with batch nor-
malization and dropout 40% on the dropout layers. Adam optimizer
was used for model training, without setting the initial learning
rate value. For the method of DeepHIT, the process of training
was performed with mini-batches of the training set over 50,000
iterations. Every 1000 iteration, a prediction was conducted on
the validation set and the best model was saved to the specified file
path. The evaluation of the models was based on the concordance
index. The best result was returned if there was no improvement
for the next 6000 iterations (early stopping).

3.7. Functional analysis

We took the LGG as the case study in this part. First, we grouped
samples of LGG into two parts according to the node values on the
output layer with the threshold of median value, namely high-risk
group and low-risk group. The survival difference in these two
groups was tested via cox-PH model [40]. Nodes in the functional
module layer are the low-dimensional representations for the
input gene layer. After grouping, to get the meaningful pathways,
Kolmogorov-Smirnov test [23] was performed (function ks.test in
R) to test the distribution difference of values on each node of
the functional layer among two groups. Then, Bonferroni adjusted
method [41] was applied to perform the multiple correction for the
p-values.
4. Discussion

The application and integration of different molecular profiling
technologies create novel opportunities for personalized medicine;
however, they also bring challenges. Heterogeneity of the samples
and high dimension are the main bottlenecks to perform the com-
bination of multi-omics data and predictions of the clinical out-
comes, such as survival time. This calls for better strategies to
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build the prediction model and identify the related underlying
mechanisms. Although there are many studies for prognosis pre-
diction of cancer patients, embedding multiple omics data sources
of the patients by combining the gene functional modules and fit-
ting a non-linear function of the omics data has not been reported,
as far as we know.

We addressed this problem by building a scalable and inter-
pretable framework called DeepOmix, an explainable framework
for the analysis of highly multiplexed omics data. It leverages func-
tional module information to explore the biological mechanisms
that might be associated with the prediction result. DeepOmix out-
performs other top ranked cutting-edge methods for integrating
multi-omics data and predicting the survival time. It provides an
exploratory approach to improve the biological understanding of
the prognosis prediction model. In addition, in the case study of
LGG, top-ranked identified functional pathways that are associated
with prognosis groups are confirmed by previous studies.

The work we presented lays the foundation for further
researches. Apart from the used four types of omics data, DeepO-
mix can be expanded to integrate increasingly complex data, such
as proteomic data. This deep learning framework with functional
module layer could also be applied to predict other clinical out-
comes, including the categorical variables (such cancer subtypes
and cancer stages) and continuous variables (such as drug
response). In the future, single cell RNA sequencing data or spatial
transcriptomics data will be more available for next version. In
summary, we believe that DeepOmix is a valuable tool to make
an integrative analysis of different resolved-omics data and build
prediction models.

5. Code availability

The code of DeepOmix and the scripts to generate the results
shown in this paper are available at https://github.com/CancerPro-
filing/DeepOmix.
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