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Abstract

Spontaneous canine head and neck squamous cell carcinoma (HNSCC) represents an ex-
cellent model of human HNSCC but is greatly understudied. To better understand and uti-
lize this valuable resource, we performed a pilot study that represents its first genome-wide
characterization by investigating 12 canine HNSCC cases, of which 9 are oral, via high den-
sity array comparative genomic hybridization and RNA-seq. The analyses reveal that these
canine cancers recapitulate many molecular features of human HNSCC. These include
analogous genomic copy number abnormality landscapes and sequence mutation patterns,
recurrent alteration of known HNSCC genes and pathways (e.qg., cell cycle, PISK/AKT sig-
naling), and comparably extensive heterogeneity. Amplification or overexpression of protein
kinase genes, matrix metalloproteinase genes, and epithelial-mesenchymal transition
genes TWIST1 and SNAIT are also prominent in these canine tumors. This pilot study,
along with a rapidly growing body of literature on canine cancer, reemphasizes the potential
value of spontaneous canine cancers in HNSCC basic and translational research.

Author Summary

Head and neck squamous cell carcinoma (HNSCC) represents the sixth leading cancer by
incidence in humans; thus, developing effective therapeutic interventions is important. Al-
though great advance has been made in our understanding of the biology of HNSCC over
the past several decades, translating the research findings into clinical success has been
frustratingly slow, and anticancer drug development remains a lengthy and expensive pro-
cess. A significant challenge is that drug effects in current preclinical cancer models often
do not predict clinical results, and there lacks translational models that can bridge the gap
between preclinical research and human clinical trials. Here we report a pilot study that
represents the first genome-wide characterization of spontaneously occurring HNSCCs in
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pet dogs. The study reveals a strong dog-human molecular homology at various levels, in-
dicating the likelihood that spontaneous canine HNSCC molecularly represents its human
counterpart. If conclusions of this pilot study are validated with a large sample size and
more efforts are put into building better resource and infrastructure for canine cancer re-
search, spontaneous canine HNSCCs could effectively serve as a much-needed translation-
al model that bridges the gap between preclinical research and human trials.

Introduction

During the past several decades, great advances have been made in our understanding of the bi-
ology of head and neck squamous cell carcinoma (HNSCC) [1-8]. For example, owing to the
rapid development in next-generation sequencing and other high throughput technologies, the
cancer genome atlas (TCGA) [1] and others [2-4] have characterized hundreds of human
HNSCC cases and discovered significantly altered genes and pathways (cell cycle, PI3K signal-
ing, etc.). However, translating these research findings into clinical success has been frustrat-
ingly slow, and drug development remains a lengthy and expensive process [9], with costs
currently estimated at over US$1 billion to bring a new drug to market [9]. With biomarker-
based clinical trials not as advanced and half as many clinical trials currently available as lung
or breast cancer [5], the issue is even more serious for HNSCC. One significant challenge is the
lack of effective predictive models [9].

Current widely-used HNSCC models [10-12] include: 1) cell line and xenograft models; 2)
genetically engineered mouse models; and 3) carcinogen-induced models. While these models
have made spectacular contributions in our molecular understanding of HNSCC and are clear-
ly indispensable, they have issues and generally do not fully represent the great complexity and
heterogeneity of human HNSCC. First, cell lines and subcutaneous xenograft models lack the
specific interactions between tumor cells and their native microenvironment that significantly
influences carcinogenesis. Orthotopic xenograft models allow tumor development in places
that are closer to the natural anatomic site [13], but the tumors still do not arise from the native
head and neck epithelium, a significant issue considering the importance of cells of origin in
cancer [14]. Second, genetically engineered mouse models often manipulate only one or a few
major driver genes (e.g., TP53, CCNDI, KRAS, AKT, etc.) [12], and normally fail to recapitulate
the full alteration spectrum of human HNNCC that typically involves hundreds of genes per
tumor [1-4]. Third, carcinogen-induced models such as the 7,12-dimethylbenz[a]anthracene
(DMBA)-induced tumors in Syrian hamster cheek pouch do not grossly or histologically re-
semble human oral carcinomas [12]. Chronic administration of 4-nitroquinoline 1-oxide
(4NQO), which can cause DNA adduct formation and Hras mutation, induces oral tumors in
rodents [12]. However, these models do not represent the invasive pathology of human
HNSCC [12]. In summary, the current widely-used HNSCC models usually fail to accurately
recapitulate the full spectra of the biology, histopathology, complexity, and heterogeneity of
HNSCC in humans. This, combined with the body size difference between the human and the
rodents, make these models often incapable of accurately predicting the drug efficacy and tox-
icity in human patients [9]. Thus, HNSCC models that can bridge these models and human
clinical trials are critically missing and urgently needed at present.

