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Interventions that solely act on the central nervous system (CNS) are gaining considerable

interest, particularly products consumed through the oral cavity. The oropharyngeal cavity

contains a wide array of receptors that respond to sweet, bitter, and cold tastants, all of

which have been shown to improve physiological performance. Of late, the ergogenic

benefits of carbohydrate (CHO) and caffeine (CAF) mouth rinsings (MRs) have been

widely studied; however, less is known about menthol (MEN). That the physiological

state and environmental conditions impact the response each product has is increasingly

recognized. While the effects of CHO and CAF MRs have been thoroughly studied in

both hot and thermoneutral conditions, less is known about MEN as it has only been

studied in hot environments. As such, this review summarizes the current knowledge

regarding the MEN MR and exercise modality, frequency of the mouth rinse, and mouth

rinse duration and compares two different types of study designs: time trials vs. time to

exhaustion (TTE).
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INTRODUCTION

The topic of fatigue during exercise continues to receive much attention with significant research
invested in an attempt to elucidate mechanisms contributing to fatigue and potential solutions
to delay fatigue. During exercise, skeletal muscle fatigue may result in a decrease in muscle force
generating capacity and performance, especially during endurance exercise in the heat (1, 2).
While fatigue is multifactorial, it can be attributed to factors such as reduced metabolic substrates,
metabolite accumulation, and cardiovascular mechanisms (3, 4). The role of the brain in regulating
fatigue has gained considerable interest in the scientific literature (5), with much debate concerning
the regulation of fatigue by the central nervous system (CNS) and the interactions between various
physiological and psychological feed-forward and feedback mechanisms (1).

A strategy that has been shown to ameliorate fatigue and improve physiological performance is
interventions acting solely on the CNS through an increase in the activity of chemoreceptors and
thermoreceptors, specifically, caffeine (CAF), carbohydrate (CHO), and menthol (MEN) mouth
rinsings (MRs) (6–8). While all three types of MR have demonstrated physiological benefit (6–8),
each has environmental bias. Of late, CHO and CAF MRs have extensively been studied in
thermoneutral conditions (7, 8), whereas a MEN MR has been focused on warm or hot conditions
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(9). Given that changes in environmental conditions, especially
high temperatures and great humidity (2, 10), may independently
degrade physiological performance, it is important to select
an intervention that is environmentally and ecologically valid.
Moreover, understanding interventions favorable for certain
environments and how they impact physiological performance
is pertinent. As such, the purpose of this review is to (1) discuss
different types of MR commonly used in sports and (2) explore
different variables associated with the MEN MR and improving
physiological performance during exercise in the heat.

FATIGUE

Among the variables of fatigue, each characteristic can be
categorized as either peripheral or central. Peripheral fatigue
is described as a decrease in the muscular force attributed
to disruptions with the neuromuscular transmission down the
sarcolemma, calcium release and uptake in the sarcoplasmic
reticulum, availability of metabolic substrates, accumulation of
metabolites, and cross-bridge interactions between actin and
myosin (3, 4). Whereas, central fatigue, the inability or failure
to continue working at a given exercise intensity, is defined as
an activity or exercise-induced decline (progressive reduction)
in the activation of a muscle or muscle group (1) and caused
by afferent feedback, such as changes in chemoreceptor (11) or
thermoreceptor activity, such as exercise in the heat (12).

