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Single molecule dynamics in a virtual
cell: a three-dimensional model that
produces simulated fluorescence
video-imaging data

Gregory I. Mashanov

Division of Physical Biochemistry, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK

The analysis of single molecule imaging experiments is complicated by the

stochastic nature of single molecule events, by instrument noise and by

the limited information which can be gathered about any individual molecule

observed. Consequently, it is important to cross check experimental results

using a model simulating single molecule dynamics (e.g. movements and

binding events) in a virtual cell-like environment. The output of such a

model should match the real data format allowing researchers to compare

simulated results with the real experiments. The proposed model exploits

the advantages of ‘object-oriented’ computing. First of all, the ability to

create and manipulate a number of classes, each containing an arbitrary

number of single molecule objects. These classes may include objects

moving within the ‘cytoplasm’; objects moving at the ‘plasma membrane’;

and static objects located inside the ‘body’. The objects of a given class can

interact with each other and/or with the objects of other classes according to

their physical and chemical properties. Each model run generates a sequence

of images, each containing summed images of all fluorescent objects emitting

light under given illumination conditions with realistic levels of noise and

emission fluctuations. The model accurately reproduces reported single

molecule experiments and predicts the outcome of future experiments.
1. Introduction
The past two decades have been marked by the rapid progress in single molecule

imaging in live cells. In the early studies, small particles, specifically attached to

membrane molecules, were used to track movements of individual molecules

[1–3]. Specific fluorescent probes, containing tens of molecules, were also used

for similar purposes [4,5]. Progress in camera technology, optics and lasers made

it possible to detect and track single membrane-associated molecules tagged

with a single fluorophore [6,7] or fused to a single fluorescent protein [8,9] which

could be reliably identified as the single molecule of interest. Fast sensitive cameras

have allowed detection and tacking of large protein complexes moving within the

cytoplasm and at the cell nucleus [10,11]. The application of total internal reflection

fluorescence microscopy (TIRFM) has allowed researchers to illuminate a very thin

layer of the solution close to the surface of the glass–water interface which greatly

improves the signal-to-noise ratio [12], critical for single molecule detection. Some

intracellular proteins containing membrane binding domains were detected and

tracked at the plasma membrane, because molecules slow down and become vis-

ible as discrete spots of light upon binding to the membrane [6,13–15]. Some fine

details of molecule movements, which include confined diffusion [2,16], presence

of membrane barriers [17] or membrane microdomains [7,18], were evaluated

using single molecule or single particle-tracking methods.

One of the most important issues in single molecule research is the stochas-

tic nature of single molecule events, which require large datasets to be analysed
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Figure 1. Model flowchart. Basic time step includes calculations of all the movements and possible binding – dissociation events for all the objects present in the
system. The x-, y-, z-coordinates of all active (light-emitting) objects are used to create a fluorescent image of a cell (if illumination is ‘ON’). The number of images
can be summed into a single camera frame to create a realistic image of fast-moving molecules.
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in order to obtain statistically valid conclusions. This problem

can be solved by using automatic detection and tracking algor-

ithms [5,19] that eliminate operator bias associated with the

laborious manual processing of data.

Another important issue is a requirement to cross-validate

the results obtained by automated analysis procedures. This

problem can be addressed by using computer models to simu-

late the mobility and binding kinetics of the molecules of

interest and to generate the results in the same format as real

data. Many of the published works contain a modelling section

[10,11,17,19–21] simulating experimental results. Naturally,

these models are restricted to a particular problem and are lim-

ited in structure and scope. Andrews & Bray [22] proposed a

general model emulating chemical interactions between

individual molecules of one type moving inside a virtual bac-

terial cell. This model was modified by Tournier et al. [23],

who proposed calculating the probability of interaction

between two molecules separated by a significant distance,

so that the model could use much longer time steps than

the Andrews–Bray model. The models can produce results

in the form of spatial distributions of individual objects in a

particular chemical state and as a time course of the concen-

trations of the reacting species. These models use only one

type of molecule (free moving in cytoplasm), require a signifi-

cant number of calculations, and do not simulate imaging

conditions affecting the results of real experiments.

The purpose of this work was to construct a novel

computer model that can simulate a few distinct ‘classes’ of

single molecules moving both within the cytoplasm and at

the cell membrane and simulate chemical interactions bet-

ween molecules of the same or few different classes. The

model takes into account the three-dimensional illumination

pattern created under given conditions (epi-illumination,

TIRFM, confocal microscopy) which would affect the emission

rate of individual molecules. The images of all the light-

emitting molecules, within and beyond the focal plane, are

projected onto a virtual imaging device (e.g. EMCCD

camera) using rules of optics and experimentally or empirically

determined noise and signal characteristics. The model is opti-

mized to use the minimal number of calculations and has a

modular structure giving it the ability to be extended to more

complex scenarios such as abnormal diffusion, directed move-

ments and single molecule dynamics in the presence of some

intracellular structures (e.g. nucleus or cytoskeleton), and to

add any new properties (e.g. take into account the effects of

polarized illumination and the orientation of the molecules).

