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We created a transient computational fluid dynamics model featuring a particle deposition
probability function that incorporates inertia to quantify the transport and deposition of cells
in mouse lung vasculature for the re-endothelialization of the acellular organ. Our novel
inertial algorithm demonstrated a 73% reduction in cell seeding efficiency error compared
to two established particle deposition algorithms when validated with experiments based
on common clinical practices. We enhanced the uniformity of cell distributions in the lung
vasculature by increasing the injection flow rate from 3.81 ml/min to 9.40 ml/min. As a
result, the cell seeding efficiency increased in both the numerical and experimental results
by 42 and 66%, respectively.
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INTRODUCTION

Approximately 3.9 million people die from end-stage lung disease annually worldwide (Labaki and
Han, 2020). Lung transplantation remains the only definitive treatment for end-stage lung disease
even though only a small portion of patients may be eligible (Nathan, 2015). Furthermore, many
complications arise due to the immunological response to donor organs, leading to a median survival
rate of only 5.8 years post-transplantation (Thabut and Mal, 2017). Decellularization and
recellularization of whole lungs is a nascent lung bioengineering approach for reducing graft
rejection following transplantation (Ott et al., 2010; Petersen et al., 2010). In this procedure,
cells are removed from the donor organ via a process known as decellularization, which leaves behind
an extracellular matrix rich lung scaffold with intact vessel and airway architecture. The organ is then
repopulated with recipient-specific cells in a process called recellularization to reduce the likelihood
of an autoimmune response, thereby reducing the rate of organ rejection. While creation of a
recellularized functional bioartificial lung remains a long-term objective, there has been significant
focus on decellularization and recellularization approaches to achieve the first step of fully
repopulated scaffolds. The overall process still requires optimization with recellularization being
especially challenging (Prakash et al., 2015; Uriarte et al., 2018). This challenge is exacerbated by that
fact that to date, defining and optimizing parameters for decellularization and recellularization have
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relied upon experimental trial-and-error investigations which
involve high costs and significant time and effort (Wendt
et al., 2009).

Successful decellularization of the lung, which preserves the
3D organ structure while removing cells, must be established as
the first step to achieve successful recellularization (Tsuchiya
et al., 2014). Over the past decade, there have been significant
advancements in the optimization of decellularization for lung
scaffolds resulting in a several well validated detergent-based
protocols in murine and porcine animal models (Gilpin et al.,
2014; Tebyanian et al., 2017; Uhl et al., 2017; Urbano et al., 2017;
Ohata and Ott, 2020). Recellularization on the other hand
remains the biggest challenge in producing viable bioartificial
lungs (Ohata and Ott, 2020). For the lung, recellularization, at a
minimum, encompasses epithelialization and endothelialization.
For both processes, specific cell populations and cell types must
be deposited at appropriate sites on the scaffolds. One critical
consideration is that cell seeding efficiency (percentage of total
cells that are deposited) should be maximized to avoid the waste
of donor cells, which can be costly and time consuming to attain
(Olivares and Lacroix, 2012; Marín et al., 2018). Recellularization
of lung scaffolds with pluripotent-derived cell sources, for
example, can take over 60 days of culture in vitro prior to
delivery into the acellular lung scaffolds (Huang et al., 2015;
Jacob et al., 2017; Ghaedi et al., 2018; Deuse et al., 2019; de
Carvalho et al., 2021). Importantly, the uniform repopulation of
endothelial cells (re-endothelialization) is critical in reproducing
functional vascular networks that play an essential role in gas
exchange, barrier function, nutrient supply, and waste
management in lungs (Calle et al., 2014). Gravity-driven and
pump-driven seeding techniques have been used extensively to
infuse endothelial cells into the scaffold (Scarritt et al., 2018).
However, these methods have resulted in an inhomogeneous and
incomplete distribution of cells, especially in the distal regions
which leads to graft failure (Zhou et al., 2018). Further
investigation and optimization of recellularization protocols
are necessary to improve the functionality and sustainability of
bioengineered lungs.

In silico models that employ computational fluid dynamics
(CFD) are promising alternatives to costly experimental trial and
error investigations, as they can serve as a virtually unlimited
source of trials that can elucidate the mechanisms of cell seeding.
Thus, using in silico models to define seeding parameters could
ultimately lead to more efficient optimization strategies. For
instance, Marín et al. used a CFD model to identify an
optimal flow rate and perfusion pattern that provided the best
cell seeding results in a commercially available synthetic scaffold
with a regular porous microstructure (layers of cylindrical fibres
of fixed diameter and distance apart) (Marín et al., 2018).
Furthermore, they found that gravity and secondary flows
were key factors in cell deposition. However, their simulations
assumed the deposition of each cell upon contact with the scaffold
surface and ignored cell adhesion factors such as biochemical
composition of the scaffold (Chan and Leong, 2008), shear stress
on the particle (Ott and Ballermann, 1995), and particle inertial
impact (Darquenne, 2012; Olivares and Lacroix, 2012). As a
result, the model presented by Marín et al. overestimated cell

