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Abstract

Background: Histone post-translational modifications play crucial roles in epigenetic regulation of gene expression
and are known to be associated with the phenotypic differences of different cell types. Therefore, it is of
fundamental importance to dissect the genes and pathways involved in such a phenotypic variation at the level of
epigenetics. However, the existing comparative approaches are largely based on the differences, especially the
absolute difference in the levels of individual histone modifications of genes under contrasting conditions. Thus, a
method for measuring the overall change in the epigenetic circumstance of each gene underpinned by multiple
types of histone modifications between cell types is lacking.

Results: To address this challenge, we developed ICGEC, a new method for estimating the degree of epigenetic
conservation of genes between two cell lines. Different from existing comparative methods, ICGEC provides a
reliable score for measuring the relative change in the epigenetic context of corresponding gene between two
conditions and simultaneously produces a score for each histone mark. The application of ICGEC to the human
embryonic stem cell line H1 and four H1-derived cell lines with available epigenomic data for the same 16 types of
histone modifications indicated high robustness and reliability of ICGEC. Furthermore, the analysis of the
epigenetically dynamic and conserved genes which were defined based on the ICGEC output results demonstrated
that ICGEC can deepen our understanding of the biological processes of cell differentiation to overcome the
limitations of traditional expression analysis. Specifically, the ICGEC-derived differentiation-direction-specific genes
were shown to have putative functions that are well-matched with cell identity. Additionally, H3K79me1 and
H3K27ac were found to be the main histone marks accounting for whether an epigenetically dynamic gene was
differentially expressed between two cell lines.
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Conclusions: The use of ICGEC creates a convenient and robust way to measure the overall epigenetic
conservation of individual genes and marks between two conditions. Thus, it provides a basis for exploring the
epigenotype-phenotype relationship. ICGEC can be deemed a state-of-the-art method tailored for comparative
epigenomic analysis of changes in cell dynamics.
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Background
Gene regulatory networks consist of trans-factors and cis-
elements whose interaction with each other governs gene
expression dynamics. Conversely, changes in the level and
pattern of gene expression might rewire an existing gene
regulatory network, leading to cell fate decisions [1], disease
development [2] or adaptive evolution of a species [3, 4].
Thus, methods for identifying differentially expressed genes
(DEGs) between two conditions of interest have flourished
in recent years [5–9]. These methods help to prioritize genes
responsible for complex traits and diseases in humans [2]
and yield novel insights into cell fate determination [10].
Despite significant progress, an obvious drawback of this
type of method is that the molecular mechanism for the dif-
ferential expression of particular genes remains unidentified.
With the explosive accumulation of histone modification

data, the epigenetic mechanisms underlying gene expression
dynamics and cell identity have been extensively investigated
[11–14]. Histone modifications have been shown to play
regulatory roles in hESC differentiation [15, 16] and to be
closely related to interspecies differences in gene expression
in primates [17, 18]. Although a few studies have disputed
the causal effect of histone modifications on gene transcrip-
tion [19–21], most previous studies have supported the
important roles of individual histone modifications in the
modulation of transcription [3, 22–24]. Consequently, a gen-
eral picture has emerged with regard to the combinatorial
effects of a few core histone marks: H3K4me3 usually occu-
pies sites in the genome together with H3K27ac, appearing
near the transcriptional start sites (TSSs) of active genes
[25–27]; both H3K4me1 and H3K27ac frequently occur in
the sequences of active enhancers, whereas H3K27me3 and
H3K9me3 are characteristic of transcriptional suppression
[2, 22, 28, 29]. The availability of dozens of types of histone
modification data has also spurred intensive research on the
quantitative relationship between gene expression and mul-
tiple histone marks via various machine learning methods
[30–34], including state-of-the-art deep learning algorithms
[35]. In general, these studies indicate that the levels of mul-
tiple histone marks can predict the expression levels and
even the differential expression of genes [36].
Moreover, some specific types of histone modifications

in combination can even instruct the future expression
pattern of associated genes. For example, so-called
‘bivalent promoters’ marked with both active H3K4me3