Spontaneously occurring HNSCC:s in pet dogs may bridge this gap as they overcome many
of the issues of the current HNSCC models discussed above [15-30]. First, unlike genetically-
engineered or xenograft rodent models, these cancers are naturally occurring and heteroge-
neous, capturing the essence of human cancers. Second, as companion animals, dogs share the
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human environment and are exposed to many of the same carcinogens in a similar fashion, un-
like carcinogen-induced cancers. Third, dogs better resemble humans in biology, e.g., with sim-
ilar telomere and telomerase activities [31] and frequent occurrence of spontaneous epithelial
cancers [15], than mice [32]. This further allows a closer resemblance in biology of HNSCC.
Notably, the availability of a genome assembly nearly as accurate as the mouse or rat genome
[33,34], in contrast to that available for another companion animal, the cat, make many analy-
ses possible with canine cancers but not with feline cancers.

HNSCC:s are relatively frequent in the dog and like their human counterparts, the oral cavity
is a common site, and oral SCC is the 2"¢ most common oral malignant tumor in dogs [15,35-
37]. The prevalence rate for nontonsillar oral SCC is estimated at 6.4-7.3 per 100,000 [15],
compared to the average incidence rate of human head and neck cancers at 8.8 and 5.1 per
100,000 men and women respectively [38]. For canine tonsillar SCC, the prevalence rate varies
dramatically, ranging from 91-120 per 100,000 in large cities such as London and Philadelphia
to nearly none in rural areas [15]. Critically, numerous anatomic and clinical similarities of
HNSCC are noted between the human and the dog [15,35]. For example, as in humans, canine
HNSCCs are invasive with metastasis occurring late in disease and tumor cells spreading to the
regional lymph nodes and occasionally to the lung, and local disease recurrence is common in
many patients. An interesting exception to these resemblances is that canine tonsillar SCCs are
more aggressive and often metastatic (73%) compared to those in other locations, which how-
ever is observed in humans. Although far from being as extensively characterized as in human
HNSCCs, papillomavirus DNA is also detected in canine oral SCCs [39]. Lastly, similar treat-
ment schemes are practiced in the two species, which include surgery, radiation therapy, and
chemotherapy with agents such as piroxicam and carboplatin [40,41].

Because of the features described above, along with a large population of pet dogs (~70 mil-
lion estimated in the US alone), canine HNSCC could potentially be a useful and practical
model that significantly speeds up bench to bedside translation. However, a major obstacle for
this realization is that canine HNSCC is markedly understudied. Our current literature search
indicates that not a single canine HNSCC genome or transcriptome has ever been investigated
by sequencing, microarray, or other strategies. This drastically differs from other canine can-
cers such as lymphoma [42,43], leukemia, and osteosarcoma [26], of which hundreds of cancer
genomes have been characterized via array comparative genomic hybridization (aCGH) or mo-
lecular cytogenetic analyses. Thus, unlike the better-studied canine cancers, there are simply in-
sufficient data to evaluate the extent of molecular similarity between canine HNSCC and its
human counterpart, a key factor in determining the usefulness of canine HNSCC in basic and
translational research. To address this obstacle, we set out to conduct a pilot study that repre-
sents the first genome-wide characterization of spontaneous canine HNSCC.

Results

Twelve spontaneous canine HNSCC, including nine oral SCC, cases
were investigated

We characterized 12 spontaneous canine HNSCC cases by genome-wide analyses including
high density aCGH and RNA-seq. These cancers come from different dog breeds, including
four Labrador retrievers, three mixed breeds, and others listed in S1A Table. Among the 12
HNSCC cases, nine are oral (0SCCs) and all nontonsillar, with one from the buccal mucosa,
three from the tongue, and five from the gingiva. The remaining three cases are from the nasal
planum, the nostril, and the eye (the ocular adnexa). The tumors are all invasive (Fig 1A and
1B), and most are well-differentiated although some are more disorganized than others (SIA
Table).
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Fig 1. Representative H&E stained images of canine normal squamous epithelium and SCC of the oral cavity. (A) Normal squamous epithelium of the
oral mucosa (from case 240). Epithelium is between the arrow and the arrowhead. The arrow indicates the basal layer, while the arrowhead designates the
stratum corneum. (B) SCC of the oral mucosa (from case 240). The arrow points to an area with loss of a distinct basal layer and basement membrane. The
arrowhead indicates keratinizing squamous cells. The images are at 100X magnification.

doi:10.1371/journal.pgen.1005277.g001

Furthermore, two cases appear to be papillomavirus-positive, based on the analysis de-
scribed in later sections.

aCGH analysis reveals dog-human homology in genomic copy number
abnormality

Analogous to human HNSCCs [1,2,6], aCGH analysis reveals variations in the extent of geno-
mic copy number abnormality (CNA) among these canine tumors. Specifically, while seven ca-
nine HNSCCs harbor extensive CNAs, the remaining five tumors have hardly any CNAs in
their genomes (Fig 2A and S1B Table). In some cases, the variation in the CNA prevalence is
clearly related to the cancer progression stage (see tumors 419 and 419_2 in Fig 2A). In other
cases however, additional factors may also have contributed. For example, tumor 1152 lacks
CNAs but is at a tumor-progression stage similar to those with extensive CNAs (Fig 2A). Inter-
estingly, among the nine 0SCCs, those with a buccal mucosa or tongue location harbor signifi-
cantly more CNAs than those located in the gingiva (Fig 2A and S1A and S1B Table).