During exercise, the mechanisms which cause heat-
related central fatigue appears to be linked to the CNS
(13). While the exact mechanism is unknown, research
suggests that central fatigue can be influenced by inhibitory
signals sent to the hypothalamus arising from exercise and
neurotransmitter networks, affecting brain activity (prefrontal,
lateral, orbitofrontal, and anterior cingulate cortexes) (12),
specifically the serotonergic and dopaminergic systems (14).
The serotonin hypothesis suggests that an exercise-induced
increase in extracellular serotonin concentrations contributes to
fatigue during exercise (15). Furthermore, the hypothesis also
suggests that an increase in the ratio of serotonin to dopamine
is associated with feelings of tiredness, whereas a low ratio
improves motivation and performance (15). While serotonin has
been correlated with feelings of tiredness and lethargy has been
suggested to modulate mood, emotion, sleep, appetite, control,
and numerous physiological functions (16), dopamine has been
suggested to be correlated with feelings of motivation, memory,
reward, and attention (15). Many studies have correlated changes
in body temperature to a higher perceived effort and a decrease
in performance (17). For example, the study by Soares et al. (18),
using a rat model, demonstrated that core body temperature was
elevated and performance was diminished following an injection
of tryptophan, a serotonin precursor. Moreover, research by Lin
et al. (19) reported similar results following the administration
of fluoxetine (a serotonin reuptake inhibitor) where there was an
increase in metabolic heat production and a decrease in heat loss.
On the contrary, the study of Watson et al. (20) during exercise
in the heat (30◦C) demonstrated that dopamine/noradrenaline
reuptake inhibitor (bupropion) improved exercise performance

following bupropion administration. Taken together, these
results suggest that changes in the ratio of serotonin to dopamine
can limit and influence physiological performance during
exercise in the heat.

MOUTH RINSE USE IN SPORT

In sports, dietary supplements are often used to improve
performance across an array of modalities (21). Depending on
the supplement, the absorption time may vary with certain
products taking longer time than others (22). For example,
when comparing CHO ingestion relative to CAF, it has been
suggested that CHO should be ingested at a rate of 1 g/min,
or in sufficient amounts, 30min before fatigue (23), whereas
CAF should be consumed 1 h before fatigue as this will allow
for plasma CAF concentrations to peak (22). Albeit the positive
effects of dietary supplementation during exercise, the ergogenic
effects may not be directly proportional to peak oxidation
or concentration (24). In light of this, evidence suggests that
rinsing of the oral cavity may be used to improve performance
through activation of chemoreceptors and thermoreceptors,
leading to an increase in brain activity (25, 26). Commonly
used MR types in sports include CAF, CHO, and MEN. The
purpose of human taste is to enable the appropriate use of
chemical cues; these are used in the selection of nutritive, non-
nutritive, and toxic foods (27). Taste perception, the sensation
produced when a substance reacts chemically with a taste
receptor, starts on the tongue and soft palate where the brain
processes the stimuli. Moreover, the taste system, known as
the gustatory system, acts in concert with the olfactory and
trigeminal systems that are responsible for the sense of smell and
temperature, respectively (25, 28). The gustatory system, used
to differentiate between sweet, salty, sour, and bitter tastants,
provides sensory input that is critical for ingestive behavior
and toxic compound avoidance; the sense of taste interfaces
extensively with neural substrates of reward and motivation (11).
Once a gustatory stimulus is evoked, a two-dimensional response
discriminative at the cortical level and affective (emotional) at the
hypothalamic-limbic level occurs. The discriminative dimension
corresponds to the intensity and chemical and physical properties
of tastes (29). Among the sensory qualities, each tastant can be
denoted as pleasant or unpleasant stimuli; pleasant stimuli will
elicit approach and acceptance, while unpleasant ones induce
rejection (30). Moreover, each tastant will affect the autonomic
nervous system differently. In a study by Rousmans et al.
(31), the pleasantly connoted sweet taste induced the weakest
electrodermal, thermovascular, and cardiac responses, whereas
unpleasantly connoted tastes (salty, sour, and bitter) induced the
strongest responses.