and repressive H3K27me3 marks allow the correspond-
ing genes to be either activated or repressed during the
differentiation of hESCs in a manner dependent on
future specific developmental signals [37, 38]. Thus, the
development of methods that can extract the complex
information implied in dozens of histone modifications
is particularly important. ChromHMM is one method of
this type that enables the chromatin state to be automat-
ically learned from the combinatorial signal of multiple
histone marks [12, 39], and the power of ChromHMM
has been shown in the study of cellular reprogramming
[40]. ChromDiff, which is one of the very few methods
focusing on epigenomic comparisons, compares the
combinatorial chromatin states between groups of epi-
genomes [41]. dPCA is another method that compares
the epigenomic signal across multiple marks under mul-
tiple conditions [42]. Essentially, the two comparative
methods utilize either the absolute levels of the raw
signals of multiple histone marks or the derived chroma-
tin states thereof to reveal the differentially regulated
genes or different regulatory genomic regions between
different conditions.
The gene transcriptional state is subject to the control

of complex and intricate interplay between multiple his-
tone readers, writers, and erasers [43]. Additionally, the
functionality of a gene can be determined by the relative
change rather than the absolute levels of its own or part-
ner gene expression. For example, the fold-change detec-
tion property of an incoherent feedforward loop is a
result of the specific interaction mode between genes,
wherein the transcription dynamics of the output gene
depend on the relative rather than the absolute change
in the input signal [44]. It has been reported that the
expression of certain genes in the Wnt [45] and ERK
signaling systems [46] is characterized by such proper-
ties. Therefore, methods that consider both the relative
(rather than the absolute) changes among multiple
histone modifications and the pairwise correlations be-
tween genes are urgently needed for global epigenome
analysis. Specifically, in contrast to traditional methods
comparing the absolute epigenomic signals of conspe-
cific or orthologous genes between conditions, an ideal
new comparative method should be based on the gene
context similarities between two conditions to be com-
pared. Here, the context of a gene is reflected in a vector
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of the correlation values calculated between that gene
and all the other genes with regard to the epigenetic cir-
cumstance: the joint signal of multiple histone modifica-
tions pertaining to a particular gene. However, to the
best of our knowledge, no methods with these features
have yet been implemented.
This problem motivated us to propose ‘iterative com-

parison of gene epigenetic circumstance’ (ICGEC), a new
method that utilizes the integrative signal of multiple
histone marks to derive gene scores and mark scores for
two cell lines to be compared. These scores represent
the relative changes in the epigenetic context of corre-
sponding genes and marks, respectively, between two
conditions. We elaborate the concept of ICGEC and de-
scribe its principle. For the purpose of demonstration,
we apply ICGEC to H1 human embryonic stem cells and
four cell lines derived from H1 cells with dozens of types
of histone modification data in common. Based on the
ICGEC-derived scores, we not only confirm the robust-
ness and reliability of ICGEC but also demonstrate that
ICGEC indeed provides novel biological insights into the
cell differentiation program.

Results
Construction of the epigenetic circumstance matrix of
genes
To prepare high-quality input data to be used by ICGEC,
gene epigenetic circumstance matrices that record the
levels of multiple histone marks per gene were produced
using a method applied in a recent study [47]. Princi-
pally, the multiple histone modification levels of genes

were estimated from the signal values of the correspond-
ing peaks within the 2 kb upstream to TSS plus the gene
body regions (Promoter+Body) (see Methods). To valid-
ate the result, the signal levels of the histone marks were
plotted for the human protein-coding genes with high
(RPKM> 10), intermediate (1 < RPKM≤10) and low
(RPKM≤1) expression levels. As expected, active marks
including H3K4me3, H3K36me3, H3K27ac etc., were
preferentially present in highly expressed genes, whereas
repressive marks, H3K9me3 and H3K27me3, were
enriched in genes with low expression (Fig. 1). A similar
pattern was observed when the epigenetic signal was
computed for promoter and gene body regions, separ-
ately (Additional file 1: Figure S1). Together, these re-
sults supported the validity of the estimated gene-centric
epigenetic levels. Accordingly, we constructed gene epi-
genetic circumstance matrices for the five cell lines.