As in human HNSCCs [1,2,6], both focal and broad CNAs were detected in the canine tu-
mors (Figs 2A and S1). For example, tumor 240 harbors a focal amplification of ~10Mb located
on chromosome 16, increasing the copy number of nearly all 63 genes inside by 2-fold and
more (Fig 2B and S1C Table). Of these genes, 40 are also overexpressed (see later sections),
among which “negative regulation of apoptosis” and “endopeptidase activity” are the most en-
riched functional groups. Indeed, anti-apoptosis associated genes IKBKB, POLB, SFRPI and
FNTA, as well as endopeptidase genes ADAM9 and PLAT encoded in the region are both
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Fig 2. aCGH analysis reveals extensive CNAs in the majority of canine HNSCCs. (A) CNAs found in canine HNSCCs. Each tumor genome, with the
tumor ID and location indicated on the top, is shown as a continuous line consisting of 38 canine autosomes separated by vertical black lines, with the
chromosome numbers indicated. Within each chromosome, red/blue vertical lines above/below the chromosome indicate amplifications (red) or deletions
(blue) respectively, with the line height representing the log2-ratio of the amplified or deleted segment. Tumors 419 and 419_2 are from the same case (ID
419), with 419_2 being less advanced. Notable amplified (red) or deleted (blue) genes, e.g., MYC, etc. are indicated.(B) Chromosome 16 of tumor 240 is
enlarged to show a focal amplification, located at 20.8—-30.7 Mb of chromosome 16 and harboring 63 genes as indicated, to exemplify that many of the
amplified genes are also overexpressed and associated with tumor-promoting function. (C) Integration of genes’ copy number status and mRNA expression
level. Genes (11,821 total) with FPKM (fragments per kilobase of exon per million mapped fragments) of > 1 in at least one of the tumors subjected to RNA-
seq were sorted into three groups based on the analysis indicated in (A): deleted (Del), unchanged, or amplified (Amp) as shown on the X-axis. Then, each
group of genes was further divided into three subgroups based on the mRNA expression level: low, normal, and high determined as described [2], with the
percentages shown in the Y-axis. See also S2B Table.

doi:10.1371/journal.pgen.1005277.9002

amplified and overexpressed (S1C and S1D Table) (these genes are also recurrently amplified
in human cancers including HNSCC according to cBioPortal [44] at www.cbioportal.org). No-
tably, 42 of the 63 genes are also significantly amplified in human HNSCC based on the TCGA
study [1] (which will be examined further in a later section). These observations support that
this focal amplification may have contributed to the pathogenesis of tumor 240. Meanwhile,
broad events such as recurrent gain of canine chromosome 13, observed in seven tumors out of
12 total (Fig 2A), were seen as well (although other canine cancer types also harbor chromo-
some 13 gain [21,43]). The first 40Mb of canine chromosome 13 is syntenic to the last 48Mb of
human chromosome 8q, which encodes genes including MYC and is one of the most recurrent-
ly amplified sites in human HNSCC [1,2] and other cancer types [45,46]. Consistent with pub-
lished studies [21,43], these observations support common cancer drivers between the human
and the dog.

PLOS Genetics | DOI:10.1371/journal.pgen.1005277 June 1,2015
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In most canine HNSCCs, more amplifications than deletions were found, causing more ge-
nomic sequences and genes to be amplified than deleted (Fig 2A and S1B Table). Amplifica-
tions are, on average, also larger than deletions (S2 Fig and S1B Table). Importantly, a better
correlation between the copy number status and the expression level (see later sections) was
observed for amplified genes than deleted genes (Fig 2C), supporting that amplified regions
harbor more cancer drivers than deleted regions. This is also consistent with human findings
[2].

Many known human HNSCC genes [1,2,47-49] are also amplified/deleted in the canine tu-
mors. Examples include recurrent amplification of known oncogene MYC; protein kinase
genes MET, PTK2 (also known as FAK1) and FGFRI; apoptosis-related FADD; histone lysine
methyltransferase gene WHSCILI; NDRGI (N-myc downstream regulated 1) which is fre-
quently altered in human cancers including HNSCC but whose roles remain controversial
[50]; cell cycle genes CCNE1, CDK6 and E2F3; and others listed in S1E Table. Notably, the
most enriched functions among the amplified genes are protein kinase activity, with 15 serine/
threonine kinases and 13 tyrosine protein kinases, and protease activity, with 10 serine prote-
ases (S1E and S1G Table). This is consistent with TCGA’s human HNSCC study [1]. Examples
of deleted genes in the canine tumors (Fig 2A) include cell cycle gene CDKN2A, one of the best
known gene deletions in human HNSCC [1,2,6]; and protein phosphatase PTPRD and cad-
herin superfamily membrane FATI, tumor suppressors [51,52] that are also frequently deleted
in human HNSCC [1]. Furthermore, the most significantly enriched functions among the de-
leted genes are closely related to epithelial cell polarity including adhesion (18 genes), small
GTPase regulator activity (19 genes), and cell junctions (11 genes) (S1F and S1G Table). This
agrees with human HNSCC findings [1] and is consistent with the concept that loss of cell po-
larity is a hallmark of epithelial cancers such as HNSCC [53]. These observations support the
dog-human molecular homology.