Oral temperature is sensed through primary afferent sensory
neurons whose cell bodies are located in the dorsal root and the
trigeminal ganglia. The signals from these cells are transmitted
to the brain via the spinal cord, where they are integrated to
evoke reflexive and cognitive responses. These sensory neurons
are found on the external surface of the body and in the
oral cavity and the nose (32). The external surface receptors
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are involved with thermoregulation, while the receptors in
the mouth and nose are involved with the temperature of
food and drink (33). The principal molecular thermosensors
in the sensory neurons belong to the family of transient
receptor potential (TRP)2 channels. So far, six TRP channels
have been identified, with four belonging to the TRPV heat-
sensing subfamily, TRPV1, TRPV2, TRVP3, and TRVP4, and two
belonging to the cold-sensing subfamily, TRMP8 and TRPA1.
Some of these channels are also sensitive to compounds that
mimic temperatures (34, 35). The TRPV1 channels in sensory
nerves respond to heat and capsaicin, an alkaloid from “hot”
peppers, which binds to open the channel and thus depolarizes
the neuron and fires action potentials (36). The brain interprets
this information as an increase in ambient temperature and
initiates vasodilation and sweating. TRPM8, which binds ligands
like MEN or icilin and elicits a cold sensation, is a non-selective
cation channel predominantly expressed in a subpopulation of
thermoceptive/nociceptive neurons found in the dorsal root and
the trigeminal ganglia. From the trigeminal ganglion, increased
activity in the insular taste cortex, the somatosensory cortex, the
orbitofrontal cortex, the anterior cingulate cortex, the ventral
striatum, and the pregenual cortex is observed (25). Stimulation
of this thermoreceptor can lead to shivering, amechanism to raise
body temperature. TRPM8 is activated by cold temperature with
a threshold of∼22◦C (37, 38) and by MEN (39).

During exercise, it has been suggested that oral receptors
within the mouth directly stimulate reward centers in the brain,
which increase “central drive” and improve work capacity: this
has been observed in CHO, CAF, and MEN MRs (11, 24, 40–
44). The activation of reward areas in the brain, such as the
insula/frontal operculum, orbitofrontal cortex, and striatum, is
suggested to lower the perception of exertion during exercise
(11, 45) and, potentially, feelings of displeasure (46). Through
the receptors in the mouth, it is speculated that CHO, CAF,
and MEN enter the brain via different pathways (25, 47). While
MEN activates the oropharyngeal TRPM8 thermoreceptors,
CHO and CAF interact with the gustatory chemoreceptors,
T1R2/ T1R3 sweet and TAS2R bitter receptors, respectively. It
was originally proposed that a CAF MR elicited its effects by
allowing CAF molecules to inhibit adenosine through binding
of the adenosine receptors (48, 49); however, Doering et al.
(50) reported that a CAF MR does not increase blood CAF
concentrations. Moreover, the same response is observed with
the CHO MR (51). An electroencephalography recording which
has shown that while a CAF MR increases activity among the
orbitofrontal and dorsolateral prefrontal cortex, a CHO MR
only increases activity in the orbitofrontal cortex (47) suggests
that there may be a summation effect of CAF and CHO. This
postulation was debunked in a high-intensity running study
whereby the summation effect of CHO + CAF MR did not
significantly improve performance compared to CAF alone (52).

Effects of MEN MR
Menthol presents in nature both as a fragrance and as a
flavor molecule targeting the olfactory and gustatory systems
which impart feelings of coolness and freshness (53). MEN
has historically been found in an array of products, such as

