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Abstract

Autophagy plays an important role in tumorigenesis. Mitochondrion-associated protein LRPPRC interacts with MAP1S that
interacts with LC3 and bridges autophagy components with microtubules and mitochondria to affect autophagy flux.
Dysfunction of LRPPRC and MAP1S is associated with poor survival of ovarian cancer patients. Furthermore, elevated levels
of LRPPRC predict shorter overall survival in patients with prostate adenocarcinomas or gastric cancer. To understand the
role of LRPPRC in tumor development, previously we reported that LRPPRC forms a ternary complex with Beclin 1 and Bcl-2
to inhibit autophagy. Here we further show that LRPPRC maintains the stability of Parkin that mono-ubiquitinates Bcl-2 to
increase Bcl-2 stability to inhibit autophagy. Under mitophagy stress, Parkin translocates to mitochondria to cause rupture
of outer mitochondrial membrane and bind with exposed LRPPRC. Consequently, LRPPRC and Parkin help mitochondria
being engulfed in autophagosomes to be degraded. In cells under long-term mitophagy stress, both LRPPRC and Parkin
become depleted coincident with disappearance of mitochondria and final autophagy inactivation due to depletion of
ATG5-ATG12 conjugates. LRPPRC functions as a checkpoint protein that prevents mitochondria from autophagy
degradation and impact tumorigenesis.
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Introduction

Autophagy, or self-digestion, is a process that begins with the

formation of isolation membranes that engulf substrates including

dysfunctional organelles, mis-folded/aggregated proteins and/or

other macromolecules to form autophagosomes [1,2]. Then

autophagosomes fuse with lysosomes to generate autolysosomes

in which substrates are degraded [3]. Mitochondrion is one of the

most prominent and vital type of organelles in eukaryotic cells.

During cell cycling, mitochondria are constantly synthesized, used,

damaged and destroyed through autophagy (here referred to as

mitophagy) [4,5]. Parkin, whose mutations may be counted for

Parkinson’s disease in small numbers of patients, has recently been

found to regulate the turnover of mitochondria through mitophagy

[6,7]. The role of autophagy in cancer development has attracted

great attention but is not well understood [8].

LRPPRC is an interactive protein of MAP1S, a mitochondria

and microtubule-associated protein previously named as

C19ORF5 [9–11]. It was suggested that mutations in the

LRPPRC gene cause Leigh syndrome, French-Canadian type

(LSFC), a human disorder characterized with neurodegeneration

and cytochrome c oxidase deficiency [12]. Based on the somatic

mutation data of 17301 genes from 316 ovarian cancer patients

from The Cancer Genome Atlas, mutations in both LRPPRC and

MAP1S were found to reduce the survival of patients [13]. As a

sequence homologue of the microtubule-associated protein

MAP1A and MAP1B, MAP1S similarly interacts with mammalian

autophagy marker LC3 [14–16] and bridges autophagic compo-

nents with microtubules and mitochondria to affect autophagoso-

mal biogenesis and degradation and suppress genome instability

and tumorigenesis [16–18]. Recently, we found that elevated levels

of LRPPRC in prostate adenocarcinomas are closely associated

with poor prognosis of prostate cancer patients [19]. A similar

trend was independently reported in patients with gastric cancer

[20].

To better understand the role of LRPPRC in cancer

development, we have previously reported that LRPPRC associ-

ates with mitochondria, interacts with Beclin 1 and Bcl-2 and form

a ternary complex to maintain the Bcl-2 stability. Suppression of

LRPPRC leads to Bcl-2 degradation that leads to release of more

Beclin 1 to form complexes with PI3KCIII to activate basal levels

of autophagy upstream of the ATG5-ATG12 conjugates-mediated

LC3-I to LC3-II conversion [21]. Since inner mitochondrial

membrane-associated LRPPRC [22] was suggested to interact

with mitophagy initiator Parkin based on Mass Spectrometry

analyses from different labs [23,24] and its suppression led to

enhancement of autophagy degradation of mitochondria in

lysosomes [21], we are triggered to investigate the specific role

of LRPPRC in mitophagy in addition to its general role in the

regulation of basal levels of autophagy.