seeding efficiency by 35% compared to experiments. One
example of deposition modelling within lung vasculature was
done by Sohrabi et al. (Sohrabi et al., 2014) who aimed to quantify
the transport and adhesion of drug particles. In their work, they
used a particle-surface adhesion algorithm, herein referred to as
the Decuzzi algorithm (Decuzzi and Ferrari, 2006). This
algorithm predicted the probability of adhesion based on
assumed particle-surface biochemical characteristics, particle
shape and shear stress, and ultimately highlighted the
importance of including particle adhesion mechanisms in the
model. It should be noted that more recent works regarding
particle adhesion in vasculature have been presented by the
Decuzzi group, which model bonds between the wall and
particle as linear springs that account for viscous effects
(Coclite et al., 2017; Coclite et al., 2018; Coclite, 2020).
However, these recent models were formulated using a Lattice
Boltzmann method instead of traditional CFD methods, which
iteratively solve for the Navier-Stokes equations. For the purposes
of directly comparing cell deposition algorithms using traditional
CFD methods, this study will be focusing on the Decuzzi
formulation from 2006 (Decuzzi and Ferrari, 2006).

The contact algorithm and Decuzzi algorithm have been used
throughout literature to describe biological deposition processes.
However, particle inertial impact, which is critical for particles
suspended in fluid with a diameter larger than 5 µm (Guha, 2008;
Darquenne, 2012), is not accounted for in either of these
algorithms. During sudden changes in fluid flow directions,
the inertia of the particle causes it to continue along its initial
trajectory. In reality this results in the deviation of the particle
from the streamline and its eventual impact on the substrate.
Considering the tortuous morphology of lung vasculature
(Rahaghi et al., 2016), and the fact that human pulmonary
endothelial cells have a diameter of 10–30 µm (Heath and
Smith, 1979), an algorithm which accounts for particle inertial
impact is critically needed yet not available in the literature.

Herein, a CFD model of mouse lung vasculature surrounded
by acellular parenchyma was developed to understand and
predict the effect of cell media flow rate on endothelial cell
seeding. The model predicted the number and distribution of
cells deposited by accounting for the particle inertial impact.
Simulations were also performed with the implementation of the
contact and Decuzzi algorithms of cell adhesion for comparison.
Furthermore, experimental reseeding was performed on mouse
lungs, and the histology results were compared with all three
algorithms. This in silico tool aims to provide much needed
insight to optimize recellularization strategies.

MATERIALS AND METHODS

Reconstruction of Mouse Pulmonary
Vasculature and Extracellular Matrix
A set of three-dimensional (3D) images of the lower right lobe of a
12-week-old adult C57BL/6 mouse lung injected with liquid
contrast agent (Microfil, Flow Tech Inc. United States) was
acquired using an X-ray micro-computed tomography system
(SkyScan 1,172, Bruker Corporation) at a voxel resolution of
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4.97 μm. To increase contrast and distinguish the vasculature
from the void space in the images, a series of Gaussian smoothing
(Gonzalez and Woods, 2018), and Hessian-based filtering
(Jerman et al., 2016) was implemented. Afterwards, Otsu’s
method (Otsu, 1979) was applied to binarize the image stack.

The binarized images were imported into open-source medical
image visualization software (3D Slicer (Fedorov et al., 2012)) for
volume rendering of the vasculature, shown in Figure 1A. The
lung vasculature and parenchyma were segmented separately to
create two domains for the flow analysis, as shown in Figure 1B.
Only a portion of the lung vasculature was delineated due to the

high computational cost of modeling fluid and particle transport
in such a complex vascular system. To do this, a threshold was set
using the Segment Editor module of 3D Slicer so that only vessels
of diameters greater than 200 microns were rendered. This
diameter was found to be optimal for the subsequent
operations. Next, any vessels that were isolated from the two
largest groups of connected vasculature were subsequently
removed. Connections were then manually created between
branches of the two groups that were closest to each other.
The final portion of the selected vasculature highlighted in
Figure 1B consisted of an inlet section (defined here as the

FIGURE 1 | Generation of the computational domain for CFD simulations. (A) 3D micro-CT reconstruction of a native mouse lung. (B) Simplified model of
vasculature surrounded by parenchyma modeled as a bulk uniform porous material. (C) Tetrahedral mesh of the parenchyma and (D) vasculature. (E) Applied boundary
conditions.
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artery) that branched out into four generations of vessels (distal
vasculature), which then consolidated into an outlet section
(vein). The lung parenchyma was created by agglomerating all
remaining vessels into a single porous body, also shown in
Figure 1B.

Fluid Domain Modeling
The vascular network and parenchyma geometry were imported
into ANSYS (Release 2020 R1) to mesh the fluid volumes and
perform transient modeling. All computing was conducted on a
computer with 128 GB of memory and a processor with 16 cores
and a base clock speed of 3.5 GHz. Element body sizing control
was utilized to refine the vasculature mesh, since resolving the
flow in this domain is critical for simulating the trajectory and
deposition of cells. Furthermore, to accurately capture the
boundary layer velocity gradient at the vessel walls, a fine
mesh was created along these regions using inflation layer
control. A total of 404,496 and 160,235 mixed elements for
the parenchyma and vasculature were created, respectively, as
shown in Figure 1C and Figure 1D. Amesh sensitivity analysis of
the flow out of the vein was performed to ensure the accuracy of
the simulation (Supplementary Figure 1). Only a 1.9% change in
results was observed when doubling the number of elements.