candies, chewing gums, toothpastes, common cold medications,
vaporubs, cigarettes, and aromatherapy medications, but a more
contemporary application of MEN has been that of an ergogenic
aid that can be applied topically, used as a mouth swill, or
ingested alongside ice slurry (54). Perhaps, most promising is
that, when used as a mouth rinse, MEN is shown to increase
the drive to breathe, elevate ventilation, increase arousal, and
attenuate thirst, as well as elicit sensations of coolness and
freshness that may alleviate thermal symptoms during exercise
(32, 55). Past research indicates that MEN has the capability
to increase self-selected cycling power output (56) and increase
cycling TTE when rinsed in the mouth (57) via stimulation of
oropharyngeal cold receptors. This suggests that afferent signals
emanating in the oral cavity are capable behavioral controllers
(9). More specifically, when swilled, MEN, activates TRPM8
(34, 35). As previously stated, TRPM8 is the primary molecular
transducer of cold somatosensation and therefore is shown to
be associated with improved thermal comfort, reduced ratings
of perceived exertion (RPE), and improved performance during
exercise in hot conditions (9, 57, 58). Since the excitability of the
cerebral cortex is controlled by the brainstem reticular formation
(59), MEN is understood to be a stimulus that can influence the
level of consciousness/arousal of an individual via stimulation
of the trigeminal nerves (32). The trigeminal nerve is a cranial
nerve, composed of three major branches of nerves, namely,
the ophthalmic, maxillary, and mandibular nerves, that converge
on the trigeminal ganglion, located within Meckel’s cave. The
trigeminal ganglion also contains the cell bodies of incoming
sensory nerve fibers that make them responsible for providing
sensations to the face, mucous membranes, and other structures
of the head (32, 60). Additionally, it is known that motor fibers
pass through the trigeminal ganglion without synapsing on their
way to peripheral muscles. This implies that MEN is effective
at reducing thermal sensation and/or state via its action on the
trigeminal ganglion, which may contribute to increased skeletal
muscle activation during hyperthermic exercise (60). Moreover,
it has been suggested that, when MEN stimulates the trigeminal
system, this directly activates reward/pleasure centers in the brain
to increase “central drive” and improve work capacity (11, 24,
40, 42–44). The activation of reward areas in the brain, such
as the insula/frontal operculum, the orbitofrontal cortex, and
the striatum, is suggested to lower the perception of exertion
during exercise (11, 45) and, potentially, feelings of displeasure
(46). A study conducted by Guest et al. (25) introduced various
temperatures of artificial saliva into the mouth and recorded
activation of various brain regions and perceived pleasantness.
Investigators found that a cold fluid (5◦C) was perceived to
be more pleasant when compared to a warm (50◦C) solution
and that some of the brain regions involved in detecting
temperature were involved in sensing pleasantness. This research
shows that pleasant stimuli can help to maintain central drive
and increase motivation during exercise performance (25).
However, evidence suggests that the magnitude of performance
increment is dependent on several factors and must be taken
with caution. Finally, in line with the central fatigue hypothesis
(15), a study by Guest et al. (25) also showed that intra-
oral thermal stimulation activates the network of taste- and
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reward-responsiveness regions of the human brain that is
associated with dopaminergic pathways within the primary and
secondary cortices. Since serotonergic and dopaminergic systems
pervasively interact with each other, modulating the serotonin-
to-dopamine ratio appears to be significant for determining
fatigue and regulating physical performance outcomes (25, 61).
Given the well-defined role of dopamine in the initiation of
movement, it is likely that adaptations in dopaminergic pathways
influence exercise capacity (62). These are the same regions
engaged with positive self-talk and which indicate that MEN
could be linked to an increase in dopaminergic activity among
the reward centers of the brain (61). This implies that an increase
in the neurotransmission of the dopaminergic pathway improves
the activation of the basal ganglia and increases stimulation of
the motor cortex, which then reduces the effects of central fatigue
and benefits aerobic performance (58, 62).

Performance Outcomes With MEN
According to the published literature, the use of MEN has
demonstrated performance improvements in 8 of 10 published
studies (9, 54, 57, 58, 63–68) at different drink temperatures and
frequencies (55, 67) in time trials (TTs) and endurance events (57,
66), at concentrations of 0.01% and 0.05% (57, 65), and in females
(68). Thus, when applied internally as an ergogenic intervention,
MEN appears to improve overall exercise performance in the
heat, as well as effectively lowering TS (p < 0.001) (6), via its
anticipated ability to ameliorate the effects of impaired muscle
activation caused by central fatigue (2) or anticipatory afferent
signals to the brainstem (69). This section of the review provides
an analysis of performance change outcomes (%) across various
investigations involving MEN. While MEN has demonstrated
physiological improvements under hot conditions and in a male
population, the influence of MEN in both thermoneutral and
cold conditions is unknown. Moreover, the effect of MEN, or in
concert with other products, in the female population has not
been explored.

Exercise Modality and Use of Menthol
Of late, the influence of MEN has been investigated in cycling,
running, isometric contractions, and vertical jumps (58, 63, 66).
While the influence of MEN appears to have no performance
benefit in isometric contractions and vertical jumps (63),
MEN has shown benefits in both running and cycling studies
(70). Given that a MEN MR acts solely on the CNS, this
is of no surprise as decrements in performance for short-
duration exercise are more likely linked to peripheral vs. central
fatigue (71).