In this study, we show that LRPPRC interacts with Parkin and

maintains the stability of Parkin that stabilizes Bcl-2 to suppress

autophagy from initiation. Under mitophagy stress, mitophagy

initiator Parkin translocates to depolarized mitochondria to bind

with LRPPRC. Consequently, LRPPRC and Parkin regulate
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VADC1, Drp1 and Mitofusin 1 to initiate autophagy and

mitophagy, and eventually become depleted along their associated

mitochondria in cells under long-term mitophagy stress. There-

fore, LRPPRC protects mitochondria from autophagy degrada-

tion.

Materials and Methods

Antibodies, siRNAs, plasmids, and other reagents
Antibody against LRPPRC (1B8) was a gift from Dr. Serafı́n

Piñol-Roma, The Sophie Davis School of Biomedical Education,

the City College of New York, New York [22]. Antibodies against

human LC3 (NB 100-2331) were purchased from Novus

Biologicals and A&G Pharmaceutical, Inc.. The IgG control

antibodies from mouse (SC-2025) and rabbit (SC-2027), primary

antibodies against b-actin (SC-47778), LRPPRC (mouse,

SC166178; rabbit, SC-66845), ATG5 (SC-33210), Bcl-2 (SC-

7832), p27 (SC-776), Beclin 1 (SC-11427), Mitofusin 1 (SC-

166644), Drp1 (SC-32898), VDAC1 (SC-98708), and GFP (SC-

8334), and siRNA molecules specific to LRPPRC (sc-44734),

Parkin (SC-42158) and random sequence control (sc-44234) were

from Santa Cruz Biotechnology, Inc.. Antibodies against Parkin

(mouse, ab77924; rabbit, ab15954), Pink1 (ab23707) and LAMP2

(ab18528) were from abcam. Antibody against P62 (SQSTN1,

BWL-PW9860) was from Enzo Life Sciences International Inc.

Antibody against Tom20 (612278) was from BD Transduction

Laboratories. HRP-conjugated secondary antibodies against

mouse (#172-1011) and rabbit (#172-1019) were from Bio-Rad.

Rhodamine Red-X goat anti-mouse IgG and Alexa Fluor 633 goat

anti-rabbit IgG (R6393 and A-21070), MitoTracker Red

CMXRos, Lipofectamine 2000 (11668-027) and Oligofectamine

(12252-011) were from Invitrogen. GFP-LC3 [25] and GFP-

Parkin [26] were supplied by Drs. Mizushima and Youle,

respectively. MG-132, Bafilomycin A1, Carbonyl cyanide m-

chlorophenyl hydrazone (CCCP) and 6-hydroxydopamine (6-

OHDA) were from Sigma. The protein G beads were from

Amersham Biosciences.

Figure 1. Long-term mitophagy stress results in depletion of LRPPRC and mitochondria and impairment of autophagy flux. (A)
Immunoblot analysis of lysates from 293T cells treated with 10 mM carbonyl cyanide 3-chlorophenylhydrazone (CCCP) for different lengths of time
(hrs) in the absence (Ctrl) or presence of lysosomal inhibitor Bafilomycin A1 (BAF, 10 mM) for 6 hrs before harvest. No Bafilomycin A1 was added in
two treatments at time zero. (B) Representative TEM imaging of cells as treated in panel (A). No Bafilomycin A1 was added in two treatments at time
zero. Bar = 500 nm. (C) Percentages of area occupied by mitochondria in the TEM images. Data were the average and standard deviation of at least
three repeats and the differences are compared based on Student T-test. *, p value #0.05. **, p value #0.01. (D,E) Immunoblot analyses of lysates
from 293T cells untreated (None) or treated with 100 mM 6-hydroxydopamine (6-OHDA) for different time (hrs) in the absence or presence of
Bafilomycin A1 for 0–6 hrs (D) or 6 hrs before harvest (E).
doi:10.1371/journal.pone.0094903.g001
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Cell transfection and co-immunoprecipitation assay
HeLa cells or HeLa cells stably expressing EGFP-LC3 that was

established as previously described [4,25] were transfected with

siRNA molecules packed with Oligofectamine and/or GFP-Parkin

plasmid [25] packed in Lipofectamine 2000 as we previously

described [4,27]. In order to suppress LRPPRC and overexpress

GFP or GFP-Parkin simultaneously, cell densities were increased

to 50–60% confluence to reduce transfection-induced cell death.