It is assumed that the endothelial cells are bounded by the
vessel walls (Scarritt et al., 2018). Consequently, the precise flow
throughout the non-vascular parenchyma modelled by a detailed
characterization of individual pores using a costly multi-million
element mesh is beyond the scope of this work. Instead, the flow
through the parenchyma domain was modeled as flow through a
uniform porous material using Darcy’s law:

∇p � −μ
α
u

where ∇p is the pressure gradient across the parenchyma [Pa], α
is the permeability of the parenchyma [m], μ is the dynamic
viscosity of the cell media [Pa s], and u is the velocity of the cell
media [m s−1]. The permeability of the parenchyma was
calibrated using experimental results from Engler et al. (Engler
et al., 2019), who measured the distribution of flow through the
vein and the rest of the lung at different perfusion rates, and was
ultimately set as 8.9 × 10–9 cm2. This value falls well within the
known range of 10–12–10–8 cm2 for Collagen I tissue (Tarbell and
Shi, 2013), which the lung is largely comprised of (Laurent, 1986).

In our experiments, the decellularized lung scaffold is
saturated with phosphate-buffered saline (PBS) before the cell
media is injected (all experimental work is detailed in section 2.5).
Therefore, multiphase modeling was used to characterize the
interaction between the two fluids as the lung is recellularized.
PBS and the cell media were represented as incompressible
Newtonian fluids with densities of 1,005 kg/m3 (Brown et al.,
2011) and 1,000 kg/m3 (Hinderliter et al., 2010), respectively, and
dynamic viscosities of 1.02 cP and 0.94 cP (Fröhlich et al., 2013),
respectively.

Boundary Conditions
Flow rates for the re-endothelialization of mouse lung scaffolds
have not been previously reported in literature. However, since

the mechanical properties such as resistance and elastance of
mouse and rat lungs are similar (Faffe et al., 2002), the re-
endothelialization flow rate of rat lung studies were
considered. These include the work of Peterson et al. (Petersen
et al., 2010), who perfused rat lung scaffolds at 1–5 ml/min, and
Scarritt et al. (Scarritt et al., 2018), who observed reseeding flow
rates up to 20 ml/min.

To reflect this range of flow rates seen in literature for rat
lungs, a peristaltic pump was used in our experiments (described
in section 2.5.3) to inject the cell media at settings of 6 RPM and
15 RPM. These settings resulted in flow rates of 3.81 ml/min and
9.40 ml/min respectively, denoted as _Vlow and _Vhigh respectively
(listed in Table 1), and were applied to the model’s artery inlet.

The lung scaffold was injected with 20 ml of cell media for
each experimental trial. In preliminary simulations, it was noted
that injecting approximately 0.2% of cell media was enough to
fully saturate the vasculature. At this fully saturated point, the
flow reaches steady state, and cell seeding efficiency begins to
plateau (further elaborated on in section 3.2.1). Thus, simulating
the injection of the first 1% of cell media was deemed to be
sufficient for obtaining a final cell seeding efficiency value for each
case. Simulating any further would not provide any new
information and involve an unnecessary, costly increase to the
computation time.

To represent the impedance throughout the vasculature
caused by frictional losses and vessel wall compliance, a
constant pressure boundary condition was applied to the vein
outlet. This type of boundary condition is reasonable for
simulations of steady and unsteady flows in a domain with a
single vessel outlet (Grinberg and Karniadakis, 2008; Kheyfets
et al., 2013). The values of pressure for the vein outlet were
obtained from measurements of resistances throughout the
vasculature and across the parenchyma of decellularized rat
lung scaffolds at various flow rates in the work of Engler et al.
(Engler et al., 2019). The pressure boundary condition values used
in our work are listed in Table 1.

A porous jump condition was applied on the vessel wall to
represent the porous nature of the acellular vasculature surfaces.
This condition was used to model a thin membrane onto which
the cells could deposit, while allowing the cell media to perfuse
through. The permeability of this membrane was set to 8.9 ×
10–9 cm2 to match that of the parenchyma.

Cell Modeling and Deposition Probability
Mouse C166 endothelial cells (CRL2581, ATCC, Canada) were
used in this study to repopulate the mouse lungs. These cells were
modeled as a discrete phase of spherical particles with a diameter
of 15 μm, which were measured with the Vi-CELL™Cell Viability
Analyzer (Beckman Coulter Life Sciences, US) and exhibited a
density of 1,050 kg/m3 (Bryan et al., 2013). A cell concentration of
250,000 cells/ml was used for simulations to match the
experiments.