The proposed model was extensively tested under a

number of scenarios. The results of the modelling (analysed
with the use of the automatic detection and tracking algorithms

[19]) accurately reproduce the results of the reported exper-

iments [13,14,24–28]. The model was also used to evaluate

the putative effects of partial permeability of membrane

barriers and of the viscosity of lipid rafts on the outcome of

single molecule experiments.
2. Model
The basic model may contain objects of one or two major classes:

cytoplasm-based molecules moving inside an enclosed volume

(‘cell’), and/or objects moving on the surface of this volume

(‘plasma membrane’). An object of either class has a set

of default properties including physical coordinates (x, y, z);

mobility coefficient; indexes for a bound object(s) of the same

or other classes; up to eight fluorescent tags; a colour of fluor-

escent tag (if required). Intracellular ‘molecules’ can move

freely inside a ‘cell’, and (if permitted) bind to the ‘molecules’

belonging to ‘membrane-based’ classes. The ‘bound-to-

membrane’ intracellular molecule moves together with its

membrane-embedded ‘partner’ until the moment of dis-

sociation. It is assumed that the mobility of such a pair is

equal to the mobility of the slow-moving membrane-based mol-

ecule because it is embedded in a viscous membrane. If two

membrane-embedded molecules with mobility Da and Db

bind each other, the mobility of the pair (Dpair) will be proportio-

nally slower than the mobility of each member of the pair:

Dpair¼ (Da)/(1þ Da/Db). For example, if two membrane

molecules form a homodimer (see §2 in the electronic

supplementary material), then its mobility will be two times

slower than the mobility of the monomer (see table S4 in [24]).

During each iteration cycle of the model (figure 1), the

physical positions of all the objects are changed according

to the motion rules (e.g. random walk, directed movement

or static) and the duration of a time step. The possible

events, such as binding and dissociation, are executed and

the properties of the involved objects are updated. If the

‘cell’ is illuminated at a given time step, then a fluorescent

image is built by ‘projecting’ the images of all active (non-

bleached) fluorescent molecules to the surface of a virtual

imaging device. The size and the brightness of a single fluor-

ophore image will depend on its point spread function (PSF)

and on its x-, y-, z-position, which determines the amount of

incident light the object receives. If required, a number of

sequential time steps can be summed to create an averaged

fluorescence image which would better represent fast-

moving objects. Some random number of normally
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Figure 2. Basic model. (a) The ‘cell’ geometry. Molecules of one class (open
circles) move freely inside the cell volume but cannot leave it. Molecules of
another class ( filled circles) move only at the surface of the ‘cell’. An ellipse is
the surface of substrata (coverslip) and a default focal plane at z ¼ 0.
(b) Simulated fluorescent image of a cell with molecules randomly moving
in the cytoplasm (epi-illumination, focal plane at z ¼ 0 mm, cell size
10 � 10 � 10 mm3, concentration 2 nM). (c) An image of a ‘cell’ with mol-
ecules moving at the membrane (epi-illumination, focal plane at z ¼ 0 mm,
density 1 molecule mm22). (d ) The same ‘cell’ as shown in (c), but the
image is built at a focal plane set above the substrate (z ¼ 1 mm). Only
a few molecules can be seen as sharp spots ‘in focus’, whereas other objects
are ‘blurred’ because they are positioned above or below the focal plane.
(e) Illumination profiles: epi-illumination mode (left); TIRFM (middle);
confocal microscopy (right). Arrow points to a focus position.
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distributed ‘noise counts’ can be added to every pixel in the

image to simulate background fluorescence and camera

noise. The ‘raw’ fluorescence image can be converted into a

synthetic EMCCD image by multiplying the value of every

pixel by a random number. The average of these normally

distributed random numbers is determined by a camera

‘gain’.

The synthetic biological ‘cell’ is represented as an

enclosed volume in a shape of a parallelepiped with arbitrary

x, y, z sizes (figure 2a). The simulated ‘cell’ is placed on a

‘coverslip’ (an ellipse in figure 2a). The interface between

the ‘cell’ and the ‘coverslip’ defines the focal plane at z ¼ 0.

2.1. Object movements
The objects inside the ‘cell’ normally undergo an unrestricted

‘random walk’ type of diffusion limited by the ‘cell’ bound-

aries. Object movements in all three dimensions (x, y, z), are

modelled independently [22] using a Gaussian random

number generator (GRNG), based on the Box–Muller algor-

ithm (default output d ¼ 1, m ¼ 0) [29]. Mean-squared

displacement (MSD) in one dimension is calculated as

2DDt, where D is the diffusion coefficient, and Dt is a time

parallelepiped step [30]. The root-mean-squared displace-

ment (RMSD) was used as a multiplier in the GRNG to

generate individual displacement values. The object’s x-, y-,
z-coordinates were stored as floating-point values to avoid

bias caused by rounding of integer numbers.

Objects moving on the cell ‘membrane’ (another class)

undergo two-dimensional random walk. The same algorithm

as above was used to calculate the object displacements, but

only in two dimensions. Note that each random displacement

value was generated separately for each dimension, so if an

object, moving on one side of a ‘cell’, reaches an edge, then

it continues its movement on the adjoining side of the paral-

lelepiped (figure 2a). Molecules bound to each other have the

same physical coordinates (x, y, z) and move together each

time parallelepiped step, so that the displacement values

are calculated once for the pair of objects. The changes

in the mobility pattern of the paired objects are explained

in §2.