RNA-seq analysis reveals dog-human homology in transcriptomic
alterations

To better understand alterations at the transcriptomic level, we performed RNA-seq on seven
of the canine 0SCCs and three matching normal tissue samples (S2A Table). The study further
reveals canine tumor heterogeneity and supports dog-human molecular homologies. First,
principle component analysis (PCA) separates the tumors from the normal samples (Fig 3A).
More importantly, tumors 1172, 465, and 404 are distant from the other tumors in the PCA
(Fig 3A), the significance of which will be discussed in later sections. Second, compared to the
normal samples, the genes upregulated in the tumors are enriched in functions including: 1)
cell adhesion/motility, extracellular matrix, and endopeptidase activity; 2) hypoxia and poly-
saccharide metabolic processes; 3) blood vessel morphogenesis and cell differentiation; and 4)
immune response (Fig 3B and S2C-S2G Table). As in human cancers, these functions facilitate
canine tumor cell proliferation and invasion.

We followed published strategies [2,46] to identify over/under-expressed genes. Consistent
with CNA findings (Fig 2A), more genes are overexpressed than underexpressed in all tumors
except tumor 404 (S2B Table). Importantly, genes recurrently overexpressed among the tumors
are significantly enriched in functions associated with cell cycle (e.g., cytoskeleton, spindle, cen-
trosome, kinetochore, etc.), protein kinase activity (e.g., PTK2, TEC, CHEK?2, etc.), nucleolus,
and mRNA and ncRNA processing. Recurrently underexpressed genes are, however, signifi-
cantly enriched in functions related to cell junctions (e.g., 9 tight junction genes), mitochondria
(e.g., respiratory chain and oxidative phosphorylation), serine protease inhibitors, and
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Fig 3. The same pathways are altered in canine oSCCs as in their human counterparts as revealed by RNA-seq analysis. (A) PCA with FPKM values
of 12,478 total genes, each having FPKM > 1 in at least one of the tumor (with ID followed by T, e.g., 240T) or normal (with ID followed by “N”, e.g., 240N)
samples. The plot shows that tumors are separated from normal samples and tumors 1172T, 404T, and 465T are distinct from the other tumors. (B) Heatmap
with the logo(FPKM) values of genes (255 total) that are differentially expressed between the tumors and the normal samples found by both DESeq and t-
tests at FDR < 0.1. The right panel illustrates the significantly enriched functions of each gene cluster indicated. Red denotes upregulation and green
denotes downregulation. (C) Heatmap of genes from pathways and groups that are reported to be altered in human oSCC [1,2]. The heatmap is generated

as described for (B).

doi:10.1371/journal.pgen.1005277.9003

apoptosis. These functions promote cancer cell proliferation and invasion, consistent with
human cancer findings [1].

Critically, we found the same genes and pathways altered in these canine cancers as reported
in human HNSCCs [1,2]. For example, gene members of the receptor tyrosine kinase (RTK)/
PI3K/AKT pathway such as EGFR, PIK3CA, BRAF, and AKT1 are recurrently overexpressed
among the canine tumors (Fig 3C). AKT]1 is especially noteworthy because its expression level
in each tumor is consistently higher than in each normal sample by 2-4-fold (Fig 3C). The
PI3K/AKT pathway is indeed activated in the tumor cells as revealed by immunostaining with
phospho-AKT (Fig 4A). Cell cycle is also altered, as evidenced by overexpression of multiple
cyclin genes, CDK4, CDK6 and E2F1; as well as underexpression of CDKN2A and CDKN2B
(Fig 3C). These pathway alterations could promote cancer cell proliferation.

Another pathway affected is TGFp signaling, as evidenced by the recurrent overexpression
of TGFBI1, TGFB2, TGFBR2, TGFBR1, SMAD3 and SMAD4 in the canine tumors (Fig 3C).
Other notable changes include at least 12 matrix metalloproteinase (MMP) genes, whose ex-
pression increased by hundreds to thousands fold in at least one tumor (Fig 3C). Likewise, epi-
thelial to mesenchymal transition (EMT) genes TWISTI and SNAII are also recurrently
overexpressed (Fig 3C). These observations indicate EMT in the canine tumors, which is con-
firmed by immunofluorescent staining showing increased expression of the mesenchymal
marker vimentin and decreased expression of the epithelial marker E-cadherin in the tumor
cells, compared to the normal squamous cells (Fig 4B). Activation of these genes and pathways
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Fig 4. Tissue immunofluorescent staining supports conclusions from RNA-seq studies shown in Fig 3. (A) Phospho-AKT (p-AKT) is more strongly
expressed in tumor cells than in benign cells of canine case 419, indicating the activation of PISK/AKT pathway in the tumor cells. Tumor 419 has highest
AKT1 mRNA expression level based on RNA-seq analysis (Fig 3C). (B) In case 240, tumors cells (240T) express higher level of mesenchymal marker
vimentin (Vim) but lower level of epithelial marker E-cadherin (E-cad) when compared to normal squamous cells (240N). Many proliferating tumor cells (e.qg.,
those pointed by white arrow) of case 1172 however do not express vimentin. These are consistent with RNA-seq analyses (Fig 3C). (C) Tumor 404 has
significantly decreased 5-methylcytosine (5mC) staining and somewhat decreased acetyl-H4 staining (AcH4), compared to tumor 465. This is consistent with
the PCA result shown in Fig 3A indicating them being two distinct tumors. Representative confocal images are shown; scale bar, 50 pm.

doi:10.1371/journal.pgen.1005277.9004
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would facilitate the invasion of tumor cells into adjacent tissues. Interestingly, tumor 1172 ap-
pears to be an exception to the above observations (Figs 3C and 4B), which will be revisited in
the DISCUSSION section.