The Lagrangian formulation was used to predict the trajectory
of simulated particles caused by drag forces from the surrounding
fluid, buoyancy, and gravity. This force balance equates the
particle inertia with the forces acting on the particle, and is
written as
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mp
dup

dt
� mp

(u − up)
τr

+mp

g(ρp − ρ)
ρp

Where mp is the particle mass [kg], u ang up are the fluid and
particle velocity [m s−1], respectively, ρ and ρp are the fluid and
particle density [kg m−3], respectively, g is the gravitational
constant [m/s2], and τr is the particle relaxation time [s]. τr

characterizes the time period required for the particle to reach the
free stream velocity (Gosman and Ioannides, 1983), and is
given by

τr �
ρpd

2
p

18μ
24

CdRe

where dp is the diameter of the particle [m], Cd is the drag
coefficient, and Re is the relative Reynolds number. Thus, Eq. (1)
can be rewritten as

mp
dup

dt
� mp

18μ
ρpd

2
p

CdRe

24
(u − up) +mp

g(ρp − ρ)
ρp

where the first term on the right-hand side represents drag force,
and the second term represents buoyancy and gravity (Figure 2).

Since the cell phase accounted for less than 1% of the total
volume in the medium, it was assumed that cell to cell
interactions could be neglected, and that the presence of
particles did not affect the flow of the cell media (Marín et al.,
2018). Thus, one-way particle-fluid coupling was applied for
simulations. The seeding or deposition of cells onto vessel wall
surfaces was investigated using three unique particle deposition
algorithms. Two of these algorithms, the contact algorithm and
the Decuzzi algorithm, have been used throughout literature to
describe biological deposition processes. A novel algorithm,
herein referred to as the Stokes algorithm, was developed to
simulate cell deposition more accurately. These are described
in the following sections.

3.4.1 Deposition Upon Contact Algorithm
The first deposition algorithm is herein referred to as the contact
algorithm, which assumes that any particle that comes into
contact with a wall’s surface is automatically deposited. Upon
contact, the particle trajectory calculation is terminated. As a
result, the algorithm does not take into account factors that affect
cell adhesion and detachment such as biochemical composition
(Chan and Leong, 2008), shear stress on the particle caused by the
fluid (Ott and Ballermann, 1995), or particle impact velocity
(Olivares and Lacroix, 2012).

3.4.2 Decuzzi Cell Deposition Algorithm
The second cell deposition algorithm is the receptor-ligand
algorithm developed by Decuzzi and Ferrari (Decuzzi and
Ferrari, 2006), wherein the probability of cell deposition is
expressed as a function of adhesive strength and dislodging
forces. The adhesive strength of the cell depends on the
stochastic binding of receptor molecules on the vessel walls
and their counterpart ligand molecules on the cell surface. The

TABLE 1 | Cell seeding boundary conditions and values. Flow rate is specified at the inlet artery, and pressures are specified at the outlet vein.

Case Arterial Inlet flow
Rate [ml/min]

Maximum Reynolds Number Venous
Outlet Pressure [Pa]

_Vlow 3.81 63 711

_Vhigh 9.40 157 2005

FIGURE 2 | Free body diagram of a simulated cell suspended in media
within the vessel. The cell has a density of 1,050 kg/m3 and diameter of
15 μm. The media has a density of 1,000 kg/m3 and viscosity of 0.94 cP. The
trajectory of the particle is influenced by drag forces from the
surrounding fluid, buoyancy, and gravity.

FIGURE 3 | Schematic of the decellularization and cell reseeding
process. After the lung was harvested from the mouse, the lung was perfused
with decellularization solutions to remove cells and genetic content. The lung
was then washed with distilled water and PBS, after which cells were
reseeded through a peristaltic pump.
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dislodging forces are influenced by physiological factors such as
cell shape and size, as well as shear stress caused by the media that
flows around it. The Decuzzi deposition probability is defined as

PDec �mrmlK
0
aπr

2
o exp⎡⎣− λdpμS

2kBTr20mr

⎡⎣6(dp

2
+δeq)FS +2d

2
p

ro
TS⎤⎦⎤⎦

wheremr andml are the surface densities of receptors and ligands
[m−2], respectively, K0

a is the characteristic affinity constant of the
ligand-receptor pair [m2], ro is the radius of the interaction surface
[m], λ is the characteristic length of the ligand-receptor bond [m],
μS is the shear stress [N m], kBT is the Boltzmann thermal energy
[m2 kg s−2], δeq is the separation distance between the particle and
surface [m], and FS and TS are the drag force and torque
coefficients. Since the values of these parameters are not known
for the decellularized lung, we applied the same values used in a
study by Sohrabi et al. which investigated the deposition of drug
particles in pulmonary vasculature (Sohrabi et al., 2014) (Table 2).
With this algorithm, the deposition probability decreases with wall
shear stress, which has been shown experimentally by Haun and
Hammer (Haun and Hammer, 2008). However, like the contact
algorithm, the particle impact velocity is not accounted for in this
algorithm.

The Decuzzi cell deposition probability algorithm is executed
as follows. Upon contact of the cell onto the vessel wall, the
deposition probability is calculated for the cell, and a random
number from a uniform distribution from 0 to 1 is generated. If
the deposition probability is greater than the generated random
number, the cell is deposited. Otherwise, the cell is reflected off
the vessel wall surface to be carried further downstream by the
media. The cell may impact the vessel wall again, where the
algorithm is repeated, or ultimately exit the vasculature through
the vein outlet.