Cell lysates were prepared from attached cells and coimmuno-

precipitation were performed as previously described [28]. Same

amount of cell lysates were subjected to immunoprecipitation with

Figure 2. LRPPRC interacts with mitophagy stress-induced mitochondrion-translocated mitophagy initiator Parkin. (A) Immunoblot
analyses of interaction between LRPPRC and Parkin or Pink 1. Same amount of 293T cell lysates were used to perform immunoprecipitation with
same amount of anti-LRPPRC antibody or mouse IgG control under identical procedure. (B–D) Coimmunoprecipitation analyses of LRPPRC-Parkin
interaction under mitophagy stress. Lysates with equal amount of total proteins prepared from 293T cells untreated or similarly treated with 10 mM
CCCP for 2.5 hrs were immunoprecipitated with anti-LRPPRC or Parkin antibody (B). IgG served as control antibody. The relative amounts of Parkin
bound on LRPPRC (C) or LRPPRC bound on Parkin (D) were quantified against the precipitated amounts of LRPPRC (C) or Parkin (D). The level in the
absence of CCCP is set to 1. **, p value #0.01. (E) A fluorescent imaging analysis showing the colocalization of LRPPRC with GFP-Parkin. CCCP, HeLa
cells transiently expressing GFP-Parkin for 48 hrs were treated with 10 mM CCCP for 2.5 hrs before fixation. Bottom panel is the amplification of the
square in the middle panel. Bar = 10 mm. (F,G) Coimmunoprecipitation analyses of LRPPRC-Parkin interaction in HeLa cells overexpressing GFP-Parkin
untreated or similarly treated with CCCP as shown in (E). GFP-Parkin is coimmunoprecipitated with anti-LRPPRC antibody (F), and the relative
amounts of GFP-Parkin bound on LRPPRC are quantified against the precipitated amounts of LRPPRC (G). The level in the absence of CCCP is set to 1.
**, p value #0.01. (H,I) Fluorescent imaging analyses showing the colocalization of GFP-Parkin and LRPPRC with RFP-LC3 punctate foci (H) or LAMP2-
labelled lysosomes (I) 3 or 12 hrs after exposure to CCCP in the absence (Ctrl) or presence of Bafilomycin A1 (BAF). Bar = 5 mm in (H) and 2 mm in (I).
doi:10.1371/journal.pone.0094903.g002
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equal amounts of specific antibodies and control antibodies (IgG)

from the same species.

Fluorescent microscopy and transmission electron
microscopy

Immunofluorescent stain and mitochondria tracking were

performed and images were captured with the laser scanning

microscope similarly as described [4,25]. HeLa cells grown in 6-

well culture plates were transfected with LRPPRC-specific siRNA

or treated with CCCP in the absence or presence of lysosomal

inhibitor Bafilomycin A1, and then fixed and processed for

examination with a JEM 1010 transmission electron microscope

(JEOL, USA, Inc.) as described [16]. Percentages of areas

occupied by autophagic vacuoles or mitochondria were measured

using the ImageJ program.

Results

Long-term mitophagy stress leads to depletion of
LRPPRC and mitochondria and impairment of
autophagy/mitophagy flux

LRPPRC suppresses the initiation of basal levels of autophagy

and mitophagy via enhancing the stability of Bcl-2 protein [21].

Since LRPPRC is a mitochondrion-associated protein, we were

interested to investigate its role in mitophagy, autophagy for

turnover of mitochondria. As widely done in literatures [29], we

used carbonyl cyanide 3-chlorophenylhydrazone (CCCP), a

chemical causing uncoupling of mitochondrial potential, to induce

mitophagy. We found that short-term CCCP treatment (20 mM

for 6–12 hrs) did not change the levels of LRPPRC and Parkin but

increased levels of ATG5-ATG12 conjugates, LC3-II and protein

Figure 3. Colocalization among LRPPRC, Parkin and Tom20-indicated mitochondria at different times under mitophagy stress. HeLa
cells transiently expressing GFP-Parkin treated with 10 mM CCCP for different times were fixed and stained with antibodies against LRPPRC (blue) and
Tom20 (red). Mitochondrial aggregates carrying both LRPPRC and Parkin signals were shown as white in the Merge panels. Bar = 10 mm.
doi:10.1371/journal.pone.0094903.g003
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aggresomal marker P62 in 293T cells treated with lysosomal