Finally, two canine oSCCs appear to be canine papillomavirus (CPV)-positive, based on the
detection of papillomavirus sequences, specifically CPV7 E2/E4 sequences in tumor 1172 and
sequences with high homology (>90%) to human papillomavirus HPV77 E2/E4 in tumor 465,
among their RNA-seq reads (S2H Table). However, unlike TCGA’s HPV-positive HNSCCs
that harbor thousands of viral RNA-seq reads per sample [1], we only identified a few viral
RNA-seq reads for the two canine tumors (S2H Table). This indicates that the infection is likely
latent, or the CPV genome(s) infected has/have not been sequenced (we were able to download
170 HPV genomes but only 15 CPV genomes from the PaVE database at pave.niaid.nih.gov at
the time of the analysis).

RNA-seq analysis reveals dog-human homologies in sequence mutation

We took advantage of RNA-seq data to examine sequence mutations in the canine samples.
Briefly, to achieve more accurate mutation-finding, we utilized only coding regions with 30-
300X RNA-seq read coverage, which distribute across the genome and amount to 4-6 Mb se-
quences in total per sample (S2I Table). The analysis again reveals dog-human homologies.
First, base transitions C+~T/G« A dominate base transversions in all samples (Fig 5A and S2I
Table), indicating similar mutation mechanisms in both species. At CpG sites, the two CPV-
positive canine tumors harbor significantly more transversions compared to the CPV-negative
tumors (Fig 5B and S2I Table), consistent with human findings [1]. However, we did not ob-
serve a predominance of mutations at TpC sites in CPV-positive canine tumors (S2I Table),
unlike the human study [1]. Second, the analysis uncovered a somatic mutation, E233K, in
TP53. Similarly, consistent with human studies [3,4], genes FAT1, FAT2, UBR2, TNC and oth-
ers were found to be mutated in the canine tumors (S2I Table).

As an example, Fig 5C shows the mutations found in the gene RELN in canine tumor 404,
including one nonsense, five non-synonymous and one synonymous changes. Importantly,
RELN is significantly mutated in human HNSCC [1,4], non-small cell lung cancer of smokers
[54], and acute lymphoblastic leukemia [55]. RELN encodes an extracellular matrix glycopro-
tein which is known to control cell-cell interactions to regulate neuronal migration and posi-
tioning in the developing brain. Thus, alteration of RELN may contribute to tumor cell
invasion and spread in both the human and the dog.

Driver-passenger discrimination via dog-human comparison for human
89

The dog-human molecular homologies described above rationalize the use of the dog-human
comparison strategy for driver-passenger discrimination as described [30] for HNSCC. Be-
cause of the small sample size of canine tumors, we tested this strategy only on human 8q, one
of the most recurrently amplified regions in human HNSCC [1,2] and other cancer types.

Due to interspecies genomic rearrangements, human 8q is broken into two dog chromosomal
regions, which include chromosome 29 and the first 38Mb of chromosome 13 (Fig 6A). Nota-
bly, the entire human 8q is significantly amplified among TCGA’s 449 human HNSCCs

(FDR < 107°), leading to the amplification of all of its 398 genes (Figs 6A and S1). In canine tu-
mors, however, only the chromosome 13 region is significantly altered, resulting in the amplifi-
cation of 125 genes out of 210 total at FDR < 0.2. For chromosome 29 in contrast, merely 2
genes out of 188 total are amplified. These numbers significantly differ (p < 2.2x107'°) (Fig
6A). Thus, based on our strategy [30], amplified genes (125 total) on chromosome 13 are
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considered as driver candidate genes (DCGs), while unchanged genes on chromosome 29 (186
total) are deemed passenger candidate genes (PCGs) (Fig 6A and S1H Table).

We then performed several analyses to examine the differences between the DCGs and
PCGs identified. First, a significantly better correlation between the copy number status and
the mRNA expression level was observed for DCGs than PCGs, using data from TCGA [1]
(Fig 6C and S1H Table). This indicates that amplification of DCGs is more functionally rele-
vant than amplification of PCGs. Second, significantly more DCGs are mutated than PCGs,
based on published human HNSCC studies [3] (p < 0.0081) (S1H Table). Lastly, well known
cancer driver genes such as MYC are among the DCGs.