In contrast, while no study has compared the effects of a
MEN MR in running and cycling, based on a meta-analysis by
Jeffries and Waldron (6), it appears that the improvement of
performance is slightly higher in cycling relative to running, with
values of 6.7 ± 1.4 and 4.4 ± 1.6%, respectively; however, the
MEN MR protocol was significantly different between studies.
Although exercise modality may impact how one might respond
to the MENMR, it should be noted that all of the running studies
done with the MEN MR consisted of a TT vs. a combination of
TT and time to exhaustion (TTE) work observed in the cycling

studies. Moreover, the frequency of the MEN MR also differed
betweenmodalities. For example, in the studies based on running
by Stevens et al. (66) and Stevens et al. (54), the MEN MR
was administered once every 200m, whereas studies based on
cycling by Mundel and Jones (57), Flood et al. (58), and Gibson
et al. (64) administered the MEN MR once every ∼10min. With
regard to participants, all studies used recreationally active males,
so the outcomes should not be attributed to the skill level of
the participants. As such, further research warrants investigation
to compare modalities of similar exercise durations and MEN
swilling protocols.

Time to Exhaustion vs. Time Trial
It is well-established that a MEN MR can improve physiological
endurance performance during exercise in hot conditions;
however, it appears that the test protocol may play a significant
role in the rate of improvement following a MEN MR (9, 54,
57, 58, 64, 66–68). For example, Mundel and Jones (57) reported
an improvement of 9% in a cycling TTE, whereas Tran Trong
et al. (67) only saw an improvement of 6.2% in a time trial.
Furthermore, in other TTE studies by Flood et al. (58) and Jeffries
et al. (9), they saw improvements of 7 and 6%, respectively, while
TT improvements were again lower in studies by Riera et al.
(65) (5.3%), Stevens et al. (66) (3%), Stevens et al. (54) (4%),
and Gibson et al. (64) (2.3%). Although intra-subject variance is
much higher in a TTE vs. a TT study, >10 and <5%, respectively
(72), each study, except that by Tran Trong et al. (67), included
a familiarization trial to help reduce the amount of variation
between trials. Furthermore, given that the total amount of
exercising time did not significantly differ among modalities,
with 35.3 ± 19.7min for the TTE (9, 57, 58), and 42.6 ± 25.8
for the TT, the duration of the trial and time in the heat should
have influenced the impact of MEN on performance.

Frequency of MEN MR
While the frequency of a MEN MR has not been thoroughly
explored, the most common protocol includes one MR per
minute studied entirely on running (54, 66), and once every
∼10min (57, 65, 68, 73, 74). Furthermore, a study by Jeffries et al.
(9) had the participants do one MR during the latter stages of
exercises (at 85% of TTE), whereas Tran Trong et al. (67) had
a group of trained runners consume 190ml of a MEN beverage
throughout exercise, during warm-up, every block, and recovery.
Although the frequency was different among the present studies,
MEN improved performance in each study with a rate of ∼3.5%
in one MR per minute (54, 66), ∼4.5% once every 10min (57,
58, 64, 65), and ∼6% when consumed at 85% of TTE (9, 67).
Of note is the test protocol, during which MEN concentration,
swilling duration, and exercise modality were different among
each study. Future research should explore the influence of MEN
MR frequency in the latter stages of exercise when central fatigue
is traditionally high (75).