inhibitor Bafilomycin A1, suggesting that autophagy flux was

elevated (Figure 1A). More swollen mitochondria were observed in

cells that received CCCP treatment for 6 hrs than in untreated

cells in the absence of Bafilomycin A1 and much higher

mitochondria mass as reflected by the Tom20 levels remained in

cells received CCCP treatment for 12 hrs than in untreated cells in

the presence of Bafilomycin A1 (Figure 1A–C), suggesting that

initial induction of mitophagy with CCCP may activate mito-

phagy. Since inhibition of lysosomal activity with Bafilomycin A1

was confirmed to have no impact on LRPPRC levels,[21] it is the

long-term CCCP treatment that eventually led to depletion of

LRPPRC and Bcl-2 but did not alter levels of Beclin 1 and P27

levels (Figure 1A), supposing to cause autophagy activation as we

previously reported [16,21]. However, the levels of ATG5-ATG12

conjugates were gradually reduced with prolonged period of

CCCP treatment (Figure 1A). Activation of autophagy mediated

by LRPPRC depletion occurs prior to ATG5-ATG12-mediated

LC3-I to LC3-II conversion [21]. Similar to the situation as shown

in the LRPPRC and ATG5 double knockdown experiments [21],

LC3-II and P62 levels decreased in the absence or presence of

Bafilomycin A1 48 hrs after CCCP exposure (Figure 1A),

indicating an impairment of autophagy flux. Long-term CCCP

treatment eventually led to depletion of mitochondrial mass as

indicated by Tom20 levels in immunoblot and mitochondria-

occupied area under electron microscopy, and mitophagy initiator

Parkin (Figure 1A–C). Therefore, CCCP treatment initially led to

activation of autophagy machinery and long-term CCCP insults

led to depletion of mitochondria and the associated LRPPRC, and

eventually caused impairment of autophagy flux.

Figure 4. Colocalization among Parkin, Tom20-indicated mitochondria and RFP-LC3-labelled autophagosomes at different times
under mitophagy stress. HeLa cells stably expressing RFP-LC3 transiently expressed GFP-Parkin treated with 10 mM CCCP for different times were
fixed and stained with antibodies against Tom20 (blue). Mitochondrial aggregates associating with Parkin signals were shown as cyan in the Merge
panels. Bar = 5 mm.
doi:10.1371/journal.pone.0094903.g004
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Similarly, we treated 293T cells with 6-hydroxydopamine (6-

OHDA), an oxidative toxin to generate experimental models of

Parkinson’s disease that is non-enzymatically oxidized to produce

reactive oxygen species such as hydrogen peroxide to induce

mitophagy [30]. We found that 6-OHDA behaved similar to

CCCP but with accelerated pace, activated autophagy flux at early

stage (Figure 1D) and resulted in reduction of Tom20-indictaed

mitochondria mass and the mitochondrion-associated LRPPRC at

late stage (Figure 1E). The fact that two drugs inducing mitophagy

in different mechanisms have the same impact on LRPPRC levels

and activities of autophagy and mitophagy suggests that LRPPRC

plays a general role in mitophagy.

LRPPRC interacts with mitophagy stress-induced
mitochondrion-translocated mitophagy initiator Parkin

Parkin and Pink1 were previously suggested to interact with

LRPPRC as detected by Mass Spectrometry [23,24,31]. To

understand the role of LRPPRC in mitophagy, we tested the

interaction of LRPPRC with Parkin or Pink1. Co-immunoprecip-

itation of endogenous proteins revealed that LRPPRC interacted

with Parkin but not with Pink 1 (Figure 2A). Upon CCCP

treatment for 3 hrs to induce mitophagy in 293T cells, more

endogenous Parkin proteins were precipitated with similar amount

of immunoprecipitated LRPPRC, or more endogenous LRPPRC

proteins were precipitated with less immunoprecipitated Parkin

(Figure 2B–D). When HeLa cells transiently expressing GFP-

Parkin were induced to commit mitophagy with CCCP for 3 hrs,

Figure 5. Colocalization among Parkin, Tom20-indicated mitochondria and LAMP2-labelled lysosomes at different times under
mitophagy stress. HeLa cells transiently expressing GFP-Parkin treated with 10 mM CCCP for different times were fixed and stained with antibodies
against LAMP2 (red) and Tom20 (blue). Lysosome-contained Parkin-associated mitochondrial aggregates were shown as white in the Merge panels.
All experiments were carried out in the absence of lysosomal inhibitor. Bar = 2 mm.
doi:10.1371/journal.pone.0094903.g005
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the diffusing GFP-Parkin translocated to and colocalized with the