Rationale and principle of ICGEC
Intuitively, the simplest way to find genes underlying cell
fate determination, the etiology of diseases and other
basic biology at the epigenetic level is to directly com-
pare the absolute levels of each epigenetic mark indi-
vidually under contrasting conditions, thus revealing
genes exhibiting differential modification of particular
marks as candidate genes for relevant biological phe-
nomena. Basically, the rationale for this method comes
from global gene expression analysis, which focuses on
transcriptional behavior instead. Despite its wide appli-
cation, the expression analysis method shows some limi-
tations because the underlying assumption that the

Fig. 1 Relationship between gene expression levels and associated epigenetic levels of different histone modifications. Boxplots show the
distribution patterns of the epigenetic levels of 16 investigated marks for genes in MSC with low expression (RPKM≤1), intermediate expression
(1 < RPKM≤10) and high expression (RPKM > 10)). The levels of histone modifications are from the entire gene locus (Promoter+Body regions).
Statistical analysis indicates that the genes with high expression have higher epigenetic levels than the genes with low expression for all except
for two repressive marks H3K27me3 and H3K9me3 that display an opposite trend (one-sided Wilcox rank-sum test, P-value < 0.05)
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method heavily depends on, i.e., that the cells to be com-
pared synthesize similar amounts of total RNAs, can be
violated on some occasions [48]. Therefore, the method-
ology for addressing epigenetic data might also reveal
erroneous genes that are unrelated to a real biological
difference. Essentially, the error is caused by the method
of the comparison, which focuses on the absolute level
of epigenetic modification. To address this issue, we pro-
posed a new comparative method that considers the
joint signal of multiple histone modifications rather than
individual signals, implicitly utilizes the relative signal
among marks and genes and outputs two sets of scores
as the estimates of the relative magnitude of the changes
with regard to the corresponding epigenetic context of
each gene and the gene context of each mark under the
two conditions.
Usually, one would estimate the similarities of different

genes in terms of their epigenetic circumstances between
two conditions with the Pearson correlation coefficients
of the pairwise vectors of epigenetic modification levels.
The previous method of “iterative comparison of co-
expression (ICC)” outperforms the conventional com-
parison method [49], which weights the conditions in
the gene expression profile equally to produce an ex-
pression context matrix [50], from which the degree of
expression conservation is estimated for all one-to-one
orthologous genes between two related species. Inspired
by this work, we introduced the concept of epigenetic
context, which is quantified for each gene (or mark) as
the set of correlation coefficients between a gene (or
mark) and all other genes (marks) with regard to the
similarities of corresponding epigenetic circumstances.
Because different genes and epigenetic marks may ex-
hibit different degrees of conservation across cell lines,
leading to unequal contributions to the comparison of
the overall epigenetic circumstance, it seems reasonable
to give relatively greater weights to those genes or marks
with higher conservation. To find the appropriate
weights, we adopted a strategy similar to that used in
ICC in the search for gene weights. The program itera-
tively updates the weights until convergence; these
weights are referred to as gene scores and mark scores
throughout this paper. The workflow of ICGEC is illus-
trated in Fig. 2. ICGEC can simultaneously estimate the
epigenetic conservation of genes and the conservation of
histone marks between two cell lines (see Methods).
Analogous to previous studies [49, 51], in general, a gene
with a larger gene score represents a more stable epigen-
etic context across cell lines. Ideally, a gene with a gene
score extremely close to + 1 means a full conservation of
this gene regarding its epigenetic state.
Typical users will use this method to answer questions

such as which genes in a cell may experience a substan-
tial change and which genes may be extremely stable in

terms of their epigenetic states during development or
after a treatment. For this purpose, users will need to
collect many types of genome-wide epigenetic data (e.g.,
histone modifications, DNA methylation, etc.) under the
two conditions. Upon applying ICGEC on the data, the
results will be provided as a set of scores for each gene
and a set of scores for each mark, from which the users
would be most interested in those genes or marks show-
ing the greatest changes between the two conditions,
which can be interpreted following our example below
(refer to Figs. 6a,b and Fig. 7 for details).