3.4.3 Stokes Cell Deposition Algorithm
Finally, we developed a novel cell deposition algorithm to account
for the inertial impaction of the particle on the vessel wall surface.
The inertia of the particle causes it to deviate from the streamline
during sudden changes in flow and eventually impact the vessel
wall. Thus, the greater the particle size and flow speed, the higher
the probability for deposition on a surface. The Stokes number,
which characterizes this behaviour of particles suspended in a
fluid flow, is defined as

Stk � ρpd
2
pu

18μd

where ρp and dp are the particle density and diameter,
respectively, u and μ are the mean velocity and dynamic
viscosity of the fluid, respectively, and d is the characteristic
length equal to the diameter of the vessel. The probability of
particle deposition on a substrate can be expressed as a function
of the Stokes number (Darquenne, 2012). In this study, we
devised an empirical cell deposition probability function which
utilizes Stokes number as

PStk � exp(− 1
Stk · C)

where C is an empirically adjusted inertia coefficient that
accounts for the effect of Stokes number on deposition, as well
as biochemical interactions and the truncated geometry of the
vasculature. The higher the Stokes number and inertia coefficient,
the more closely this probability function will approach 1, and the
more likely that particles with be deposited. For low values of the
Stokes number and inertia coefficient, this function will approach
0, meaning that particles will simply follow the streamlines of flow
and have a lower chance of depositing onto the vessel walls. The
Stokes cell deposition probability algorithm is executed in the
same manner as the Decuzzi algorithm, where the cell is
deposited if the calculated probability is greater than a
randomly generated number.

3.4.4 Quantification of Cell Deposition Uniformity
The uniformity of cell deposition is critical to the successful
repopulation of the lung scaffold. To quantify this for the three
algorithms, first the number of cells that were deposited on each
facet of the vessel wall element mesh (Figure 1D) were counted.
To determine how much this value varied throughout the facets
of the vasculature, the statistical parameter known as the
coefficient of variation was determined as

Coefficient of Variation � σ

μ
�

��������∑n

i�1(xi−μ)2
n

√
μ

where σ is the standard deviation of cell deposition, xi is the
number of cells deposited on each facet of the vessel wall, μ is the
mean of cells deposited per facet, and n is the total number of
facets on the vessel wall, which was 20,872. A lower value of
coefficient of variation demonstrates a more uniform distribution
of deposited cells.

Experimental Cell Seeding
3.5.1 Lung Surgery and Decellularization
Ex vivo cell seeding was performed to validate the simulation
results (Figure 3). Six lung scaffolds were generated from 12–14-
week-old C57BL/6J strain male mice (Jackson Laboratory,
United States). All animal studies were approved by the
Institutional Animal Care and Use Committee of the
University Health Network at the University of Toronto. After
euthanasia, the mice were exsanguinated via injection of PBS

TABLE 2 | Parameters used for the calculation of cell deposition probability using
the Decuzzi algorithm (Sohrabi et al., 2014).

Parameter Value

mr 1014/m2

mlK0
a 4.15 × 10−2

λ 10−10 m
kBT 4.14 × 10−21 m2kg/s2

δeq 5 × 10−9 m
FS 1.668

TS 0.944
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(Thermo Fisher Scientific, CA) through the right ventricle.
Following cannulation of the pulmonary artery and trachea,
the heart-lung block was removed and stored in a solution of
PBS and 1% antibiotic-antimycotic (Thermo Fisher Scientific,
CA) at a temperature of 4°C until decellularization. The extracted
sample can be stored for up to 1 week, but in this study,
decellularization was performed immediately after.

Next, the decellularization procedure was completed as
previously described by Daly et al. (Daly et al., 2012). In short,
the samples were stored in distilled water at 4°C for 1 h, 0.1%
Triton X100 solution at 4°C overnight, 2% sodium deoxycholate
solution at 4°C for 24 h, 1 M sodium chloride solution at room
temperature (~25°C) for 1 h, and finally in 30 μg/ml porcine
pancreatic deoxyribonuclease (Thermo Fisher Scientific, CA)
solution at room temperature for 1 h. Between each solution,
the airways and vasculature were rinsed with about 3 cc of
distilled water. After decellularization, the heart-lung blocks
were washed with PBS and stored with 1% antibiotic-
antimycotic at 4°C for up to 2 days until reseeding was performed.

3.5.2 Cell Culture
Mouse C166 endothelial cells (CRL2581, ATCC, Canada) were
cultured in a solution containing 89% high glucose content
Dulbecco’s Modified Eagle Medium (Thermo Fisher Scientific,
CA), 10% Fetal Bovine Serum (Thermo Fisher Scientific, CA)
and 1% antibiotic-antimycotic. The cells were stored in a
standard incubator with an environment of 95% air and 5%
CO2 at 37°C. The cell culture media was changed every 2–3 days.
Finally, the cells were trypsinized and then counted using the
Vi-CELL™ Cell Viability Analyzer (Beckman Coulter Life
Sciences, US). Five million mouse C166 cells were suspended

in 20 ml of cell culture for reseeding, resulting in a cell
concentration of 250,000 cells/ml.