mitochondrion-associated LRPPRC (Figure 2E). The short-term

CCCP treatment did not change the levels of LRPPRC but

dramatically increased the amount of LRPPRC-bound GFP-

Parkin (Figure 2F–G). Thus, Parkin translocates to mitochondrion

to induce rupture of outer mitochondrial membrane [32] and bind

with the exposed inner mitochondrial membrane-associated

LRPPRC under mitophagy stress.

Both LRPPRC and Parkin are co-localized with LC3
punctate foci and LAMP2-labelled lysosomes under
mitophagy stress

When HeLa cells stably expressing RFP-LC3 and transiently

expressing GFP-Parkin were exposure to CCCP for 3 hrs, we

found that both LRPPRC and Parkin were not obviously

colocalized with RFP-LC3 punctate foci even in the presence of

Bafilomycin A1 (Figure 2H), suggesting the damaged parkin and

LRPPRC-associated mitochondria were aggregated but not

packaged into LC3-associated autophagosomes yet. After 12 hrs

exposure to CCCP, colocalization of LRPPRC and Parkin-

associated mitochondria with RFP-LC3 punctate foci were

detected in the absence but became obvious in the presence of

Bafilomycin A1 (Figure 2H, white in merge), indicating the

damaged parkin and LRPPRC-associated mitochondria were

packaged into LC3-associated autophagosomes for effective

turnover. This was further confirmed by the colocalization of

Parkin and LRPPRC-associated mitochondria with LAMP2-

labelled lysosomes (Figure 2I).

Under mitophagy stress, translocation of Parkin to
LRPPRC-associated mitochondria induces mitochondrial
aggregation and consequently degradation of LRPPRC,
Parkin and mitochondria

To understand mutual impact of LRPPRC and Parkin during

mitophagy process, we examined their distribution on mitochon-

dria at different times after exposure to CCCP (Figure 3).

LRPPRC associated with Tom20-labelled mitochondria and

overexpressed GFP-Parkin diffused in cytosol of untreated normal

HeLa cells. GFP-Parkin translocated to LRPPRC-associated

mitochondria and induced mitochondrial aggregation at 3 hrs

after CCCP treatment. Mitochondrial aggregates gradually

disappeared with prolonged periods of CCCP treatment from 6

to 24 hrs. A lot of GFP-Parkin-associated and Tom20-labelled

mitochondrial fragments containing no LRPPRC (yellow foci in

Figure 6. LRPPRC controls the stability of Parkin. (A–D) Immunoblot analyses showing the impact of different levels of Parkin on the levels of
LRPPRC. Equal amount of cell lysates from 293T cells treated with random (Mock) or Parkin-specific siRNA (A) or HeLa cells overexpressing GFP or
GFP-Parkin (C) were analyzed by immunoblot and LRPPRC levels under different conditions were quantified (B,D). n.s., not significant. (E) Immunoblot
analyses showing the impact of different levels of Parkin on the levels of LRPPRC under mitophagy stress. Equal amount of cell lysates from HeLa cells
overexpressing GFP or GFP-Parkin treated with CCCP for different times were analyzed by immunoblot. (F,G) Plots of relative intensities of LRPPRC (E)
or Tom20 (F) in HeLa cells treated as in (E). The intensities in samples at time zero were set to 1. (H) An immunoblot analysis showing that
suppression of LRPPRC resulted in degradation of Parkin. 293T cells were treated with Mock or LRPPRC siRNA for 72 hrs. Equal amount of lysates were
analyzed. (I,J) Plots of relative intensities of LRPPRC (I) or Parkin (J) in 293T cells treated with Mock or LRPPRC siRNA. The intensities in samples
treated with MOCK siRNA were set to 1. Data were the average and standard deviation of at least three repeats and the differences were compared
based on paired T-test. *, p value #0.05; ***, p value #0.0001. (K) Immunoblot analyses showing that overexpression of LRPPRC enhanced the
stability of Parkin. COS7 cells were transiently transfected with plasmids carry only GFP or GFP-LRPPRC for 24 hrs, detached and distributed equally to
8 wells. Each well was treated with cycloheximide (CHX) for different times (hrs). Equal amount of lysates as indicated by total protein concentration
and b-actin control were analyzed. (L) Plots of relative intensities of Parkin in COS7 cells treated as in (K). The intensities in samples at time zero were
set to 1.
doi:10.1371/journal.pone.0094903.g006
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the merge panel) existed at 6 to 24 hrs after CCCP exposure.