2.2. Interactions between the objects
Molecules of the same or different species can be allowed to

bind each other. Binding events could happen when the cor-

responding ‘binding sites’ on both objects are unoccupied

and the number of collisions between the two objects reaches

a certain threshold. Collisions would occur if two molecules

move close to each other, so that the distance between their

centres became smaller than the interaction distance (ID) or

reaction radii [22]. The simplest way to simulate this process

is to reduce the model time step, so that the average ampli-

tude of movements is smaller the ID. Molecules separated

by a distance less than or equal to the ID will have at least

one collision per time step. If we increase the time step,

then the objects will move longer distances, and we will

underscore the collision events, because we will not know

whether the trajectories of the objects were within the ID or

not during the time step.

A practical example. A membrane-bound molecule with D ¼
0.1 mm2 s21 has RMSD � 6.3 nm at Dt ¼ 100 ms, and �2 nm

at Dt ¼ 10 ms (MSD ¼ 4DDt). Therefore, a 10 ms time step is
sufficient to simulate binding processes at ID � 5 nm.

However, molecules move much faster within the cyto-

plasm, where protein D is in the range 2–20 mm2 s21

[10,11,31], and, for example, with D ¼ 5 mm2 s21,

RMSD � 17.3 nm at Dt ¼ 10 ms, and �5.5 nm at Dt ¼ 1 ms

(MSD ¼ 6DDt; [30]).

Thus, the above-mentioned approach [22] will consume

substantial computational time, because we might want to

model collisions of hundreds or even thousands of molecules

over a reasonable period of time (e.g. 10–100 s). Another

approach, proposed by Tournier et al. [23], uses probability-

based description of the reaction process, suitable for the

longer time steps. A simplified version of this approach,

requiring a minimal number of calculations, was developed

for the present model.

To calculate the probability of binding between any potential

pair of objects we need to calculate the average interaction time

(AIT)—that is, the time which this couple would spend within

the ID during the current time step. For example, we can

assume that molecules A and B are point-like objects randomly

moving in one-dimensional space; A and B are separated by a

distance x; we can consider molecule A as a fixed target, whereas

molecule B has a mobility of D ¼ DA þ DB. We can calculate
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Figure 3. Average interaction time (AIT). (a) Objects A and B moving in two-dimensional space have summed mobility D: 0.1 (1), 0.2 (2), 0.5 (3) and 1.0 (4) mm2 s21

(ID ¼ 5 nm, time step 100 ms). The graphs 1 – 4 show how AIT depends on the initial distance between A and B (at the beginning of a time step). The inset shows the
zoomed part of the same graph. (b) Objects A and B moving in two-dimensional space have summed mobility 0.1 mm2 s21 (ID ¼ 5 nm). The graphs show how AIT
depends on the initial distance and the duration of a time step. The graphs 1 – 5 (from left to right) were calculated at a time step: 1, 5, 10, 50 and 100 ms, respectively. Inset
shows the zoomed part of the same graph. (c) Objects A and B moving in three-dimensional space have summed mobility D: 0.1 (1), 0.5 (2), 1 (3) and 2 (4) mm2 s21 (ID ¼
5 nm, time step 100 ms). The inset shows the zoomed part of the same graph. (d ) Objects A and B moving in three-dimensional space have summed mobility 1.0 mm2 s21

(ID¼ 5 nm). The graphs 1 – 5 (from left to right) calculated at a time step: 1, 5, 10, 50 and 100 ms, respectively. Inset shows the zoomed part of the same graph.
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the probability of finding molecule B between x and x þ dx at a

time t as [30]

P(x)(dx) ¼
1
ffiffiffiffiffiffiffiffiffiffiffi

4pDt
p e�x2=4Dt

dx t . 0: (2:1)

If we assume that dx ¼ ID we can calculate the probability

of finding molecule B within the ID of molecule A at time t.
We can use discrete integration of the above function over

time to find the AIT for any given x. Similar equations can

be used to calculate the AIT for objects moving in two- and

three-dimensional space, but, in these cases, we replace the

ID with interaction area (IA ¼ pr2), and interaction volume

(IV ¼ 4/3pr3), where r ¼ ID/2 [23],

P(x)(IA) ¼
1

4pDt
e�x2=4DtIA t . 0 (2:2)

and

P(x)(IV) ¼
1

(4pDt)3=2
e�x2=4DtIV t . 0: (2:3)

Integrating the probability density function for all poss-

ible pairs of objects each time step is unnecessary. Instead,

we can build look-up tables containing the AIT values for

each class of molecule allowed to bind each other. The

index of the look-up table (integer value in ‘nm’ units) can

be used to match the distance x separating objects at the
beginning of a time step and AIT. These tables need to

be recalculated only when we change the mobility, or ID,

or a time step. The example in figure 3a shows how AIT

depends on mobility of the membrane-bound objects (two-

dimensional diffusion) at a time step of 100 ms (ID ¼ 5 nm).

Figure 3b shows how the AIT would depend on the duration

of a time step if, for example, we simulate dimerization of the

membrane-bound molecules. It is clear that the AIT decreases

dramatically when the initial distance between molecules

increases or when we reduce a time step. In many cases, it

will be unnecessary to check the probability of binding for

the objects placed at a distance greater than 1 mm apart.