3.5.3 Cell Reseeding
The cell suspension reservoir was placed at the same height as the
bioreactor containing the decellularized lung to avoid any effects
due to gravitational pressure head. Flexible tubing (ID = 3.1 mm;
Cole Parmer, CA) was used to connect the cell suspension to the
cannulated pulmonary artery. Perfusion seeding was completed
using a Masterflex Laboratory Standard (L/S). Cells were
delivered using pump settings of 6 RPM and 15 RPM to
achieve average flow rates of 3.81 ml/min and 9.40 ml/min for
three samples each. After seeding, a 1 ml sample of post-perfusion
cell media was collected to estimate the cell seeding efficiency.
The samples were allowed 18 h of static culture to facilitate initial
adhesion.

3.5.4 Histological Analysis
To fix the samples, a 10% formalin solution was first injected
intratracheally and stored at room temperature overnight. Next,
the samples were transferred into a 70% ethanol solution to
remove water content. Then, the samples were processed using he
Excelsior ES Tissue Processor (Thermo Fisher Scientific, CA),
where an intermediate solvent xylene displaced the ethanol
solution and removed fat from the tissue which otherwise
presented a barrier to wax infiltration. After this step, the
samples were embedded into paraffin blocks. Three 5 μm thick
whole lung sections from each lung were stained by hematoxylin
and eosin (H&E). H&E slides were prepared according to
protocols established by Wallis et al. (Wallis et al., 2012). The
slides were scanned using the Aperio slide scanner (Leica

FIGURE 4 | Velocity streamlines throughout vasculature. Streamlines circulated out the PV, while some permeated through vessel walls.
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Biosystems, United States). Finally, the images were processed
with HALO™ software (Indica labs, United States) to quantify the
amount of cell coverage. Here, the surface area of the stained cells
and the uncovered scaffold were quantified. The cell surface
coverage percentage could then be calculated, defined as

CSC% � Cell Surface Area
Cell Surface Area + Uncovered Scaffold Area

× 100%

RESULTS

Model Flow of the Cell Media
The flow field of the mouse lung vasculature was visualized using
streamlines which originate from the PA inlet, as shown in
Figure 4. These lines represent the direction in which the cell
media traveled during steady-state flow. For both the low and
high flow rate cases, as the fluid circulated throughout the
vasculature, a portion permeated through the porous vessel
walls, while the rest exited through the PV outlet. In general,
streamlines permeated out of the vasculature in regions of high
tortuosity such as the distal vasculature. For the high flow rate
case, more streamlines were seen in the distal regions than
compared to the low flow rate case. Furthermore, more fluid
exited the domain through the PV in the low flow rate case. The
percentage of flow through the PV was 34 and 25% for the low
and high flow rate cases, respectively.

The cell media flow was also visualized in Figure 5. In both
cases, the media preferentially egressed through the PV before it
reached all distal regions of the vasculature. Approximately 0.5 s
were required for the cell media to fully perfuse throughout the
vasculature for the low flow rate case, whereas it took less than

0.25 s for the high flow rate case. For both cases, as time
progressed, the cell media permeated through the vessel walls
and into the surrounding parenchyma.

Cell Deposition on the Vessel Wall
The contact, Decuzzi, and Stokes cell deposition algorithms were
used to simulate cell seeding for the low and high flow rate cases.
The locations of seeded cells for both cases using the Stokes
algorithm with C = 300 is compared in Figure 6. Cell deposition
began along and remained limited to the arterial wall for the first
0.01% of cell media injected. By the time 0.2% of volume was
injected, 22 cells were deposited along the distal vasculature for
the high flow rate case, whereas only 5 were deposited in the
region for the low flow rate case. The cells continued to deposit
throughout the vessel wall as the amount of volume injected
increased. At the moment where 0.1% of the cell media was
injected, the high flow rate case exhibited 64.5% more cells
deposited compared to the low flow rate case. Moreover, they
appeared to be more uniformly distributed throughout the
different sections of the vasculature for the high flow rate case
as well.

4.2.1 Comparison of Cell Seeding Efficiency
Cell seeding efficiency and the total amount of cells deposited as a
function of percentage of cell media injected using the three
deposition algorithms are shown in Figure 7. For all of these
deposition algorithms, cell seeding efficiency began to plateau
when approximately 0.2%media was injected, which resulted in a
linear increase of the total number of cells deposited. This
milestone corresponded to when the cell media had first
perfused through the entire vasculature, thus establishing the
maximum available surface area for the cell deposition. The

FIGURE 5 | Perfusion of cell media throughout lung vasculature. Cell media permeated through the vessel walls at 0.50 and 0.25 s for the low and high flow rate
cases, respectively.
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contact algorithm predicted the highest cell seeding efficiencies of
65.1 and 73.5% for the low and high flow rate cases, respectively.