Finally, mitochondria and the associated LRPPRC and Parkin

were depleted in cells after 48 hrs CCCP treatment.

Similar to as shown in Figure 2H, most of mitochondria were

associated with Parkin and Parkin-associated mitochondria were

not found to be colocalized with RFP-LC3 punctate foci or

LAMP2-labelled lysosomes in in early time after CCCP exposure

in the absence of Bafilomycin A1 (Figure 4,5). Those mitochondria

were effectively packaged into autophagosomes but not effectively

degraded through lysosomes so that we were able to observe some

mitochondria-containing autophagosomes accumulated at 12 hrs

after exposure (Figure 5). Those mitochondria free of LRPPRC

but associating with Parkin were not colocalized with RFP-LC3

punctate foci or LAMP2-labelled lysosomes at 24 hrs after

exposure (Figure 4,5), indicating a positive role of LRPPRC for

mitochondria to be packaged into autophagosomes. Finally,

mitochondria disappeared 48 hrs after exposure (Figure 4,5).

LRPPRC and Parkin mutually regulate stability of each
other

To understand the relation between LRPPRC and Parkin, we

first changed the levels of Parkin by transfection with a Parkin-

specific siRNA in 293T cells or a plasmid expressing GFP-Parkin

in HeLa cells. Either suppression or overexpression of Parkin

caused no change in LRPPRC levels (Figure 6A–D), suggesting

Parkin did not have impact on the levels of LRPPRC under

normal condition. When HeLa cells overexpressing Parkin were

treated with CCCP, LRPPRC was destabilized and mitophagy

was enhanced because of decrease of Tom20 levels (Figure 6E–G).

Suppression of LRPPRC with LRPPRC-specific siRNA in 293T

cells led to significant decrease of both LRPPRC and Parkin levels

(Figure 6H–J). Overexpression of GFP-LRPPRC increased the

half-life of Parkin from about 6 hrs to more than 24 hrs and

dramatically enhanced the stability of LRPPRC (Figure 6K,L).

Therefore, LRPPRC maintained the stability of Parkin and

mitochondrial translocation of Parkin under mitophagy stress led

to subsequent degradation of both LRPPRC and Parkin.

LRPPRC suppresses autophagy/mitophagy through
controlling the Parkin stability

As an E3 ubiquitin ligase, Parkin binds with Bcl-2 and mono-

ubiquitinates it to enhance its stability [33]. As predicated,

overexpression of Parkin led to increases in Bcl-2 levels in cells

containing either normal or suppressed levels of LRPPRC and

suppression of LRPPRC led to destabilization of Parkin and

further decrease of Bcl-2 levels (Figure 7A,B). Consistent with our

previous report [21], suppression of LRPPRC led to activation of

basal levels of autophagy, and overexpression of Parkin that

caused elevation of Bcl-2 levels led to inhibition of basal levels of

autophagy as indicated by the reduced levels of LC3-II in the

presence of Bafilomycin A1 (Figure 7C,D).

Suppression of LRPPRC caused degradation of Parkin and

further treatment with CCCP resulted in faster degradation of

Parkin (Figure 8A,B). Mitochondria have been suggested to be

docked into autophagosomes via the interaction of ubiquitinated

membrane proteins with LC3-II-interactive substrate receptor

P62. Mitochondria-associated protein Mitofusin 1, Drp1 and

VDAC1 have been confirmed as the substrates of Parkin E3 ligase

and claimed as the P62-interactive membrane proteins but such

claim is still in disputation [7]. When cells with LRPPRC

suppressed were exposed to mitophagy inducer CCCP, activated

E3 ligase activity of Parkin led to decreases in levels of VDAC1,

Drp1 and Mitofusin 1 caused by faster turnover through

autophagy (Figure 8A,B).