Examples in figure 3c,d show the AIT for the molecules

moving in a three-dimensional space.

Because we know the AIT, we can use a ‘binding rate coeffi-

cient’ or ‘reaction rate’ Rbind (s21) to calculate the probability of

binding Pbind¼AIT . Rbind. It was assumed that Rbind is always

smaller than the diffusion-limited binding rate [22,32,33],

especially in the case of ligand binding where it depends on

the orientation of the small binding pocket at the moment of col-

lision [33], so that more than one collision is required for a

successful binding. Therefore, we can use a linear random

number generator (with output proportional to Pbind) to calculate

the outcome of a binding test for any potential pair of molecules.

Bound molecules dissociate according to a simple zero-

order chemical kinetics [32], which is modelled as a random
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process. The probability of dissociation was calculated as

Pdiss ¼ Rdiss
. Dt, where Rdiss is the dissociation rate constant.

The Rbind and Rdiss can be changed during a model run to simu-

late, for instance, some real responses to biological stimulation.

2.3. Illumination of a specimen
In order to calculate the number of photons (Nph) emitted

by a fluorescent tag during each time step and calculate the

probability of bleaching we need to know the illumination

intensity at the x, y, z location of an object. There are three

major illumination modes (figure 1e) which are used in the

present model: epi-illumination, TIRFM illumination and

confocal illumination.

2.3.1. Laser epi-fluorescent illumination
Laser epi-fluorescent illumination usually uses a TEM00

laser beam which has a two-dimensional Gaussian profile

(figure 2e, left panel) measured by its full width at half maxi-

mum (FWHM). It is assumed that the illumination intensity

I(x,y,z) is constant in a z-direction, because we are dealing

with a transparent specimen. We can use a two-dimensional

Gaussian function to calculate intensity I(x,y,z) in any point of

a specimen,

I(x,y) ¼ I(0,0)
1

2pd2
e�(x2þy2)=2d2

, (2:4)

where d is a standard deviation (for Gaussian function

FWHM ¼ 2(2ln(2))
1
2 . d≈ 2.4 . d).

2.3.2. TIRFM illumination
TIRFM illumination exploits the effect of total internal reflec-

tion of light occurring at the interface between high and low

refractive index materials when the angle of incident light u is

greater than ‘the critical angle’ uc ¼ sin21(n1/n3), where n1

and n3 are the refractive indices of the low- and high-index

materials, respectively [12].
If we assume that a TEM00 laser beam is used for TIRFM

illumination, then it will have a two-dimensional Gaussian

profile in the x,y-plane (see epi-illumination mode described

above), but the illumination intensity will decrease exponen-

tially in the z-direction (figure 2e, middle panel) above the

interface between the two media. The intensity profile in

the z-direction will depend on the angle and wavelength of

the illuminating beam and the refractive indices of both

media [12],

I(z) ¼ I(0)e
�z=d, where d ¼ l0

4p
(n2

3 sin2u� n2
1)�1=2, (2:5)

where l0 is the wavelength of the incident light in a vacuum,

u is the angle of incidental light, and n1 and n3 are refrac-

tive indexes of the liquid and the solid, respectively.

Depth d is independent of polarization of an incident

beam and decreases with increasing u. Except for u! uc

(where d!1), d is of the order of l0 or smaller [12]. We

can calculate the intensity at any point of a specimen under

TIRFM illumination as

I(x,y,z) ¼ I(0,0,0)
1

2pd2
e�(x2þy2)=2d2

e�z=(l0=4p)(n2
3sin2u�n2

1)
�1=2

, (2:6)

where I(0,0,0) is an intensity in the centre of the field at the

coverslip level, and d is a standard deviation.

The flatness of the x,y-plane of illumination in epi-

illumination and TIRFM modes depends on the FWHM of

a TEM00 laser beam. The profile can be virtually flat if

the beam FWHM� the x, y sizes of the illuminated area,

but if the laser beam is narrow (FWHM � the x, y sizes of a

cell) then the illumination profile will be uneven, which can

severely affect the results of measurements (see example in

figure 4a). Note that if the simulated laser beam differs

from the TEM00 mode beam, other functions should be

used to describe its intensity profile in the x, y plane. The

diameter of the illumination field can be ‘truncated’ by a

circular ‘diaphragm’ or by a mask of any other shape or size.
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2.3.3. Confocal illumination
Confocal illumination (figure 2e, right panel) is the simplest to

model because it is a scanning method, where every effort is

made to ensure that illumination intensity I(x,y) is the same at

each x,y-point illuminated during the scan cycle. It is assumed

that a high numerical aperture objective lens (NA � 1.4) is used

for imaging, so that the illumination intensity is reduced above

and below the focal plane as I(z) ¼ I(zf ) . (Szf/(Szf þ p . (tan(u) .

|z 2 zf|)2), where I(zf ) is the illumination intensity at focal

plane zf, Szf is the size of the focused beam at zf, and u is

half of the angle of the illuminating cone of light (figure 2e,

right panel) defined by a NA of the simulated objective lens.

