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Abstract

In this review, we discuss the epidemiological dynamics of different viral infections to project

how the transition from a pandemic to endemic Severe Acute Respiratory Syndrome Coro-

navirus 2 (SARS-CoV-2) might take shape. Drawing from theories of disease invasion and

transmission dynamics, waning immunity in the face of viral evolution and antigenic drift,

and empirical data from influenza, dengue, and seasonal coronaviruses, we discuss the

putative periodicity, severity, and age dynamics of SARS-CoV-2 as it becomes endemic.

We review recent studies on SARS-CoV-2 epidemiology, immunology, and evolution that

are particularly useful in projecting the transition to endemicity and highlight gaps that war-

rant further research.

IntroductionAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:
The trajectory of the ongoing Coronavirus Disease 2019 (COVID-19) pandemic remains

uncertain; current barriers to containment include asymptomatic transmission [1,2], waning

immunity [3,4], emergence of new variants, and, in many countries, both persistent levels of

infection and public resistance to interventions such as social distancing and vaccination.

Although billions of vaccine doses have already been administered throughout much of the

world [5,6], the rapid spread of the Severe Acute Respiratory Syndrome Coronavirus 2

(SARS-CoV-2) Omicron lineage has shown that neither vaccines nor prior natural infection is

sufficient to protect against large waves of infections by new variants.

Past experience suggests that after jumping into humans, a zoonotic pathogen may experi-

ence different epidemiological trajectories depending on a variety of factors, including its abil-

ity to transmit between humans and the effectiveness of control measures [7]. We distinguish

between 4 possible paths of an emerging pathogen, including “sporadic spread,” “local or

regional spread,” “pandemicity,” and “endemicity.” Sporadic spread is characterized by short

chains of human-to-human transmission that quickly die out due to low transmissibility (also

called stuttering chains of transmission [8]). This is a feature of pathogens that do not transmit

well between humans and have an R0 less than 1, where R0 is the basic reproduction number

that measures the number of secondary cases generated by an infected individual in a
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completely susceptible population. Classic examples of sporadic spread include influenza A/

H5N1, monkeypox, and Middle East respiratory syndrome (MERSAU : PleasenotethatMERShasbeendefinedasMiddleEastrespiratorysyndromeinthesentenceClassicexamplesofsporadicspreadincludeinfluenzaA=H5N1;monkeypox; andMiddleEastrespiratorysyndromeðMERSÞPleasecorrectifnecessary:) (outside of the hospital

settings where transmission is amplified) [8]. For emergent pathogens with a higher human-

to-human transmission potential (R0>1), a period of local or regional spread can be observed

followed by (temporary) disappearance in human populations due to rapid intervention, as

illustrated by Ebola or SARS-CoV-1. An important feature of these pathogens is that, while

R0>1, control is possible by contact tracing and other nonpharmaceutical interventions

because the period when the pathogen transmits from infected to susceptible individuals coin-

cides with the symptomatic phase of the disease [7]. Unfortunately, around 50% of SARS--

CoV-2 transmission occurs before symptom onset, or from fully asymptomatic individuals,

making it particularly difficult to stop transmission without strict interventions such as social

distancing [9]. An alternative outcome for an emergent pathogen above the critical threshold

of R0>1 is pandemicity, which is characterized by rapid, global spread in the face of little or

no preexisting population immunity. This is best exemplified by the recent history of HIV,

pandemic influenza, and SARS-CoV-2. After a global pandemic, a transition to endemicity is

generally expected. Here, we define endemicity as the long-term (multiyear) persistence of a

pathogen in a population at a steady annual level of infection.

Transition to endemicity has been observed several times for pandemic influenza in the last

hundred years, while many of the vaccine-preventable childhood infections, such as measles

and mumps, likely shared a similar past centuries or millennia ago [10]. In the endemic period,

and in the absence of new interventions, we expect regular periodicity in the occurrence of

outbreaks, predictable seasonal patterns, and a mean rate of infection that fluctuates minimally

over time. We contend that endemicity is the most plausible route for SARS-CoV-2 in the

foreseeable future, with SARS-CoV-2 poised to eventually become the fifth endemic seasonal

coronavirus (HCoV) along with HKU1, NL63, OC43, and 229E [11,12]. In this article, we

attempt to project some of the epidemiological, evolutionary, and immunological characteris-

tics of SARS-CoV-2 outbreaks in the endemic phase.

Epidemiological theory of pathogen invasion

Mathematical models have long been used to predict the trajectory of epidemics, particularly

in periods of dynamical changes such as the emergence of a new pathogen (e.g., pandemic

influenza or a new dengue serotype), the rollout of new vaccines (e.g., rotavirus) [13], or

changing demography (e.g., declining birth rate leading to fewer susceptible individuals) [14].

Invasion of new pathogens into naive populations that have no immunological memory to the

pathogen, and their persistence in those populations, follows a predictable pattern [15–17].

Initially, the pathogen’s arrival causes several large waves of infections that burn through a

fraction of susceptible hosts of all ages, depending on control interventions [11] and R0. It is

unlikely that SARS-CoV-2 will burn itself out after the initial waves have ended: Most coun-

tries have persistent levels of infection, and despite vaccination, the risk of reintroduction and

onward spread is high in a post-pandemic world. Resurgences have occurred even in countries

that have had relatively successful public health responses to the pandemic such as China, Aus-

tralia, and New Zealand, in part due to international travelers sparking outbreaks in areas with

high population susceptibility and the emergence of immune escape variants like Omicron

[18].