Conversely, we also tried the dog-human comparison strategy on thel0Mb amplicon of ca-
nine tumor 240 shown in Fig 2B. In the human genome, the 10Mb region is broken into three
pieces, including human chromosome 7: 154.5-159.1Mb; chromosome 8: 18.3-19.7Mb and
37.5-43.1Mb. Based on TCGA data [1], while 42 out of the 44 genes of chromosome 8: 37.5-
43.1Mb are significantly amplified, none of the genes of the remaining two human regions is
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doi:10.1371/journal.pgen.1005277.9006

amplified or deleted (Fig 6B). Thus, based on our strategy [30], the chromosome 8: 37.5-
43.1Mb region is more likely to harbor cancer drivers, which indeed encodes known driver
gene FGFRI [1].

Discussion

In this pilot study, we performed the first genome-wide characterization of spontaneous canine
HNSCC. Although the sample size (12 cases including 9 oral) is small, the study reveals a com-
plex alteration profile for canine HNSCC and a strong dog-human molecular homology. Our
results indicate that spontaneous canine HNSCCs more accurately represent their human coun-
terparts in various aspects than the current widely-used models. These canine cancers better
model human HNSCCs in cancer cell origin and tumor microenvironment (compared to cell
line and xenograft models), molecular heterogeneity and complexity (compared to genetically
engineered mouse models), and histopathology and cancer biology (compared to carcinogen-in-
duced models). If our conclusions are validated with a large sample size study, spontaneous
HNSCCs in pet dogs could contribute significantly in basic and translational cancer research.

Spontaneous canine HNSCCs recapitulate many molecular features of
their human counterparts
As described throughout the Results section, our genomic and transcriptomic studies support

strong dog-human molecular homologies for HNSCC at various levels. For large genomic
changes, the two species share a similar CNA landscape, with some tumors harboring extensive
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CNAs while others being nearly CNA-free [1,2] and with large amplicons that likely harbor
cancer drivers discovered. Furthermore, unlike canine mammary cancers [21], no potential on-
cogenic chimeric fusion genes are found in these canine 0SCCs, consistent with very few such
genes being reported for human HNSCC [1]. At the individual gene level, numerous amplified/
deleted, over/under-expressed, or mutated genes are shared between the two species (e.g.,
FADD amplification, CDKN2A deletion, FATI mutation, etc.). The altered genes are also en-
riched in the same functional groups, including protein kinase or protease activity for ampli-
fied/overexpressed genes, as well as cell adhesion and other epithelial polarity related functions
for deleted/underexpressed genes. At the pathway level, both species show alterations in cell
cycle, RTK/PI3K/AKT signaling, and TGFp signaling and EMT.

Despite the strong homology described above, a few differences are also observed. For ex-
ample, TP53 mutation is more frequent in human HNSCC [1] than in these canine tumors,
which is also true for NOTCH 1. This difference however could be due to our small sample size
and/or using RNA-seq instead whole exome-sequencing for mutation discovery. Another dis-
crepancy is that more canine HNSCCs appear to be CNA-free when compared to their human
counterparts, which again needs to be validated with a large sample size study.

Our study indicates that canine tumors 1172 and 465 are CPV-positive but the infection is
likely latent (or the CPV genome(s) infected has/have not been sequenced). Both tumors (espe-
cially tumor 1172) are distinct from other canine 0SCCs in gene expression. Importantly, con-
sistent with the finding that HPVs infect the basal layer of squamous epithelium [56], tumor
1172 exhibits features indicating basal stem cell origin. Unlike other canine oSCCs, tumor 1172
overexpresses the pluripotent marker SOX2 and at least 20 homeobox genes that are associated
with embryonic morphogenesis, but does not express EMT markers in many of its tumor cells.
These observations again reveal extensive heterogeneity of canine HNSCCs and a strong ho-
mology to their human counterparts.

The dominance of C+~T changes over other base substitution types indicates that deamina-
tion of C to U/T is a major sequence mutation mechanism in dogs as in humans. This result is
consistent with aging being a risk factor for HNSCC development in both species [57]. Further-
more, analogous to the human [1], base transversions at CpG sites are more dominant in CVP-
negative tumors than in CPV-positive tumors. However, unlike the human [1], CPV-positive
tumors do not show predominance of mutations at TpC sites, which needs further study
to resolve.

We hypothesize the carcinogenic mechanisms of the canine tumors based on our findings
(Fig 7). Regarding cells of origin, unlike tumor 1172 discussed previously, we propose that
other tumors arise from more differentiated cells of the squamous epithelium (Fig 7), because
of overexpression of protease genes and EMT genes. At the genome level, we hypothesize that
primary drivers include focal amplifications for tumor 240. Tumor 404 is also noteworthy, as it
lacks genomic CNAs but has the largest number of underexpressed genes and appears to have
a different epigenomic landscape, as shown by drastically reduced staining by 5-methylcytosine
antibody (Fig 4C). While emphasizing that the significance and reasons of the observed DNA
hypomethylation need further investigation, we hypothesize epigenomic aberrations as the
drivers of tumor 404 (Fig 7). Finally, notable gene alterations and recurrently altered pathways
are listed as cancer drivers. Fig 7 summarizes once again the complexity and heterogeneity of
these canine cancers and their numerous homologies to human HNSCCs.
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If validated with a large sample study, spontaneous canine HNSCCs
could be used for efficient cancer driver-passenger discrimination