2.4. Building the fluorescent image
The image of the cell is generated by summing emission from

all the fluorescent molecules. In general, the photons emitted

by each single fluorophore (point source of light) are spread

according to a realistic PSF. If we assume that our system is

equipped with an ideal objective lens, then the PSF of a

single fluorophore will be approximated by a two-dimensional

Gaussian function (equation (2.4)), where I(0,0) is the intensity in

the centre of the spot. FWHM of a point source of light is

roughly equal to half of a wavelength of the simulated colour

(FWHM ¼ 0.6l/NA, where l is a wavelength and NA is the

numerical aperture of the objective lens). The average

number of photons (Nph) emitted by a single fluorophore is

determined by the illumination intensity at its location:

Nph(x,y,z) ¼ Ixyz . Nph(0,0,0). A linear random number generator

is used to simulate the ‘photon noise’ characteristic for single

fluorophore emission, so that the range of Nph fluctuations is

(Nph)1/2. If an object moves above or below the focal plane of

an objective lens, then the size of its image increases. GRNG

was used to generate x- and y-coordinates of each of the Nph

photons accumulated in the corresponding ‘pixels’ of a virtual

CCD camera. The FWHM value used as the GRNG multiplier

was determined by the distance between the z-coordinate of an

object and a focal plane. In the case of an ideal objective

lens, the FWHM value would increase according to a simple

hyperbolic function: FWHM(z) ¼ gobj
. (z 2 zf )

2 þ FWHMf,

where gobj is a coefficient defined by the magnification of an

objective lens and its numerical aperture, zf is the focal plane,

and FWHMf is the size of a fluorophore image at z ¼ zf. gobj

is equal to �0.6 mm21 for the objective lens � 100 NA 1.45

(see §1 in the electronic supplementary material).

In the case of confocal imaging, a significant fraction of

photons, emitted by fluorescent molecules placed above or

below the focal plane, does not reach the detector because

they are blocked by a pinhole. Therefore, these molecules

also generate a smaller number of photons than the molecules

placed at the focal plane: Nph(z) ¼ Nph(zf )/(1 þ gPH
. (z 2 zf )

2),

where Nph(zf ) is an average number of photons detected at the

focal plane zf, and gPH is a coefficient determined by the size of

the pinhole and the magnification of the objective lens.

In real experiments, some fluorescent molecules will be

bleached during the observation period. The photobleaching

process is modelled as a simple zero-order chemical reaction,

where the probability of bleaching Pbleach ¼ Rbleach
. Dt . Ixyz,

where Rbleach is the photobleaching coefficient (s21) and Dt is

the model time step. Rbleach can be set before and changed

during the model run. Note that if a single molecule object

has few fluorescent tags, then each of them would undergo

the bleaching process independently of others.
2.5. Single particle tracking
The sequences of fluorescent images were analysed by the

single particle-tracking software GMIMPRO [19]. The results

of automatic detection and tracking were presented as indi-

vidual trajectories yielding information about mobility and

intensity of each individual object. Some single molecule

objects were not detected because their trajectories were

shorter than the minimal trajectory length (20 data points)

set during the detection phase of the analysis. This would

happen because the images of individual moving molecules

overlapped, or because molecules were bleached, or because

molecules moved to the unilluminated parts of the cell (e.g.

above the basal side of the cell illuminated in TIRFM mode).

2.6. Default conditions
In the examples presented below, the model was run with the cell

sizes¼ 10� 10� 10 mm3, imaging rate 33 fps (10 model time

steps summed per frame). An objective lens� 100/1.45 NA

was simulated giving a final magnification of 100 nm pixel21.

Single fluorophore image size (FWHM) was set to 250 nm,

emission rate 6000 photons s21 in the centre of the illumination

area at z¼ 0, where the photobleaching rate Rbleach¼ 0.5 s21.

EMCCD gain¼ 5 (average number of counts approx. 30

000 fluorophore21 s21), noise level 2 counts pixel21 (RMS).

The illuminating beam FWHM¼ 100 mm, TIRFM illumination

incident angle 648. The mobility of molecules moving in the

cytoplasm was set to 5 mm2 s21 (concentration 2 nM), and

the mobility of the membrane-embedded molecules was

0.3 mm2 s21 (density 1 molecule mm22). The list of examples

showing some specific conditions is presented in table 1. All

these parameters can be changed before the model run and

some during the run (see electronic supplementary material).
3. Results and discussion
3.1. Random diffusion in cytoplasm and at the plasma

membrane
In the simplest case, the model would contain only one class of

objects. For example, a single frame from the electronic sup-

plementary material, video S1 (figure 2b) shows randomly

moving non-interacting fluorescent molecules (e.g. green fluor-

escent protein) inside the cell (epi-illumination mode,

concentration 2 nM). Electronic supplementary material, video

S2 shows the simulation made under the same conditions,

but in TIRFM illumination mode. The focus plane was set at

z ¼ 0 mm in the first half and then moved to z ¼ 0.2 mm in the

second half of the record. Another basic case scenario is mol-

ecules randomly moving on the cell membrane without

interactions with other molecules or obstacles. Electronic sup-

plementary material, video S3 shows the results of a

simulation carried out in epi-illumination mode at a density of

1 molecule mm22. In the first half of the record, the focal plane

was set to z ¼ 0 mm (figure 2c) and it was then increased to

z ¼ 1 mm in the second half of the record (figure 2d). Unlike

the previous case, individual membrane-bound molecules

were present on the image sequence for some significant time.