Mathematical models predict that future waves of infections will be more moderate in size

and sweep through remaining susceptibles, including individuals who have escaped infection

and vaccination, and new births [12]. In addition, loss of immunity to infection due to natural

decay of protection over time and the emergence of immune escape variants will replenish the
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pool of susceptibles. The rate of influx of new susceptibles will determine the periodicity of

outbreaks in the endemic state, with slower replenishment leading to less frequent outbreaks.

Further, environmental forcing and changing seasonal contact patterns (e.g., school calendars)

is expected to modulate transmission and determine outbreak seasonality. In the long-run,

SARS-CoV-2 outbreaks will likely be entrained into annual winter cycles as is the case for the 4

endemic human coronaviruses (HCoVs), 229E, OC43, HKU1, and NL63 [12,15], and many

other respiratory pathogens [19]. Multiyear epidemic cycles (e.g., every other year or every 3

years) are seen across a range of strongly immunizing infections, such as measles and pertussis,

as well as several infections that confer partial immunity such as rotavirus and respiratory syn-

cytial virus (RSV) [19–22]. Yet, these pathogens are characterized by notably slower evolution-

ary rates than SARS-CoV-2. As a result, influenza and seasonal coronavirus outbreaks,

characterized by marked annual periodicity, are more likely illustrations of what future SARS--

CoV-2 outbreaks may look like.

Past influenza pandemics

In projecting the epidemiological switch from pandemicity to endemicity for SARS-CoV-2, it

can be useful to look back at past pandemics. Historical influenza pandemics provide a tem-

plate for the rapid emergence and global spread of new viruses, followed by continued periods

of circulation lasting from 10 to 50 years. We will focus here on 2 relevant events: the 1918 and

2009 pandemics. The 1918 A/H1N1 pandemic is particularly interesting because of its severity

and scale; the global impacts of the first 2 years of the 1918 pandemic are comparable to the

first 2 years of COVID-19 in some areas [23]. However, a full understanding of the epidemiol-

ogy of the 1918 pandemic remains elusive as we do not know which influenza strain was circu-

lating before 1918, obscuring any patterns of preexisting population immunity. In contrast,

the 2009 A/H1N1 influenza pandemic had a moderate health impact when compared to the

1918 pandemic or COVID-19; yet, a wealth of epidemiological, immunological, and evolution-

ary data documents the transition to endemicity.

Both the 1918 and 2009 influenza A/H1N1 pandemics were marked by the occurrence of

several closely spaced waves in the first year of circulation, reminiscent of the 2020 COVID-19

patterns (see Fig 1 for a comparison of all 3 pandemics) [24,25]. In the first year of SARS-CoV-

2 circulation, successive pandemic waves have resulted from changes in contact patterns due

to social distancing, masking, and winter aggregation. In the second year of the pandemic,

after population immunity had risen through vaccination and infection, subsequent waves

were primarily fueled by the emergence of more transmissible variants. For pandemic influ-

enza, the major elements that appeared to cause successive waves include seasonal environ-

mental factors, school closures and reopenings [26,27], and in the case of the 1918 pandemic,

restrictions on mass gatherings [28].

All influenza pandemics since 1918 were marked by a shift of infections and deaths towards

younger ages, compared to seasonal influenza [29,30]. For the 2009 pandemic, high infection

rates were reported for children and adults up to ages approximately 50 years old, likely due to a

combination of protective effect of prior immunity among seniors, who had seen similar influ-

enza viruses in their past [29], and increased contact rates among susceptibles of younger ages.

Although schools were temporarily closed in the early days of the 2009 A/H1N1 pandemic in a

few countries (e.g., Mexico, Hong Kong, Peru) [31], these interventions were quickly lifted once

it became clear that the A/H1N1 virus caused limited mortality. Importantly, schools remained

open for the duration of the main pandemic wave in fall 2009 in the Northern Hemisphere.

The age shift in infections, cases, and deaths that accompanies the switch from pandemic to

endemic influenza operates over several years. Data from Denmark suggest that it took about 7
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years to return to the typical age profile of seasonal influenza mortality after the emergence of

the 1918 pandemic virus [32]. In recent years, age patterns in influenza cases have been driven

by differences in immune imprinting to A/H1N1 viruses and cocirculating A/H3N2 viruses,

with recent epidemics retaining a propensity to infect younger age groups compared to pre-

2009 pandemic levels [33].

Interpreting age-based analyses

A key determinant of the age profile of future epidemics, and hence their potential health bur-

den, is the age structure of the susceptible population and the force of infection. The force of

infection is defined as the risk of becoming infected for a typical susceptible per unit of time,

providing a measure of the level of circulation of a pathogen in the community. In settings

with higher forces of infection, we would expect a younger mean age at first infection, because

the risk of getting infected in each year of life after birth is high. This is a well-described epide-

miological phenomenon seen in infections with lifelong or persistent immunity, such as mea-

sles, dengue, or poliovirus [34], which have classically provided a foundational model for the

expected age distribution of an emerging virus.

While the switch from initial invasion wave to endemicity happened a very long time ago

for measles and polio, 2 diseases that are now on their way to control or eradication, a more

recent transition has been observed for particular dengue serotypes in Latin America. Thus,

dengue is a useful model for understanding the drivers of age dynamics, and the connection

between force of infection and endemicity. Decades of dengue surveillance and seroprevalence

studies have illustrated that as dengue circulates over time and becomes endemic in a popula-

tion, the force of infection decreases and the age at which individuals in a population acquire

dengue-specific immunity rises [35–37]. However, time in circulation and preexisting immu-

nity are not the only contributing factors; demographic change, such as declining birth rates,

and outbreak control can also decrease transmission intensity and in turn affect age distribu-

tions [35–38]. In a pediatric cohort study in Managua, Nicaragua, for example, the age at

which children were first infected more than doubled between 2004 and 2015, due to the intro-

duction of a new dengue serotype in the 1990s, combined with a decrease in birth rate and

increase in life expectancy that together lowered transmission intensity [36]. In contrast, a

40-year study in Bangkok, Thailand, where dengue has been established for much longer,

revealed only a 1-year increase in mean infection age [37].