For the Stokes algorithm, the inertia coefficient of C = 300 led
to the best agreement with experiment results. The Stokes
algorithm with C = 200 is also presented here to demonstrate
the effects of changing the inertia coefficient. The deposition
probabilities for different velocities and vessel diameters using
these two inertia coefficients are shown in Figure 8. For example,

a cell impacting a vessel wall with a diameter of 200 μm at 5 cm/s
had a deposition probability of 23.9% for C = 200 and 38.5% for
C = 300. Cell deposition probability increased with increasing
velocity and decreased with increasing vessel diameter. This was
due to the emphasis on particle inertial impact in the Stokes
algorithm; the high velocity and small vessel diameter resulted in
the tendency for particles to deviate from the flow streamline and
deposit onto the vessel wall. Referring back to Figure 7, The
seeding efficiencies using C = 300 were 44.3 and 65.3% for the low
and high flow rates, respectively, while they were 35.7 and 61.1%
using C = 200.

Using the Decuzzi algorithm, the cell seeding efficiencies were
the lowest at 23.5 and 13.3% for the low and high flow rates,
respectively. Unlike the contact and Stokes algorithms, the
Decuzzi algorithm predicted that a higher flow rate resulted in
fewer cells deposited. The difference between the Decuzzi
algorithm and the others is attributed to how it accounts for
particle dislodging forces due to higher shear stress levels present
at higher flow rates.

4.2.2 Cell Seeding Distribution and Uniformity
A contour map of seeded cells on the vessel walls is shown in
Figure 9A. In general, large populations of cells were seen near
the PA inlet and regions of high tortuosity. These regions had
streamlines that rapidly change direction (see Figure 4) and
therefore the particles were more likely to contact the vessel
wall. Conversely, regions with wide, long, and straight segments
had lower cell deposition.

For the contact and Stokes algorithms, the number of seeded
cells increased with the higher flow rate. The uniformity of seeded
cells also increased for these algorithms, as seen by a more even
colour distribution at the high flow rate. This trend was quantified
using the coefficient of variation of deposited cells shown in
Figure 9B. For the contact and Stokes algorithms, the variance
decreased with flow rate, demonstrating that uniformity
increased. In contrast, for the Decuzzi algorithm, both the
number and uniformity of deposited cells decreased for the
high flow rate case, as illustrated by the rise in the variance of
deposited cells.

FIGURE 6 | Locations of deposited cells are shown as a function of cell
media injected for the low and high flow rate cases. The Stokes cell deposition
algorithm was used here, with an inertia coefficient of C = 300.

FIGURE 7 | Cell seeding efficiency and the total number of cells deposited as a function of the percentage of media injected for various cell seeding algorithms. (A)
Cell seeding efficiency. (B) Total number of cells deposited.
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FIGURE 8 | Cell deposition probability using the Stokes algorithm with an inertia coefficient of (A) C = 200 and (B) C = 300.

FIGURE 9 | (A) Cell seeding distribution contours from each cell seeding algorithm. (B) Variance quantification of cell distribution uniformity for each cell seeding
algorithm.
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Experimental Validation of Simulations
Ex vivo reseeding of endothelial cells was performed on six mouse
lung scaffolds; three at the low flow rate (average of 3.81 ml/min)
and three at the high flow rate (average of 9.40 ml/min). During
the experiments, it was noted that the lung expanded while cell
media was injected into the vasculature. This change in geometry
was not taken into consideration in the model, as a rigid body was
assumed in the simulations. The results for experiments are
presented as the mean ± standard error when applicable.

The efficiencies from the experiments were 42.7 ± 7.1% and
70.7 ± 11.5% for the low and high flow rate cases, respectively.
This represents a 66% increase in seeding efficiency by using the
high flow rate. These experimental values are compared to the
final seeding efficiencies of the algorithms in Figure 10. The
contact algorithm overestimated cell deposition, especially for the
low flow rate case, where it had overpredicted the efficiency by
22.4%. The Stokes algorithm with C = 300 matched experimental
results well, with percentage errors of 3.7 and 7.6% for the low and
high flow rate cases, respectively. The Stokes algorithm with C =
200 slightly underestimated cell deposition, with percentage

errors of 16.4 and 13.6% for the low and high flow rate cases,
respectively. Meanwhile, the Decuzzi algorithm severely
underestimated cell deposition, especially for the high flow
rate case where it underpredicted seeding efficiency by 57.4%.
When comparing the Stokes algorithm with C = 300 and the
Decuzzi algorithm for the high flow rate case, we observe that the
percent error decreased by 73.9% when using the Stokes
algorithm.

The histology and cell surface coverage results are shown in
Figure 11. Deposited cells were sparse for lungs seeded at the low
flow rate. Only one small group of cells can be seen in the top
right of Figure 11A. On the other hand, many more cells were
deposited for the lungs seeded at the high flow rate (Figure 11B).
Moreover, the cells were distributed more uniformly using the
high flow rate compared to the low flow rate. The cell surface
coverage was 1.49 ± 0.75% and 7.59 ± 1.25% for the low and high
flow rates, respectively. This trend of higher deposition and
greater uniformity at the high flow rate matches the results
from the contact and Stokes algorithms.