Electronic supplementary material, video S4 was made under

the same conditions, but in TIRFM mode.

The imaging conditions can affect both the appearance of

fluorescent molecules (brightness and shape) and the results



Table 1. A list of video examples generated by the model.

scenario illumination specific conditions video references

free moving intracellular molecules epi.

TIRFM

concentration 2 nM,

Kdiff 5 mm2 s21

S1

S2

[10,11]

molecules moving at cell membrane epi.

TIRFM

density 1 mm22,

mobility 0.3 mm2 s21

S3

S4

[13,19,24,28]

barriers at cell membrane TIRFM grid sizes 1 � 1 mm2 S5 [2]

lipid rafts on cell membrane TIRFM raft sizes 1 � 1 mm2,

distance between rafts 1 mm

S6 [7]

intracellular molecules (A) binding to

molecules at cell membrane (B)

gated TIRFM,

10 fps

mobility of (A) 5 mm2 s21,

mobility of (B) 0.001 mm2 s21,

Rbind 1 � 106 s21, Rdiss 0.05 s21

S7 [10,13,14,31]

free moving membrane molecules (A)

binding to immobile anchors (B)

TIRFM density of (A) 0.5 mm22,

density of (B) 0.5 mm22,

Rbind 1 � 105 s21, Rdiss 1 s21

S8 [3,25,27,34]

transient dimerization of membrane-bound

moleculesa

two-colour

TIRFM

‘green’ 1 mm22, ‘red’ 1 mm22,

mobility 0.1 mm2 s21,

Rbind 1 � 105 s21 , Rdiss 1 s21

S9 [6,24,35]

photobleaching of tetramers at cell

membranea

TIRFM density 1 tetramer mm22,

mobility 0.001 mm2 s21

S10 [8,36]

molecules moving inside tubular networka TIRFM concentration inside the tubules 5 mM S11 [37]

molecules transiently binding to

microtubulesa

epi., 5 fps

confocal scan

5000 binding sites placed at 8 nm steps,

Rbind 1 � 105 s21 ,

Rdiss 2 s21/Rdiss 0.02 s21

S12

S13

[21]

aThese examples are described in the electronic supplementary material.
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of their detection. Figure 4a shows how the shape of the illu-

minating beam can affect the results of detection and

tracking. When a narrow laser beam was used to illuminate

membrane-bound molecules (figure 4a, black line and left

inset), the distribution of intensities of tracked molecules

was much wider than with the nearly-flat illumination con-

ditions (FWHM ¼ 200 mm). In the last case, the results of

automatic tracking had a narrow distribution of intensities

of detected and tracked objects (figure 4a, grey line). This con-

clusion is correct for both TIRFM and epi-illumination

microscopy modes. The averaged mobility of automatically

tracked objects was 0.298 mm2 s21 and the averaged MSD–

Dt plot had a linear shape (figure 4b, black line) characteristic

of freely diffusing molecules. The grey line in figure 4b shows

the averaged MSD–Dt plot for a record made under the same

conditions, but the mobility was reduced to 0.01 mm2 s21.

The two exponentially decaying lines (right y-axis) in figure

4b show the number of objects which contributed data to

the MSD–Dt plot at the increasing time intervals. The fitted

off-rate or the rate of losing tracked objects was much

higher for the fast-moving objects (1.25 s21 at Dlat ¼

0.3 mm2 s21) than for the slow-moving objects (0.55 s21 at

Dlat ¼ 0.01 mm2 s21), where the off-rate was close to the

photobleaching rate (Rbleach ¼ 0.5 s21). This example shows

that even under simple conditions the results of analysis

(e.g. calculated bleaching or dissociation rate) can be severely

affected by the imaging conditions—overlapping of the

images of fast-moving molecules leads to erroneous trunca-

tion of the trajectories of detected objects. Choosing cells
with lower densities of molecules or decreasing the tempera-

ture [28] would allow us to measure the off-rate free from the

artefacts of overlapping moving objects.
3.2. Anomalous diffusion at the plasma membrane
The movement of molecules associated with the plasma mem-

brane can be affected for a number of reasons. One type of

potential restriction is the presence of ‘barriers’ or ‘fences’ creat-

ing compartments at the plasma membrane [2,16,17,38]. In this

case, the slope of the MSD–Dt plot will decrease at higher Dt
and become horizontal at MSD values close to 40% of the

size of a compartment (see equations 11–13 in [2]). This scen-

ario was simulated by dividing the cell membrane into square

compartments (figure 5a, top inset), using virtual ‘barriers’

restricting the objects’ movements into any neighbouring com-

partment. The example in figure 5a,b shows that if the barriers

are completely impenetrable, the average mobility decreases

twofold (figure 5a, grey line, and the electronic supplementary

material, video S5) compared with the freely diffusing mol-

ecules described previously (figure 4b). The MSD–Dt plot

became horizontal at MSD values close to 40% of the size of

the compartment. However, if the barriers became partially

permeable, the MSD–Dt plot became more linear (figure 5b),

which makes it difficult to distinguish between the slow

diffusion and fast diffusion limited by the barriers.