Fig 1. AU : AbbreviationlisthavebeencompiledforthoseusedinFigs1 � 3:Pleaseverifythatallentriesarecorrect:Waves of influenza A/H1N1 and COVID-19 during initial invasion and subsequent circulation. Data sources: (A) Olson and colleagues [24AU : PleasenotethatthecitationsOlsonetal:; 2005andCDCFluView; 2022inFig1havebeenchangedtoOlsonandcolleaguesandCentersforDiseaseControlandPreventionNCforIandRDðNCIRDÞandlinkedtoreferencenumbers24and25; respectively:Pleaseconfirmthatthesechangesarecorrect:]; (B) Centers for

Disease Control and Prevention, National Center for Immunization and Respiratory Diseases (NCIRD) [25]; (C) Ritchie and colleagues [6]. Coronavirus Disease 2019,

COVID-19; Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2.

https://doi.org/10.1371/journal.ppat.1010591.g001
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Based on epidemiological and immunological data collected since the beginning of the

COVID-19 pandemic, it is clear that the age distribution of SARS-CoV-2 infection does not

follow the classic age profile of other pathogens. Young children appear to have immunological

or biological protection against infection compared to other age groups, which was particularly

evident prior to widespread vaccination of teenagers and adults. The reasons why children

may have lower susceptibility to SARS-CoV-2 have yet to be elucidated. Possible cross-protec-

tion from the endemic human coronaviruses, which frequently infect children, has been

explored and refuted [39,40]. Some studies have also suggested that the expression of key viral

entry-associated receptors, such as ACE2 and TMPRSS2, increases with age, and that children

may express fewer receptors and/or receptors with lower affinity for SARS-CoV-2 in the respi-

ratory epithelium [41–43]. Other analyses, however, have disputed these findings [44,45]. In

addition to lower susceptibility than adults, children may also enjoy reduced disease severity

upon infection. The airway epithelia of children may express a higher baseline level of inter-

feron-response genes than adults, which may reduce viral spread [46]. Additionally, children

have a greater diversity of T-cell receptors, potentially enabling them to recognize and elimi-

nate unknown pathogens to a greater extent than adults whose immune response is more

focused on previously encountered infective agents [46]. Additional biological differences may

affect the age patterns of infection; for example, waning of immunity against infection may be

more pronounced in older age classes, as is observed for seasonal coronaviruses and RSV

[47,48].

Vaccination, waning immunity, and evolution are important driving forces of changes in

age dynamics. Infections are expected to shift towards younger age groups as more adults are

vaccinated—a pattern that has materialized in the first year of the SARS-CoV-2 vaccination

program [49]. In contrast, antigenic drift, the gradual genetic evolution of immunologically

important viral antigens due to random mutation, would increase susceptibility in all age

groups and shift infections towards a broader range of ages, as seen for influenza [33]. With a

higher rate of antigenic drift, and in turn greater immune escape, more individuals with prior

immunity can experience reinfection, compared to a scenario of low antigenic drift. With a

high rate of antigenic drift, reinfections can occur even in age groups who have experienced

multiple infections and tend to be older. Conversely, a slower rate of antigenic drift (less

immune escape) would preferentially affect age groups whose prior exposure to the virus is

less frequent, concentrating infections in younger age groups. We see a signature of this phe-

nomenon in the age distribution of different influenza subtypes, where influenza A/H3N2 has

a faster rate of antigenic evolution than influenza B, with A/H3N2 cases reported to be older

on average than influenza B cases [50]. Taken together, HCoVs and SARS-CoV-2 observations

[48,51] support that immunity to SARS-CoV-2 infection will wane rapidly (although there are

differences between immunity acquired from natural infection and vaccination), while protec-

tion against severe disease will be maintained over longer periods [51].

Unfortunately, we cannot fully rely on the age distribution of well-studied pathogens such

as measles, dengue, and influenza to predict a future shift in the epidemiology of SARS-CoV-2.

Viral evolution, waning immunity, and the introduction of vaccines in younger age groups

will each play a role in determining the relationship between age and susceptibility to infection

and disease. In the early months of the COVID-19 pandemic, when vaccines were unavailable,

children generally appeared to be less susceptible to infection and to present with milder cases.

While it seemed originally that children and adolescents infrequently served as index cases

[52,53], increased public health surveillance has shown that transmission from these age

groups can and does occur [54,55]. In the United States, we saw more children hospitalized

with the Delta variant than with previous strains, but this was most likely due to the sheer

amount of Delta circulating and children’s lack of vaccine-based protection rather than from
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an increase in susceptibility or severity in children [56]. We saw similar increases in hospitali-

zation rates in children following the emergence of the Omicron variant [57]. While disease in

children is generally less severe than adults, a viral mutation that increases the susceptibility of

children to infection and/or severe illness could pose a serious threat both to children and to

the population at large. Additionally, the estimate of 80% prevalence of long-term symptoms

(fatigue, headache, attention disorder, and shortness of breath) [58] in SARS-CoV-2-infected

individuals might also encourage parents and guardians to vaccinate their children if given the

opportunity.