As we previously reported [21], LRPPRC suppression led to

autophagy activation as indicated by LC3-II levels in the presence

of Bafilomycin A1 (Figure 8A,B). Activated autophagy reduced the

levels of Tom20 and enhanced the degradation of TOM20-

labelled mitochondria (Figure 8A,B). Prolonged periods of CCCP

treatment led to gradual degradation of Parkin and Tom20-

labelled mitochondria and overexpression of LRPPRC maintained

the stability of Parkin and prevented the degradation of Tom20-

labelled mitochondria (Figure 8C–F).

Discussion

The anti-apoptotic proteins of Bcl-2 family exhibit opposite

impact on autophagy initiation. Our previous report shows that

LRPPRC controls the stability of Bcl-2 to suppress basal levels of

autophagy mainly through the Beclin 1-depdendent PI3K-AKT-

mTOR pathway [21]. Here we demonstrate that LRPPRC

interacts with Parkin and maintains its stability so that the Parkin

substrates including Bcl-2 and Parkin itself are stabilized. Thus,

LRPPRC protects mitochondria from autophagy degradation.

Under mitophagy stress, Parkin translocates to mitochondrion to

induce rupture of outer mitochondrial membrane [32] and bind

Figure 7. LRPPRC maintains levels of Bcl-2 and suppresses
basal levels of autophagy through Parkin. (A) Immunoblot
analyses of Bcl-2 levels in 293T cells overexpressing Parkin in the
absence or presence of LRPPRC siRNA. (B) Plots of relative intensities of
Bcl-2 as shown in (A). The intensities in samples overexpressing GFP
were set to 1. Data were the average and standard deviation of at least
three repeats and the differences were compared based on paired T-
test. *, p value #0.05. (C) Immunoblot analyses of LC3-II levels in 293T
cells treated with either random or LRPPRC-specific siRNAs and/or
overexpressing GFP or GFP-Parkin in the presence of Bafilomycin A1.
(D) Plots of relative intensities of LC3-II as shown in (C). The intensities
in samples treated with random siRNA and overexpressing GFP were set
to 1. Data were the average and standard deviation of at least three
repeats and the differences were compared based on paired T-test. *, p
value #0.05.
doi:10.1371/journal.pone.0094903.g007
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Figure 8. LRPPRC suppresses mitophagy through controlling the Parkin stability. (A,B) Immunoblot analyses of impact of LRPPRC on
Parkin, Parkin substrate VDAC1, Drp1 and Mitofusion, and autophagy/mitophagy in 293T cells. Lysates with equal amount of total proteins were
prepared from cells treated with random (Mock) or LRPPRC-specific siRNA and induced mitophagy with 0 or 10 mM CCCP in the absence or presence
of Bafilomysin A1. Same amounts of cell lysates were subjected to immunoblot analyses (A) and the relative protein levels to those of b-Actin were
plotted (B). **, p value #0.01. (C) Immunoblot analyses of impact of LRPPRC on Parkin and mitophagy in COS7 cells overexpressing GFP or GFP-
LRPPRC treated with 10 mM CCCP for different times (hrs). (D,E) Plots of relative intensity of Parkin (D) or Tom20 (E) for immunoblots shown in (C).
The intensities in samples collected at 0 hr were adjusted based on b-Actin intensity and set to 1. (F) Immunostaining analysis of mitochondrial mass
in COS7 cells similarly treated as in (C) showing the intensities of Tom20-labelled mitochondrial mass. All images were captured under identical
protocol of staining and imaging settings.
doi:10.1371/journal.pone.0094903.g008
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with LRPPRC. Then, LRPPRC, Parkin and other substrates of

Parkin may be ubiquitinated by Parkin E3 ligase and recognized

by autophagy machinery and guide mitochondria to be degraded

through mitophagy.