Another potential factor limiting movement at the cell

membrane is the presence of lipid rafts—that is, patches of

membrane that have high viscosity compared with the
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(time lag) plots (+s.e.m.) at increasing levels of permeability (0%, 10%, 20%, 40% and 80%). (c) Distribution of motilities of individual randomly moving objects
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surrounding membrane [7]. The simplest case of a lipid raft

scenario is shown in figure 5c, top inset, where square patches

are placed at equal distances from each other. On the example

shown in figure 5c,d, 1 � 1 mm2 patches were separated by

1 mm gaps, so the rafts cover 25% of the cell membrane. The

single molecule objects randomly seeded on the membrane

at the beginning of the run were concentrated in the raft

areas during the run. The rate and degree of crowding

would depend on the ratio of the mobility inside/outside

the raft patches (Rraft) and the absolute mobility value. If the

ratio was large (Rraft ¼ 0.1), then we would observe rapid

accumulation of molecules in raft patches (figure 5c, middle

inset, and the electronic supplementary material, video S6).

After an initial period of equalizing, the distribution of the

mobilities of tracked molecules became bimodal (figure 5c,

grey line), reflecting the fact that the majority of molecules

were concentrated inside the rafts [7]. It is important to note

that many molecules inside the crowded patches were not
detected and therefore were excluded from the data analysis.

The effect of the presence of the rafts was less detectable

when the mobility inside the rafts was close to the mobility

of the surrounding membrane (Rraft ¼ 0.8; figure 5c, black

line). The shape of the averaged MSD–Dt plot remained

linear (figure 5d) in a wide range of mobility ratios

(0.05–0.8). Thus, analysis of the distributions of mobility and

detection of clusters of molecules on the membrane is the

best method for detecting potential lipid rafts or other types

of membrane patches with increased viscosity.
3.3. Binding kinetics
Many classes of intracellular molecules can bind to the

plasma membrane and become membrane bound for some

period of time [10,14,15,31] (figure 6a, top inset). The follow-

ing example simulates transient binding of the Pleckstrin

homology (PH) domain of molecular motor myosin-10 to
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specific phosphoinositol phospholipids at the plasma

membrane [14]. Because PH molecules bound to a myoblast’s

membrane have very limited mobility, it was possible to use

the gated-illumination time-lapse imaging mode to measure

the dissociation rate. The binding rate (Rbind) was set to 1 �
106 s21 and Rdiss ¼ 0.05 s21. The concentration of fluorescent

PH-domain molecules was 2 nM, and the density of non-

fluorescent ‘phosphoinositol’ targets was 1 mm22. Under

these conditions, about 15% of PH-domain molecules were

bound to the plasma membrane (figure 6a and the electronic

supplementary material, video S7). To measure the dis-

sociation and photobleaching rates, the model was run in the

time-lapse mode (figure 1) with increasing dark intervals

between recorded images. The off-rate (the rate of disappear-

ance of the fluorescent spots ‘landed’ on the membrane

during recording) was measured and plotted against the

illumination duty ratio. The slope of the fitted regression line

was a measure of the photobleaching rate (0.499 s21), and

the intercept of the regression line with the y-axis was a

measure of the dissociation rate (0.046 s21) [14].

Some molecules, moving freely on the plasma membrane,

can bind to other molecules of the same (e.g. form

dimers [6,24,35]) or other (e.g. bind to immobile anchors

[3,25,27,34]) species. The last case scenario can be modelled by

the introduction of the two classes of membrane-bound mol-

ecules (one mobile and one immobile) and by allowing

molecules of one class to bind molecules of another class. For

example, randomly moving membrane-bound fluorescent mol-

ecules (density 0.5 mm22, Dlat¼ 0.3 um2 s21) bind to immobile

non-fluorescent molecules (density 0.5 mm22) randomly

placed at the cell membrane (electronic supplementary material,

video S8). The proportion of bound/free moving molecules will

depend on the binding and dissociation rates. At Rbind ¼ 1 �
105 s21 and Rdiss ¼ 1 s21, 45% of mobile molecules
were bound to immobile counterparts (approx. 10% at Rbind¼

1 � 104 s21). The results of detection and tracking, at Rbind¼

1 � 105 s21, showed a bimodal distribution of the mobilities of

the detected objects (figure 6b), where 23% of objects were com-

pletely immobile (average Dlat ¼ 0.16 um2 s21). The fraction of

tracked objects which showed a detectable period of immobiliz-

ation (mobile–immobile–mobile pattern) was small (358 of

4113, or approx. 9% of all objects detected in 10 model runs).

The distribution of ‘bound’ time had an exponential shape

(fitted off-rate 1.2 s21; figure 6b, inset). Because after the

moment of dissociation the tracked molecules were still visible,

we do not have to take into account the effect of photobleaching.
3.4. Discussion
This model uses the advantages of object-oriented pro-

gramming [29,39] to model diverse populations of single

molecules represented as objects of a given class. This approach

makes it easy to modify and extend the basic model in order to

simulate new types of experiment (for example, creating new

‘child’ classes of single molecules moving on filaments from

the ‘parent’ class of cytoplasm-based molecules) or to use

specific parts of the model (e.g. one specific class and one

type of imaging condition).