Age distribution of seasonal coronaviruses

The age distribution of endemic SARS-CoV-2 infections cannot be fully predicted, although

the 4 seasonal coronaviruses that have been established in humans for decades or more pro-

vide useful examples (Fig 2). In contrast to SARS-CoV-2, the seasonal coronaviruses (HCoV

strains 229E, OC43, NL63, and HKU1) discovered in the 1960s and early 2000s, are thought to

predominantly infect young children and generally cause mild respiratory disease [59,60]. Yet,

the relationship between age and infectivity in the seasonal coronaviruses is still not entirely

transparent; 2 studies published in 2020—one following a cohort of households in Michigan

and one conducting diagnostic surveillance in the West of Scotland—show that incidence of

seasonal coronavirus infection does necessarily decline with age (Fig 3). The Household Influ-

enza Vaccine Evaluation (HIVE) study, which followed a cohort of between 890 and 1,441

individuals annually from 2010 to 2018, detected a total of 993 seasonal coronavirus infections;

HCoV-229E appeared most frequently in adults over 50 years old, while the other strains most

frequently infected children under 5 [60]. After age 5, however, incidence was relatively con-

stant across age groups. The West Scotland surveillance study, which tested respiratory sam-

ples among 12,628 patients presenting to their general practitioner, showed relatively similar

age patterns to the HIVE cohort for strains HCoV-229E and HCoV-NL63; here, however, inci-

dence of HCoV-OC43 was similar across age groups, including infants and children under 5

[61]. Both studies show that there are likely more infections in adults than previously thought;

however, neither study includes data on asymptomatic cases, which may occur more fre-

quently in children and affect transmission rates. A single cross-sectional serology study exists,

suggesting a more classical age-dependent pattern of infection gradually increasing up to age

20 years [62]. It would be beneficial to design larger prospective HCoV cohorts in the future,

particularly from birth, to address questions about duration of immunity and reinfection.

The epidemiology and age distribution of the invasion waves of seasonal coronaviruses—

i.e., when they first spilled over to humans—is unknown, but would be particularly useful to

project the epidemiological consequences of the switch from pandemicity to endemicity in

SARS-CoV-2. The establishment of seasonal coronaviruses would make for an excellent sub-

ject of archeo-epidemiology, a branch of epidemiology centered on understanding the epide-

miology of ancestral pathogens, using previously unearthed data sources such as church

records and genealogy records [63]. Notably, in the wake of the COVID-19 pandemic, the

hypothesis that the 1889 Russian influenza pandemic may have been an HCoV-OC43 pan-

demic has gained traction [64]. Further, phylodynamic analyses of seasonal coronavirus

sequences could also contribute to date the putative emergence of different HCoV serotypes. If

we can advance our understanding of how the seasonal coronaviruses, particularly

HCoV-HKU1 and HCoV-OC43 (2 betacoronaviruses, the same genus as SARS-CoV-2) and

HCoV-NL63 (a coronavirus using the ACE2 receptor like SARS CoV2), adapted to exist long

term in human populations, we may be able to better predict and prepare for the effects of an

endemic SARS-CoV-2.
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Immune response to SARS-CoV-2

Immune response after primary infection or vaccination. A critical determinant of the

endemic patterns of SARS-CoV-2 infection is the duration, strength, and breadth of immune

protection. As the SARS-CoV-2 virus has only been circulating in the human population since

late 2019, we are just beginning to understand how immunity may wane in the face of time

and viral evolution. Early concerns that the immune response could be short lived have been

moderated by data showing a robust immune response to both infection and vaccination.

SARS-CoV-2 infection leads to the production of neutralizing antibodies in the vast majority

of individuals, with over 90% of mild to moderate cases mounting high titers of neutralizing

antibodies to the spike protein [65,66]. Six [67] and eight [68] months after symptom onset,

subjects had only a mild decline in circulating neutralizing titers and a strong memory B cell

response to the spike protein that increased during the months following infection before pla-

teauing. Eleven months after mild SARS-CoV-2 infection, convalescent subjects showed evi-

dence of SARS-CoV-2 S protein-specific long-lived bone marrow plasma cells, indicating the

Fig 2. Changing age distributions of influenza A/H1N1, dengue, and COVID-19 during the transition from

pandemic to endemic. Data sources: (A) OlsonAU : PleasenotethatthecitationsOlsonetal:; 2005;CDCFluView; 2022; and}Karyantietal:ð2014Þ}inFig2havebeenchangedtoOlsonandcolleagues;CentersforDiseaseControlandPrevention;NationalCenterforImmunizationandRespiratoryDiseasesðNCIRDÞ; and}Karyantiandcolleagues}andlinkedtoreferencenumbers24; 25; and38; respectively:Pleaseconfirmthatthesechangesarecorrect:and colleagues [24]; (B) Centers for Disease Control and Prevention,

National Center for Immunization and Respiratory Diseases (NCIRD) [25]; (C) Karyanti and colleagues [38]; (D)

Centers for Disease Control and Prevention [128]. Coronavirus Disease 2019, COVID-19.

https://doi.org/10.1371/journal.ppat.1010591.g002
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development of stable immunity against COVID-19 [69]. Furthermore, strong CD4+ and

CD8+ T-cell responses against multiple proteins have been identified in the majority of

COVID-19 patients [66,67,70]. SARS-CoV-2-specific follicular helper T cells, critical in estab-

lishing memory B cells, were also found in a significant fraction of COVID-19 patients [69].

However, these responses can be heterogeneous; in particular, T-cell immunity decreases with

both age (>65 years old) and severe disease [71].