Parkin is selectively recruited to dysfunctional mitochondria

with low membrane potential in mammalian cells. After recruit-

ment, Parkin mediates the engulfment of mitochondria by

autophagosomes and the selective elimination of impaired

mitochondria [34]. Mitofusin 1 [35], Drp1 [36] and VDAC1 [6]

were reported to be substrates of Parkin while LRPPRC is also

listed as Parkin substrates in the associated online supplementary

although the exact mechanism is still in investigation [37].

Ubiquitinated VDAC1 and Drp1 will cause their associated

mitochondria to be brought into autophagosomes and autolyso-

somes for degradation. Since a significant portion of Bcl-2 is

associated with mitochondria and Parkin-mono-ubiquitinated Bcl-

2 is more stable, suppression of LRPPRC leads to decreases in

levels of Parkin and Bcl-2 and activation of basal autophagy as we

previous reported [21]. Interestingly, Parkin itself is the substrate

of its ligase activity. After auto-ubiquitination, Parkin gradually

becomes depleted along Bcl-2 and ATG5-ATG12 conjugate in

cells under long-term mitophagy stress.

The drug-induced mitophagy stress is an artificially introduced

pathological condition. Under normal physiological condition, it is

unlikely that all of mitochondria in cells are simultaneously

damaged. The drug-induced mitochondrial damages are so

massive that autophagy/mitophagy machinery is incapable of

handing so many damaged mitochondria immediately. This is

possibly the reason that we observed a large amount of

mitochondria aggregates accumulated in the first 12 hrs after

exposure to mitophagy inducer. These mitochondrial aggregates

then become fragmented mitochondria to be engulfed in

autophagosomes and further autolysosomes for degradation.

Parkinson’s disease results from the death of dopamine-

containing cells in the substantia nigra region of the midbrain.

Several mutations in specific genes such as Parkin have been

identified in a few individuals with familial form or autosomal

recessive juvenile Parkinson’s disease [38]. Mitochondrial dys-

function and oxidative stress have long been implicated as the

general pathophysiologic mechanisms underlying Parkinson’s

disease [39]. Impairment of autophagy and mitophagy processes

may be the determining force in the majority of patients to develop

Parkinson’s disease [39].

Interestingly, the same group of proteins involved in juvenile

Parkinson’s disease also plays important roles in tumorigenesis

although the somatic mutations of Parkin identified are homozy-

gous in Parkinson’s disease and heterozygous in cancers [40]. If

the autophagic process is blocked before autophagosomal forma-

tion, the fragmented mitochondria will release cytochrome c and

other molecules to induce apoptosis that is usually associated with

diverse forms of aggregation and perinuclear clustering of the

dysfunctional mitochondria [41,42]. If either the process is blocked

before the autolysosomal formation or autophagosomes are not

degraded efficiently, the accumulated mitochondria may become

damaged by their own production of superoxide and start to leak

electrons and lose their membrane potentials, and even further

induce robust oxidative stress [43]. High levels of oxidative stress

are lethal in post-mitotic neuronal cells in Parkinson’s disease,

while sub-lethal levels of oxidative stress not only induces DNA

double-strand breaks but also weakens mitotic checkpoint function

so that cells carrying damaged genomes can escape mitotic

checkpoint to enter next rounds of mitosis to further destabilize the

genomes and result in tumorigenesis [16–18]. High levels of

LRPPRC maintain Bcl-2 levels, block mitophagy and prevent

mitochondria from autophagy degradation. It has been known

that overexpression of members of the Bcl-2 family of pro-survival

proteins is commonly associated with unfavorable pathogenesis in

cancer [44]. Specifically, high levels of Bcl-2 protein are detected

in androgen-independent tumors in advanced stages of the

pathology [45]. It is well known that most tumor cells need more

energy than their normal mature counterparts [46]. Prostate

cancer, like other cancers, demonstrates abnormal mitochondria

activity [47,48]. Therefore, patients at late stage of prostate

adenocarcinomas exhibit higher levels of LRPPRC than those at

early stage of the disease [19].

Since LRPPRC-Parkin interaction may play important roles in

two seemingly contradicting events of uncontrolled cell growth in

cancers and cell death and neuron degeneration in Parkinson’s

disease, manipulating the interaction provides a new opportunity

to target both diseases. Characterization of exact interactive

domains in both LRPPRC and Parkin proteins may help to

develop drugs to precisely regulate the interaction to differentiate

their specific roles from those played by other interactive proteins.
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