The dog-human molecular homologies described above indicate that canine HNSCC share
similar pathogenic pathways as their human counterparts, which, if validated with a large sam-
ple study, justifies the use of our established dog-human comparison strategy [30] for driver-
passenger [58] discrimination for HNSCC. Indeed, our pilot human 8q study has shown that
this approach is valid. The use of canine cancers in this regard is highly significant. For exam-
ple, our analysis with the copy number data of TCGA’s 449 human HNSCC cases has found
over 7000 amplified/deleted genes at FDR < 0.05, including those harbored by both focal am-
plifications/deletions and broad (chromosomal arm level) gains/losses. Among these genes,
some are drivers and some are passengers. Based on our analyses, a sample size of 449 tumors
is already saturating, and studying additional human tumors no longer helps in determining
which amplified/deleted genes are drivers and which are passengers. However, investigating
about 90 canine tumors will reduce the number of driver candidates by at least half, according
to our estimation, significantly reducing the workload of downstream functional validation
which is time-consuming and expensive.

If validated with a large sample size, spontaneous canine HNSCCs may
bridge the gap between current preclinical models and human clinical
trials

As discussed in the Induction section, a major obstacle in translational research is the lack of
effective predictive models [9]. Current preclinical models, including cell culture and xenograft
or genetically-induced rodent models, typically fail to represent the vast heterogeneity and
complexity of human cancers and often do not predict clinical results. Thus, a cancer model
that can bridge the gap between these preclinical models and human clinical trials is urgently
needed.

Spontaneous canine HNSCCs could serve as such a much-needed translational model, if the
dog-human molecular homologies concluded here are validated with a large sample study.
Being molecularly complex and heterogeneous and recapitulating many molecular features of
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human HNSCC, these canine HNSCCs are more accurate representatives of their human
counterparts than current cell line or rodent models. With an HNSCC incidence rate compara-
ble to that in the human and a large pet dog population (>70 million in the US), coupled with
less stringent FDA regulations governing pet clinical trials and increasingly improved resource
and infrastructure in pet cancer research [18], spontaneous canine cancers have the potential
to significantly accelerate the translation of basic research findings into successful clinical
applications.

In summary, our study indicates that spontaneous canine HNSCCs better recapitulate the
full spectra of the biology, histopathology, complexity, and heterogeneity of humans HNSCC
than the current widely used models. However, we caution again that our sample size is small,
and the conclusions drawn from this pilot study need to be validated with a larger sample size.

Materials and Methods
Canine tissue samples

Fresh-frozen normal and tumor tissue samples and formalin-fixed paraffin-embedded (FFPE)
tissue sections of spontaneous canine HNSCCs were obtained from the Animal Cancer Tissue
Repository of Colorado State University. Samples were collected from client-owned dogs that
developed the disease spontaneously, under the guidelines of the Institutional Animal Care
and Use Committee and with owner informed consent. The breed, age, histopathologic de-
scriptions, and other information are provided in S1A Table. These data, along with our own
H&E staining of each sample received, were reviewed by Dr. Angela E. Ellis, a canine cancer
pathologist.

Tissue dissection, DNA and RNA extraction, and PCR analyses

Tissue cryosectioning, H&E staining, and cryomicrodissection were performed as described
[19] to enrich for tumor cells in tumor samples and squamous epithelial cells in normal sam-
ples. Genomic DNA and RNA were then extracted from the dissected tissues using the AllPrep
DNA/RNA Mini Kit (cat. no. 80204) from Qiagen. Only samples with a 260/280 ratio of ~1.8
(DNA) or ~2.0 (RNA) and showing neither degradation nor other contamination on the aga-
rose gels were subjected to further analyses.

aCGH analyses

Canine aCGH experiments were conducted at the Florida State University Microarray Facility,
with 385K canine CGH array chips from Roche NimbleGen Systems, Inc. as previously de-
scribed [19]. Briefly, each array chip contains about 385,000 probes of approximately 50 bp
long oligos selected from unique sequences in the canFam2 genome, providing an average reso-
lution of one probe every 5-6 kb across the canine genome. Tumor DNA purified from the dis-
sected tumor tissue sample and paired normal DNA purified from matching normal tissue,
skin, or blood of the same dog patient (S1A Table) ware hybridized to a chip, following the
manufacturer’s instructions. This was performed for each canine case except for case 573 (a
male), of which a normal sample from the same dog was unavailable and hence normal DNA
from another dog (female) of the same breed was used instead (S1A Table). Because of tumor
573, chromosome X was excluded from the CNA-finding to minimize artifacts.

CNAs were identified as previously described [19]. Briefly, CNAs in each tumor were de-
tected by analyzing the log,-ratios using a software program called SEG, which we developed
to more effectively decipher high density oligo aCGH data for CNA finding. As described in
our previous publication [19], SEG first identified change-points at the chromosomal level via

PLOS Genetics | DOI:10.1371/journal.pgen.1005277 June 1,2015 14/19



@’PLOS | GENETICS

Dog-Human HNSCC Molecular Homology

dynamic programming and then detected CNAs at the whole genome level using false discov-
ery rate (FDR)-controlled procedure [59]. For this study, we set the desired FDR to 0.01, the
total probe number cutoff to 3, and the log,-ratio mean cutoff to 0.4 for CNA discovery.