These immunological findings are corroborated by epidemiological studies, indicating that

reinfections are rare over a 7- to 8-month period (80% to 85% protection), and when reinfec-

tions occur, they are significantly less severe than primary infections [72–74]. It is worth not-

ing, however, that the likelihood of reinfection is increased in older individuals, so that more

frequent revaccination may be warranted than for younger individuals. Further, the emer-

gence of Omicron has increased the risk of reinfection across the entire population compared

to earlier variants both for previously infected [75] and vaccinated individuals [76], suggesting

that antigenic drift will require periodic vaccine updates. While in vitro studies indicate sub-

stantial decrease in neutralization titers against new variants, vaccine protection remains

around 88% against symptomatic disease with the Delta variant, and 45% with Omicron, in

the immediate weeks after a second dose [77]. Vaccine boosters increase effectiveness against

symptomatic infection to 90% for Delta and 60% for Omicron; yet, protection against SARS--

CoV-2 symptoms wanes rather rapidly after primary vaccine course and boosters [78]. Impor-

tantly, all studies point to a higher and longer-lasting level of protection against hospitalization

and death, including for Omicron. In particular, vaccine breakthrough cases have milder

courses of illness relative to cases in immune-naive individuals [78,79].

Data on the duration of immunity to SARS-CoV-2 is available on the timescale of months

but is lacking on the scale of years. In the absence of long-term data specific to SARS-CoV-2,

we can turn to related viruses to gauge multiyear immunity patterns, including SARS-CoV-1

and the endemic HCoVs. In studies of patients who had survived SARS-CoV-1 disease, T-cell

Fig 3. Detection of seasonal coronaviruses in 2 cohort studies, broken down by strain and age group. Data sources:

(A) NickbakhshAU : PleasenotethatthecitationsNickbakhshetal:ð2020Þand}Montoetal:ð2020Þ}inFig3havebeenchangedtoNickbakhshandcolleaguesand}Montoandcolleagues}andlinkedtoreferencenumbers61and60; respectively:Pleaseconfirmthatthesechangesarecorrect:and colleagues [61]; (B) Monto and colleagues [60]. HIVE, Household Influenza Vaccine Evaluation.

https://doi.org/10.1371/journal.ppat.1010591.g003
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responses were maintained 6 to 11 years after infection, while neutralizing antibodies and

memory B cells were undetectable after 6 years [80,81]. Since the SARS-CoV-1 virus only cir-

culated for a short while in humans, it is impossible to know whether the long-term T-cell

immune response is protective, or whether other immune mediators would be boosted by

periodic reexposure. A different, more temporary, form of immunity is found in one of the

seasonal coronaviruses, HCoV-229E, for which challenge studies have generated particularly

useful data. Patients who were experimentally infected with HCoV-229E developed short-lived

antibodies against the virus, which were undetectable a year later [51]. When these patients

were rechallenged with the same strain of virus, the majority of subjects got infected and shed

virus, but they did not show symptoms, suggesting an anamnestic immune response. In a

recent observational cohort study, reinfections with all 4 seasonal HCoVs were frequent,

occurring with a periodicity of 0.6 to 3 years depending on the serotype [82]. Further, presea-

son antibody titers were not predictive of the risk of reinfection, confirming that sterilizing

immunity is very short lived or lacking for HCoVs.

Immunological interactions between and within serotype(s). Although seasonal HCoVs

and SARS-CoV-2 are genetically distant, the potential for positive and negative immunological

interactions between these viruses has been the subject of some debate, particularly via the

phenomena of original antigenic sin and antigenic seniority, 2 terms originally coined for

influenza.

Interactions operate when the humoral memory response against 1 set of antigens (e.g., the

seasonal HCoV antigens) modulate the immune response to infection by a similar but not

identical set of antigens (e.g., SARS-CoV-2 antigens) [83]. This type of immunomodulation

may be protective against infection with viruses seen earlier in life—a concept referred to as

antigenic seniority, or “back-boosting,” where responses to past antigens are recalled upon

reinfection with a different antigen. Original antigenic sin is a version of this concept that sin-

gles out the first exposure in life to a pathogen (or set of pathogens, e.g., all coronaviruses).

These mechanisms may explain why we see largely protective responses in individuals vacci-

nated with an mRNA vaccine after a natural SARS-CoV-2 infection [84], or the amplification

of a nonprotective immune response. Several studies have observed immunomodulation

caused by HCoV antibodies on SARS-CoV-2: As an example, a strong back-boosting effect

was reported to conserved but not variable regions of the HCoV-OC43 and HCoV-HKU1

betacoronaviruses spike protein in hospitalized COVID-19 patients [85]. However, it remains

largely unclear in which ways circulating HCoV antibodies affect the SARS-CoV-2 immune

response [85–87]. Several other studies have indicated that B cell [88] and T-cell responses

mounted against a lifetime of exposures to HCoVs can cross-react with SARS-CoV-2 [70,89],

yet there is no known cross-protective effect for B cells [85,90] and the protective role of the T-

cell response remains unclear.

Immunologic interactions, such as antigenic sin and back-boosting, could also manifest

due to sequential exposure with different variants of the same virus, and we are just beginning

to observe this phenomenon with SARS-CoV-2. There is evidence that antibody responses

mounted to different SARS-CoV-2 variants target different epitopes of the receptor-binding

domain [91], but the impact of antigenic modulation on future responses remains unclear.