MEN Swilling Duration and Consumption
Of late, the most common use of oral MEN is intermittent
consumption throughout (65, 67) and swilling. Although swilling
duration has not been studied, popular durations include 10
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(57) and 5 s (9, 54, 58, 64, 66, 68). While consumption has
demonstrated the greatest performance benefits (improvement
of ∼5.8%), both 5 and 10 s of repeated MEN MR has
displayed improvements of 9.5 and 3.7% in cycling and running
performance, respectively. Despite only one study using a 10 s
MR duration (57), Sinclair et al. (76) suggest that a 10 s CHOMR
is more beneficial than a 5 s. Although both swilling durations
improved endurance performance relative to a placebo, the 5 s
MR was not significant, whereas the 10 s MR was significant
(p ≤ 0.01) (76). Furthermore, a study by Stevens et al. (66)
comparing ice-slurry ingestion relative to the MEN MR suggests
that swilling duration does have a significant impact as the MEN
MR improved performance whereas the ice-slurry ingestion did
not. Moreover, the studies by Sinclair et al. (76) provide evidence
that swilling duration (the exposure time of the MEN in the oral
cavity) may influence performance, with longer swilling times
being more beneficial.

Thermal Sensation
Despite multiple studies indicating a negligible improvement
in TS with MEN MR, there are a few studies demonstrating a
negative relationship between MEN MR and thermal perception
while proposing that the change in thermal sensation with
MEN MR accounts for one of the mechanisms of MEN use for
the improvement of endurance performance (6). To illustrate,
studies by Flood et al. (58) and Jeffries et al. (9) saw a significant
decrease in thermal sensation for a given workload with theMEN
MR; however, research by Riera et al. (65), Stevens et al. (66),
and Gavel et al. (68) observed no difference. While all studies
had trials completed under hot conditions, research by Flouris
and Cheung (77) suggests that the differences among each study
could be due to day-to-day variability vs. the actual intervention.
Using a modified model by Gagge et al. (78), it was reported that
differences in thermal sensation and thermal comfort were not
observed in tandem with an increase in core body temperature
and skin temperature. Moreover, in a systematic review by
Koelblen et al. (79) comparing seven thermal sensation models,
there were differences between each model for the same level of
environmental exposure. Based on this, one may conclude that
a lack of validity among thermal scaling models during exercise
could influence the results with regard to the effect of a MENMR
on thermal perception.

Ratings of Perceived Exertion
Of late, the influence of MEN on the Rating of Perceived Exertion
(RPE) is ambiguous and needs further investigation. To illustrate,
Mundel and Jones (57), Flood et al. (58), Jeffries et al. (9), and
Gavel et al. (68) reported that the RPE changed for a given

workload with the MEN MR, while research by Riera et al. (65),
Tran Trong et al. (67), Stevens et al. (66), and Stevens et al.
(54) did not. Of note, all studies shared similar environmental
conditions (∼34◦C and RH 40%), which is an important factor
as research has demonstrated the influence of the environment
on how one modulates motor output (80). Factors not consistent
between each study were frequency, concentration, and duration
at which theMENMRwas administered. Although the frequency
and duration of MEN MR have never been tested, one may
speculate that this could impact performance (53). Relative to
the CHO MR, the MEN MR demonstrates an acute increase
in the activity of the reward centers of the brain, the proposed
mechanism for the improvement of performance with MEN
(25, 26, 32). In support, Guest et al. (25) demonstrated acute
differences in the reward centers of the brain when comparing
warm and cold water. Similarly, Smeets et al. (26) showed similar
results when comparing the difference in CHO concentrations.
Thus, the impact of manipulating the MR protocol (frequency,
concentration of MEN, duration, etc.) may have significant
effects on the efficacy of MEN as a non-thermic aid while
suggesting that the differences between each study may be due
to the variability in the MR protocol. Moreover, there are many
questions left unanswered when examining the current MENMR
literature and the link of MEN to performance improvements.

CONCLUSION

Menthol MR appears to improve performance in moderate- and
high-intensity exercises of ∼20 to >60min. It is suggested that
the mechanism associated with the improvement of performance
is related to the CNS via oral cold receptors that activate the
reward centers of the brain. While the effects of MEN MR have
not been tested in thermoneutral conditions, these oral cold
receptors seem to be responsive in hot conditions, at high core
temperatures, and during cycling and running exercises. Given
that MEN is easily transportable, low in cost, and accessible at
most grocery and convenience stores, MENMRmight be a viable
non-thermic alternative to the external application of cooling
devices used to improve performance during exercise in the heat.
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