Significantly amplified/deleted genes were identified by GISTIC [60] as previously described
[19,21]. For the human, level 3 data of SNP array analyses of 449 human HNSCC cases were
downloaded from TCGA site (cancergenome.nih.gov/), and GISTIC [60] were used to detect
amplified/deleted genes, in combination with published findings [1].

Paired-end RNA-seq

Sequencing was conducted using the Illumina platform, following the protocols from the man-
ufacturer. RNA-seq was performed at the HudsonAlpha Institute for Biotechnology or the
BGI-America, yielding 48 to 66 million paired-end sequence reads of 50bp or 49bp per sample
(S2A Table).

RNA-seq data analysis

RNA-seq data analyses were performed as described [21]. Briefly, read pairs were aligned to
the dog reference genome [33] canFam2 with TopHat v2.0.5 (tophat.cbcb.umd.edu). The
uniquely mapped pairs were used to quantify a gene’s expression level by calculating its FPKM
(fragments per kilobase of exon per million mapped fragments) value, using Cufflinks (cuf-
flinks.cbcb.umd.edu) with default parameters and the canine gene annotation downloaded
from the University of Santa Cruz (UCSC) genome site. Base substitutions were identified with
VarScan2 (varscan.sourceforge.net) in coding regions with RNA-seq read coverage ranging
from 30X to 300X. Over/underexpressed genes in cancers were identified as described [2,46],
i.e., genes whose expression levels are outside 95% confidence internals of the expression of
samples that are diploid in that gene. Differentially expressed genes between two groups of
samples were identified by DESeq [61] and t-tests. Gene functional annotation and enrichment
analyses were achieved using the DAVID Functional Annotation tool at david.abcc.nciferf.gov.

Viral RNA-seq reads were identified using a similar approach as VirusSeq (odin.mdacc.tmc.
edu/~xsul/VirusSeq.html). After aligning RNA-seq reads to the reference genome (canFam2)
with TopHat v2.0.5, the unmapped reads of each sample were realigned to the HPV and CPV
genomes downloaded from the PaVE database (pave.niaid.nih.gov/) with Bowtie2 v2.2.3 and
BWA v0.7.10.

Immunofluorescence

Immunofluorescent staining was performed with 5-um FFPE tissue sections as described
[21,62]. Primary antibodies used include those against E-cadherin (R&D Systems; AF648),
vimentin (Abcam; ab92547), phospo-AKT (Ser473) (Cell Signaling; 4060), acetyl-H4 (Milli-
pore; 06-866), 5-methylcytosine clone 33D3 (Millipore; MABE146), and Ki67 (Life Technolo-
gies; 08-0156). Alexa Fluor488-, 647—or 594-conjugated secondary antibodies are from
Jackson ImmunoResearch. Images were taken with a Zeiss LSM 710 confocal microscope.

Accession numbers

RNA-seq data have been submitted to the NCBI SRA database under accession number
SRP046723. aCGH data have been submitted to the GEO database under accession number
GSE61231.
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Supporting Information

S1 Table. Case information and aCGH analysis results. A. Canine HNSCC case information.
B. CNAs of canine HNSCCs determined by aCGH analysis, and the significantly enriched
functions and pathways of amplified/deleted genes found by DAVID (p<0.05). C. Genes har-
bored by the focal amplification on the chromosome 16 (chr16:20874453-30664857) in tumor
240. D. Significantly enriched functional groups of amplified and overexpressed genes in
tumor 240 by DAVID (p<0.05). E. Amplified genes in canine HNSCCs found by aCGH analy-
sis. F. Deleted genes in canine HNSCCs found by aCGH analysis. G. Recurrently amplified/de-
leted genes identified by GISTIC in canine HNSCCs at FDR< = 0.2. H. Evaluation of the
difference between DCGs and PCGs identified on human 8q.

(XLS)

S2 Table. RNA-seq analysis results. A. Canine oSCC RNA-seq read mapping summary. B.
Low, normal, and high gene expression groups with a 95% confidence interval cutoff following
a published method. C. Differentially expressed genes between tumors and normal samples
found by both DESeq and t-test at FDR<0.1. D-G: Functional Annotation of the 1** (D), ond
(E), 3" (F), and 4™ (G) group of genes differentially expressed between tumors and normal
samples in Fig 3B by DAVID (p<0.05). H. Canine 0SCC RNA-seq reads that match sequences
from the CPV or HPV genomes by Tophat. I. Sequence mutations found in canine samples
using RNA-seq reads.

(XLS)

S1 Fig. Recurrent CNAs found in TCGA’s 449 HNSCC samples by GISTIC [60]. The images
were drawn as described [19], with each line representing a human chromosome and vertical
lines above/below the chromosome indicating amplifications (red) or deletions (blue) respec-
tively. Black boxes represent the telomeres and centromeres in human chromosomes.

(TIF)

S2 Fig. Base pair size distributions of amplifications and deletions found in canine
HNSCCs.
(TIF)
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