Evidence of back-boosting exists in the context of Omicron over Delta, but remains limited

[92]. It is also unknown whether immunomodulation will operate similarly in individuals

repeatedly infected by different SARS-CoV-2 variants and in individuals infected post-vacci-

nation (i.e., breakthrough cases). Longitudinal serology, as used in a 2014 study analyzing the

long-term “antibody landscapes” of a cohort repeatedly infected with and vaccinated against

influenza, would help elucidate the relevance of original antigenic sin, and potentially back-

boosting, to SARS-CoV-2 endemicity patterns [93].
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An extreme aspect of immune modulation is antibody-dependent enhancement (ADE),

most notable in dengue. Dengue has 4 antigenically distinct serotypes (DENV-1-4); while pri-

mary infections are generally mild, secondary dengue infections can cause more severe immu-

nological responses potentially leading to shock and high-grade fever [94–96]. Interestingly,

while prior infection with any dengue serotype will enhance disease when reinfected by

DENV-2, high dengue antibody titers from a prior infection will protect against disease from

DENV-1 and DENV-3 [97]. Notably, cross-reactivity between dengue virus and Zika virus,

another flavivirus transmitted by Aedes aegypti and Aedes albopictus, adds more complexity to

dengue’s immunologic and clinical picture. While a prior Zika infection appears to enhance

disease caused by DENV-2, a prior dengue infection appears to protect against Zika symptoms

[97]. Although ADE was originally a cause of concern with SARS-CoV-2 [98], and ADE has

recently been observed in vitro in a SARS-CoV-2 model [99], it has not yet been shown in vivo

and the relevance to endemicity patterns remains unclear.

While current research cannot fully address the duration of immunity to SARS-CoV-2, or

anticipate complex immunological interactions within and between coronaviruses, existing

data are hopeful for a long-term protective response against severe disease. However, the pro-

tective effects of the immune response against asymptomatic and pauci-symptomatic infec-

tions, and viral shedding, as SARS-CoV-2 viruses continue to evolve, remain debated. The

amount of viral shedding resulting from reinfections is important as it will determine the con-

tribution of reinfections to transmission, and in turn affect the force of infection and the peri-

odicity of epidemics.

Viral evolution and antigenic drift

In future years of SARS-CoV-2 circulation, the emergence of new variants via viral evolution,

along with waning immunity to infection and new births, will fuel outbreak recurrence. The

pace and mechanism of viral evolution in the endemic phase of SARS-CoV-2 will affect the fre-

quency of updates of future vaccines and the age profile of future SARS-CoV-2 epidemics. To

anticipate the long-term evolutionary dynamics of SARS-CoV-2, researchers have turned to

pandemic influenza, which is seen as a model for the periodic establishment of a zoonotic

pathogen in human populations, followed by rapid antigenic drift during the endemic period.

The introduction of novel influenza viruses from avian and porcine reservoirs can cause large

shifts in genetic and antigenic material, and occasionally cause pandemics in a variety of mam-

mals, including humans. In parallel, endemic human seasonal influenza viruses undergo muta-

tion in their hemagglutinin and neuraminidase proteins, the targets of neutralizing antibodies

elicited by natural infection and vaccination, leading to antigenic drift and decreased vaccine

efficacy. The process of antigenic drift is particularly relevant for SARS-CoV-2, as the spike

protein has high mutational tolerability.

The pace of influenza antigenic drift has been well described. Influenza vaccine contains at

least 3 antigens representing the A/H1N1, A/H3N2, and influenza B strains projected to circu-

late in the coming year. While at least 1 component of the vaccine is updated every 1 to 2 years

to account for antigenic evolution, the 2017 to 2018 influenza season marked the first post-

pandemic update of the influenza vaccine A/H1N1 component, 8 years after the emergence of

the 2009 A/H1N1 pandemic virus [100]. It has been proposed that the evolution of the 2009

pandemic A/H1N1 virus took place in 2 phases after it entered human populations: host adap-

tation of the virus immediately after its arrival (2009 to 2010) followed by immunological

selective pressure beginning in 2014 and leading to a decrease in vaccine efficacy [101].

A similar phenomenon of initial adaptation to a new host followed by antigenic evolution is

taking place with SARS-CoV-2, although the process is accelerated relative to influenza. At the
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beginning of the pandemic, it was assumed that SARS-CoV-2 would evolve more slowly than

influenza strains because its mutation rate is approximately 3 times less than influenza [102]

due to the presence of an unusual RNA viral proofreading mechanism in coronaviruses [103].

However, SARS-CoV-2 has demonstrated periods of rapid mutation, especially in the S1

domain of the spike protein, with the Delta variant of concern evolving at a rate 5 times that of

the HA1 region of A/H3N2 influenza [104].

SARS-CoV-2 has undergone 3 distinct phases of evolution during the pandemic. The first

period, from viral emergence to winter 2020, was characterized by the establishment of the

D614G spike gene mutation in the majority of circulating viruses and by relative evolutionary

dormancy as characterized by lack of change in viral transmissibility, pathogenicity, and anti-

genicity [105]. The second phase, from December 2020 to November 2021, was marked by the

global dissemination of the variants of concern (VOCs) Alpha, Beta, Gamma, and Delta first

detected in the United Kingdom (September 2020), South Africa (May 2020), Brazil (Novem-

ber 2020), and India (October 2020), respectively [106]. The mutations associated with these

VOCs were concentrated in the receptor binding and N-terminal domains of S1 and have

been associated with increased binding affinity for ACE2 and decreased monoclonal antibody

neutralization in vitro [105]. Epidemiologically, the second phase was characterized by VOCs

with increased transmissibility and viral fitness, but insufficient immune escape to require a

vaccine update or to promote reinfection [75]. The third phase was the emergence of the Omi-

cron VOCs (BA.1, BA.2), which had significantly more mutations than previous circulating

strains (30 mutations in the spike gene as compared to 8 to 12 mutations for Alpha, Beta, and

Gamma), and formed a new antigenic cluster, potentially requiring a vaccine update [107].