DISCUSSION

This study presented a computational fluid dynamics model
capable of predicting transient cell deposition for a variety of
fluid flow conditions in an acellular mouse lung scaffold.
Furthermore, a novel Stokes cell deposition algorithm was
implemented and compared to the contact and Decuzzi
algorithms to elucidate the most accurate representation of the
mechanism underlying cell seeding. It was shown that the contact
algorithm overestimated cell deposition by up to 22%. This
overestimation was expected, given the automatic deposition
of cells does not account for any adhesion mechanics (Marín
et al., 2018). On the other hand, the Decuzzi algorithm severely
underestimated cell deposition, especially for the high flow rate.
This difference may be partly attributed to the fact that the exact
values of the parameters of the Decuzzi algorithm for the
decellularized lung are not known. More importantly, the

FIGURE 10 | Comparison of cell seeding efficiency from each cell
deposition algorithm and experiments.

FIGURE 11 |Cell surface coverage in experiments. Hematoxylin and eosin stain of (A) reseeding with low flow rate (red arrow indicates the small group of cells) and
(B) high flow rate. (C) Quantification of the lung surface area that is seeded. Scale bar is 500 µm.
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Decuzzi algorithm uses an inverse relationship between
deposition probability and shear stress, which predicts low cell
deposition at high flow rates where shear stress is high. On the
other hand, the Stokes algorithm, which accounts for inertial
impact, demonstrated strong agreement in predicting cell
deposition. Although high shear stress does indeed lead to the
detachment of cells (Rosenman et al., 1985; Feugier et al., 2005), it
was identified experimentally that the higher flow rate led to
enhanced cell deposition. From these observations, it follows that
for the flow rates studied here, cell deposition is influenced less by
shear stress, and more by the inertial impact of the cell. This
phenomenon was also observed by Melchels et al. (Melchels et al.,
2011), who reported greater cell densities in regions of the
scaffold with higher flow rate and shear stress.

Moreover, it was observed from experiments that the
uniformity of cell deposition increased with increasing flow
rate. The Stokes algorithm was also able to predict this trend
in cell deposition uniformity, and helps to make sense of this
relationship; as shown in Figure 8, the Stokes deposition
probability varies significantly between vessels of different
diameters at low flow rates (e.g. 11–64% at 5 cm/s with C =
300). However, at higher flow rates, the disparity of deposition
probability between vessels of different diameters is decreased
(e.g. 64–91% at 25 cm/s with C = 300), resulting in increased
uniformity. This agreement with experimental results further
demonstrates the capability of the Stokes algorithm to
accurately model cell deposition.

A good agreement between in silico results with the Stokes
deposition algorithm and ex vivo cell seeding was found. By
accounting for the inertial impact of the cells on the vessel walls,
the Stokes algorithm accurately predicted increased cell
deposition and increased uniformity with increasing flow rate.
The contact algorithm consistently overestimated cell seeding due
to its assumption of automatic particle deposition, whereas the
Decuzzi algorithm consistently underestimated cell seeding due
to its overemphasis on particle dislodgement forces caused by
fluid shear stress. However, only two flow rates were explored in
this study. The extent to which the trend of cell deposition can
increase with flow rate must be further explored. Higher velocities
may generate critical shear stresses which could result in mass cell
detachment or cell death (Tang et al., 2012). This result was
observed by Baptista et al. (Baptista et al., 2016), who noted that
reseeding liver scaffolds at 40 ml/min resulted in significantly
lower cell proliferation and higher apoptosis and cytotoxicity. In
this study’s formulation of the Stokes algorithm, the probability of
deposition is solely dependent on the Stokes number and does not
account for a critical flow rate or shear stress. A deposition
algorithm that incorporates both the shear stress mechanics
described by the Decuzzi formulation and the inertial impact
mechanism described by the Stokes formulation could
significantly increase the range of flow rates that this tool is
valid for. Additionally, as research into the effect of biochemical
interactions advances, implementation of these effects could
further increase this algorithm’s accuracy.

Furthermore, it is important to acknowledge that the model
was created based on a single lobe of the mouse lung and with
truncated vasculature due to computational costs. Although the

fluid resistance of the full lung vasculature was represented by
implementing a pressure value at the outlet, a significant portion
of vasculature surface area was omitted in this study. This
omission could affect the model’s cell seeding efficiency, as the
occurrence of cells contacting the vessel wall increases with the
surface area of the wall and therefore have more chances to
deposit. Moreover, the Stokes number, and therefore cell
deposition, depends largely on fluid velocity and diameter of
the vessel. Since the morphology of lung vasculature varies
throughout the lung (Huang et al., 1996), the effect of
incorporating more vessels into the model should be investigated.

Initial cell deposition is critical for the success of recellularized
organs (Holy et al., 2000; Saini and Wick, 2003). By creating a
model which accurately simulates cell seeding by accounting for
the particle’s inertial impact, flow rate was found to be an
important parameter for increasing seeding efficiency. The CFD
tool presented in this study holds great potential in helping
researchers analyze how bioreactor parameters can affect cell
seeding in the lung scaffold, all while saving time and costs
associated with experimental trials. Conditions which maximize
cell seeding may be further elucidated through computational
analysis, ultimately optimizing the lung recellularization process.
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