The continuous space model, which uses floating-point

physical coordinates, was chosen over the matrix-type model

[34,37] because it was not limited by the size of the matrix

elements in a three-dimensional space and, therefore, allowed

modelling of very small changes in the object’s position (less

than 1 nm). The limitation of the matrix-type model is poten-

tially an important issue when tracking objects with subpixel

accuracy [19] or modelling long-range movements arising

from frequent but small changes in an object’s position [21].

The possible introduction of a three-dimensional matrix into
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the continuous space model would allow representation of

complex cell structures (e.g. curved cell membranes, filopodia

and intracellular organelles of irregular shape).

Mammalian cells may contain many thousands of fluor-

escent molecules of one or more species [24,28]. Modelling

movements, interactions and fluorescence output for a few

thousand objects over a reasonable time period would require

substantial computer power. It would be difficult to run such a

model on a personal computer 10 years ago. However, nowa-

days, it possible to complete 1000–2000 image sequences in

just a few minutes. For example, a computer equipped with a

3 GHz, i7 processor (Intel Co, CA, USA) runs the present

model simulating 1000 cytoplasm-based molecules interacting

with 1000 membrane-bound molecules and building a fluor-

escent image every time step at a rate of approximately

10 cycles per second. So, even at a rate of 100 fps, the model

run will be only 10 times slower than real time.

The speed of the model run was increased dramatically by

the algorithm calculating the probability of binding between

each potential pair of reacting molecules. The solution was to

calculate the AIT for the classes of molecules with known mobi-

lity and physical sizes. In most cases, the AIT rapidly decreases

to negligible values at intermolecular distances greater than

0.5 mm (see figure 3 for details). Therefore, AIT values can be

calculated before the model run and stored in a look-up table.

This approach greatly reduces the number of calculations

during the model run. There was no need to calculate which

of the potential pairs was at the shortest distance—the eligible

molecules would eventually bind the closest neighbour owing

to the sharp increase in the AIT. This algorithm was tested by

modelling PH-domain binding to the specific phospholipids

on the cell membrane [14], modelling the binding of free

moving membrane-bound molecules to the immobile anchors

[25,27], and modelling transient dimerization of membrane-

embedded molecules [24]. In the case of PH-domain binding

to membrane phospholipids, the dissociation rate set in the

model (0.05 s21) was found to be very close to the actual

measured rate of 0.046 s21 (figure 6a, and see figure 4 in [14]

in order to compare it with 0.05 s21 from the real data analysis).

In the case of membrane-embedded molecules forming transi-

ent dimers (e.g. G-protein coupled receptors), the exponential

distribution of dimer lifetimes produced an estimated dis-

sociation rate, 1.2 s21, which was slightly higher than the rate

of 1 s21 set in the model and was very close to the measured dis-

sociation rate (1.3 s21) of muscarinic M1 receptors studied in

real two-colour imaging experiments (see figure 4 from [24]

and compare it with electronic supplementary material, figure

S2). These comparisons allow us to conclude that the proposed

model quantitatively reproduces the results of real single mol-

ecule experiments.
The examples presented in the Results and Discussion sec-

tions demonstrate the importance of realistic illumination and

fluorescence output modelling forcross-checking single molecule

experiments. It was shown that uneven illumination severely

affects the conclusions of single molecule data analysis—figure

4a shows that the use of a narrow laser beam for illumination

leads to the pseudo-bimodal distribution of intensities of the

detected molecules and to the wrong conclusion about the pres-

ence of a mixture of monomers and dimers, whereas, in fact, the

model sample contained only monomers. The summing of time

steps (figure 1) is required to build realistic fluorescent images of

fast-moving molecules acquired at a frame rate of 20–100 fps.

Otherwise, fast-moving fluorescent molecules would look like

static objects, which would affect the data analysis. This pro-

cedure is essential when different species of fluorescent

molecules are tested in one experiment or when fast-moving

intracellular molecules bind slow-moving or static molecules

(for example, binding to cell membrane (figure 6a) or to microtu-

bules (electronic supplementary material, figure S4f)).
This model can also be used for quantitative testing of some

specific hypotheses about single molecule dynamics in cells.

For example, even a modest level of permeability (10%) of a

putative potential membrane barrier [2] would dramatically

change the shape of the MSD–Dt plot (figure 5b) which is nor-

mally used to identify the confined diffusion [38]. Therefore,

other methods should be used to probe the presence of barriers

on a cell membrane. It has also been shown that single mol-

ecules moving at the membrane containing lipid rafts would

have a linear shape of an averaged MSD–Dt plot (figure 5d ),

but the shape of the distribution of the mobility of the individ-

ual molecules would become bimodal (figure 5c, grey line) and

the majority of the molecules would concentrate inside the rafts

[7] if the level of mobility inside the rafts falls below 10% of the

mobility outside the rafts (figure 5c, middle inset, and

electronic supplementary material, video S6).

The results of modelling of some other important single mol-

ecule experiments are presented in the electronic supplementary

material. These include the use of the two-colour imaging [24]

for testing the monomer–dimer transitions; subunit counting

in membrane-bound tetramers [36]; and modelling single

molecule dynamics in the presence of intracellular structures.
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