The Omicron VOCs are also characterized by greater transmissibility than previous variants,

perhaps due to increased tropism for the upper respiratory tract as compared to lung epithelia

[108], and significant immune escape, resulting in lower vaccine efficacy [77]. Explanations

for the sudden appearance of the highly divergent Omicron clade include evolution in a geo-

graphic area where genomic surveillance was insufficient to detect intermediate variants, zoo-

nosis from an animal reservoir or emergence from an immunocompromised patient [109].

Based on 2 years of SARS-CoV-2 evolution, several observations can be made. First, gradual

evolution, as seen in the second phase of the pandemic, would be expected to generate new

antigenic drift variants, much like for influenza. Although this mechanism did not lead to sig-

nificant antigenic drift in the short period of circulation of the Alpha to Gamma variants, it is

reasonable to speculate that because the reported evolutionary rate is more rapid than that

seen for influenza, it would lead to more frequent formation of new antigenic clades and

require vaccine updates. A second potential mechanism, in line with the complex evolutionary

history of Omicron, involves the periodic emergence of highly divergent strains from multiple

possible reservoirs [110]. Because we do not clearly understand the emergence of Omicron, we

cannot determine the expected frequency of such events in the future. Third, it is becoming

clear that recombination is a mechanism for the generation of new SARS-CoV-2 variants

[111]. New VOCs may arise due to recombination between SARS-CoV-2 strains cocirculating

in the human population, or due to recombination between human and animal strains. During

the pandemic, several new SARS-CoV-2 reservoirs have emerged via a reverse-zoonotic trans-

mission process, most notably in minks and deer [112,113]. Given the multiple possible evolu-

tionary routes that SARS-CoV-2 can take, we must maintain global epidemiological and

genomic surveillance in a variety of hosts (i.e., a One Health approach) and have systems in

place to rapidly update SARS-CoV-2 vaccines.
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Future studies

Several research areas should be strengthened to anticipate the endemicity patterns of SARS--

CoV-2 on a population level, including genomic surveillance, longitudinal cohort-based

approaches that combine epidemiologic and immunologic measurements, predictive compu-

tational models of SARS-CoV-2 evolution, and studies of recombination and viral mixing at

the human–animal interface. We describe the potential value of these studies below.

Genomic surveillance. Using genomic surveillance of circulating viruses, researchers can

track the emergence of new mutations and recombinant strains, identify new variants, monitor

the relative prevalence of different variants within global and local populations, and evaluate

genotype-to-phenotype changes (including severity, vaccine effectiveness, immune escape,

and transmissibility). In the years ahead, it will be critical to analyze the circulation of virus

strains in human, domestic and peri-domestic animals (e.g., deer) [112] to understand the role

of nonhuman animal reservoirs in the emergence of new SARS-CoV-2 strains. Combined

with collaborative genomic surveillance efforts between viral ecologists and veterinarians to

study viral mixing at the human–animal interface, in vitro studies and animal experiments

exploring the biology of SARS-CoV-2 recombination will be essential to understand how

recombination plays into the path and pace of SARS-CoV-2 evolution. Further, global geno-

mic surveillance needs to continue with a strengthened focus on LMICs, including in remote

regions; it is worth noting that genomic surveillance teams in Botswana and South Africa first

discovered the Omicron variant [114,115]. Genomic surveillance data directly impact vaccine

updates and the need to implement new public health interventions [116].

An important aspect of monitoring new variants should include real-time assessment of

clinical severity and vaccine effectiveness; here, it is important to link variant genetic charac-

terization with patient vaccine history, medical background, and clinical outcomes. For exam-

ple, a globally representative set of sentinel hospitals could be leveraged to monitor changes in

the proportion of hospitalized patients requiring intensive care and in the hospital death rate

as new variants arise. In addition to variation in virus sequences, there may be genetic predis-

position for severe disease among particular hosts. Genome-wide association studies, which

look for host genome differences between, for example, critically ill and mildly ill COVID-19

patients, can identify genetic risk factors for severe disease and help us learn more about the

immunologic mediators of SARS-CoV-2 virulence [117,118].

Household studies and contact tracing. Data obtained from contact tracing and house-

hold transmission studies have been extremely useful for studying chains of transmission,

kinetics of viral shedding, behaviors associated with increased risk of infection, and the effect

of the vaccine on infection and transmission [119–122]. For example, the PHIRST household

study found that in South Africa, attack rates were highest in participants aged 13 to 18 and

that persons with HIV who were not virally suppressed were more likely to have symptomatic

COVID-19 and to shed SARS-CoV-2 for a longer period of time compared to HIV-negative

individuals [120]. Household studies will remain useful throughout the endemic period to

monitor changes in transmission in well-described settings.

Prospective cohort studies. Longitudinal cohort studies have provided invaluable data on

various aspects of the COVID-19 pandemic, including the age-dependent nature of SARS--

CoV-2 infection risk; the persistence of SARS-CoV-2 antibodies; the loss of clinical protection

and rate of reinfection over time; the risk of infection to healthcare workers; and the rates of

Long COVID [72,119,120,123,124]. Cohorts can range dramatically in size, scope, and dura-

tion depending on whether they are prospective or retrospective (e.g., the ongoing prospective

HIVE cohorts obtain infection and serologic data from approximately 1,000 individuals per

year [60,82], while a retrospective cohort study recently analyzed long COVID data from the
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electronic health records of over 200,000 patients [124]). An understanding of the long-term

path of SARS-CoV-2 will require investment in decades-long prospective cohort studies that

regularly collect respiratory specimens and serum samples and where participants may accu-

mulate multiple exposures to SARS-CoV-2 variants and vaccination episodes, and experience

breakthrough infections due to changing levels of immunity.

Several cohort studies conducted during the pandemic are worth noting. Multiyear house-

hold respiratory virus cohorts, such as the HIVE study in Michigan [60] and the PHIRST

study in South Africa [120], and the influenza-dengue cohorts in Nicaragua [36], are good

models to analyze attack rates, viral shedding, chains of transmission, immunity and reinfec-

tion over time, and with different variants. For example, the data obtained from longitudinal

infection testing and repeat antibody measurements are critical in determining the long-term

risk of reinfection and the timeline on which the SARS-CoV-2 vaccines will need to be

updated. Further, repeated serological measurements taken from a longitudinal cohort can be

used to generate antibody landscapes, which can help elucidate the relevance of original anti-

genic sin (and possibly back-boosting) to the long-term path of SARS-CoV-2 [93]. These well-

defined multiyear cohorts can also be leveraged for cellular immunology research and provide

a better understanding of the mechanisms of B- and T-cell adaptation to viral evolution over

time. It is important for cohorts to include participants from multiple age groups to compare

patterns of immunity and infection between children and adults. Finally, cohorts can also

examine whether it is possible to have cross-reactivity and/or cross-protection between SARS--

CoV-2 and other viral antibodies. In the HIVE study, for example, researchers found little

cross-reactivity between HCoV antibodies and SARS-CoV-2 spike proteins [82]. These

cohorts can be leveraged to compare the cross-reactivity, clinical presentation, and potentially

interdependent transmission dynamics of endemic SARS-CoV-2 and the seasonal coronavi-

ruses. Rapid integration of SARS-CoV-2 research into existing respiratory virus focused

cohorts has shown the power of these research platforms for collecting multi-pathogen infor-

mation without having to identify a new population or having to design new study protocols

in the midst of a pandemic [29,60].

Birth cohorts, which follow a group of people born around the same time, can help answer

questions about how SARS-CoV-2 immunity builds up over time in a naive individual and

how it compares to earlier birth cohorts, i.e., exploring the concept of “original antigenic sin”

for SARS-CoV-2 [87]. Birth cohorts are essential to continue research on the immune response

in immunologically naive individuals because at present a majority of the global population

has been exposed to SARS-CoV-2 through either natural infection or vaccination.

Infection and vaccination cohorts. Useful information can also be gleaned from smaller

and more targeted cohorts. Infection and vaccination cohorts typically follow 20 to 50 individ-

uals and bleed participants pre- and post-antigen exposure. These cohorts can generate a large

amount of important serological data, such as rates of seroconversion and levels of cross-reac-

tive antibodies, but they are not necessarily representative of population-level immunological

patterns [87]. Finally, longitudinal cohorts focused on individuals with prolonged SARS-CoV-

2 shedding, particularly among immunosuppressed individuals, could shed light on the contri-

bution of this population subgroup to viral evolution [125].

Computational modeling. Scientific advances in computational modeling are also

needed to anticipate the evolution of SARS-CoV-2 and implement timely vaccine updates,

guided by recent developments in predictive models of influenza antigenic drift and strain fit-

ness [126]. Predictive approaches must be cautious in light of Omicron, as we do not yet know

whether this variant is an evolutionary outlier or represents a parallel mechanism of SARS--

CoV-2 evolution [127]. New developments in antigenic cartography, which relies on analyzing
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the cross-neutralizing antibody responses against viral variants to track antigenic changes, will

be important to document, and perhaps one day predict, evolutionary changes [107].

Conclusions

We conclude this review with several key takeaways. First, the periodicity of SARS-CoV-2 out-

breaks during the endemic period will be driven by the contribution of reinfections to trans-

mission dynamics, the rate of influx of new susceptibles (due to waning immunity, lack of

vaccination, and new births), and the response to environmental forcing and seasonal contacts

(schools and holidays). Second, the age distribution of SARS-CoV-2 is unlike many other well-

studied viruses, such as influenza, measles, and dengue, due to biological factors that reduce

susceptibility to infection and attenuate disease severity in children. Third, while the 4 seasonal

coronaviruses are thought to predominantly infect young children and generally cause mild

respiratory disease, cohort and surveillance studies have shown that the incidence of seasonal

coronavirus infection does necessarily decline with age. Fourth, the durability of SARS-CoV-2

immune protection against infection and transmission, after repeat exposures to vaccination

and antigenically distinct variants, will shape the epidemiology of future outbreaks. Subtle

immunological interactions between responses to different coronaviruses could also modulate

SARS-CoV-2 endemicity patterns. Finally, potential mechanisms of SARS-CoV-2 evolution

include gradual evolution leading to antigenic drift, the periodic emergence of highly divergent

strains (e.g., Omicron) from multiple possible reservoirs, and recombination generating new

variants. How much each mechanism will contribute to the generation of new variants in the

endemic phase cannot be predicted, nor can the periodicity of variant emergence. In light of

these uncertainties, we see many opportunities in the coming years for experimental, observa-

tional, and computational research to begin to address these questions and provide insights

that may be transferable to other acute respiratory infections. We hope that this review will

inspire researchers to study the invasion and epidemiology of the seasonal coronaviruses using

archeo-epidemiologic, serologic, and phylodynamic methods, as well as to expand prospective

cohort studies, serologic testing, and large-scale genomic surveillance to address questions

about duration of immunity, viral shedding, reinfection, and variant dynamics. We believe

such studies will elucidate aspects of the inevitable shift from a pandemic to endemic SARS--

CoV-2 that can guide future public health and policy efforts.
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