Validation of ICGEC by comparing H1 and MSC cell lines
To demonstrate the reliability of ICGEC, we applied
ICGEC to H1 and MSC cell lines that had available epi-
genomic data for the same 16 types of histone modifica-
tions. First, we ran ICGEC 10 times with random initial
weights. In all cases, both the gene scores and mark
scores were almost the same as those obtained by using
equal initial weights (Fig. 3a). Second, we applied ICGEC
to 10 sets of epigenetic circumstance matrices that were
downsized by sampling only approximately one quarter
of the genes in the full matrices. Consequently, ICGEC
converged to the same results (Fig. 3b). Together, the re-
sults verified the robustness of ICGEC. Third, we dis-
rupted the correspondence between the genes in the
original matrices by permutation. Consequently, rather
than peaking around a positive numeric value, the
resulting gene scores formed a moderately flat distribu-
tion between − 1 and 1 (Fig. 3c). Similarly, we shuffled the
histone modification marks, leading to the mark scores
being distributed around 0 for most marks (Fig. 3d). Thus,
the real gene scores and mark scores were generally
greater than would be expected at random, which was in
line with the intrinsic link between the two cell lines.
Next, we evaluated the relative importance of each his-

tone modification to the overall epigenetic circumstance
by running ICGEC on the data removing one mark each
time. The greater the difference in the gene scores pro-
duced between the use of the full data and the leave-
one-mark-out data, the stronger the effect of the mark
was on the overall epigenetic circumstance. As indicated
by the correlation coefficients, the absence of H3K9me3,
H3K27me3, H3K79me1 or H3K36me3 alone led to
appreciable changes in the gene scores (Fig. 4a). A con-
founding factor for the results is the peak type of histone
modifications since the four marks are known to have
broad peaks in ChIP-Seq data. To clarify this issue, we
redid the “one mark removal” analysis using downloaded
NarrowPeak data files for the same set of histone marks.
Consequently, the peak type seemed to have a limited
influence: the top-four marks displaying the largest
changes in gene scores (Additional file 1: Figure S2)
remained as before, despite that their order has changed.

Tang et al. BMC Genomics          (2020) 21:356 Page 4 of 19



Thus, we demonstrated the indispensable effects of four
histone marks on the establishment of the epigenetic cir-
cumstance of genes. These results were understandable
because these four marks play well-known regulatory
roles in gene expression [22, 28, 29, 52]. On the other
hand, the gene scores seemed to remain unchanged
upon the removal of other marks. In addition, the mark
scores were largely unchanged relative to the original
values. Together, these results indicated high redundancy

of these histone marks contributing to the overall epigen-
etic circumstance (Fig. 4b). This phenomenon suggests
that ICGEC might be robust even when applied to a par-
tial dataset comprising a particular subset of marks from
the full data.
Given the close relationship between histone modifica-

tion and gene expression, we reasoned that the ICGEC-
derived gene score that was based on the epigenetic status
of genes should reflect the expression dynamics of genes

Fig. 2 Overall flowchart of ICGEC. The core ICGEC algorithm begins with two normalized matrices (G2MC1m
G�M , G2M

C2m
G�M) from cell lines C1 and C2 to

be compared. Then, the wm-based weighted correlation for each gene pair is calculated to produce the context matrices of the genes G2GC1
G�G

and G2GC2
G�G , respectively. Next, the program enters into the 1st inner loop, where wg is iteratively updated until convergence. Then, the wg-based

weighted correlation for each mark pair is calculated to produce the context matrices of the marks (M2MC1
M�M , M2MC2

M�M) from the corresponding

normalized matrices G2MC1g

G�M and G2MC2g

G�M , respectively. Once it is done, the program enters into the 2nd inner loop, where wm is iteratively
updated until convergence. Finally, the program judges whether the new weights are sufficiently close to the weights in the last round. If yes,
the program ends up with wg and wc returned as the gene score and mark score, respectively; otherwise, the program enters the outer loop. It
should be noted that all of the produced weighted correlations of less than zero must reset to 0 during the iterative process to meet the
demands of biological significance. wg represents gene weights, and wm represents mark weights. The right panel highlights the calculation
process for the two inner loops
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to some extent. As expected, the gene scores were signifi-
cantly lower for the genes showing at least a two-fold
change in expression level than in those without such a
change (one-sided Wilcox rank-sum test, P-value = 7.57 ×
10− 102). However, this pattern disappeared for simulated
data (Additional file 1: Figure S3). Additionally, when
genes were sorted by their gene scores and categorized
into 20 equal-sized bins, the numbers of essential genes
and DEGs contained in each bin gradually increased and

decreased, respectively, with the increase in gene scores
(Fig. 4c). Furthermore, the removal of the abovementioned
four marks resulted in a different degree of reduction in
the number of DEGs in the bin with the lowest gene
scores (Fig. 4d), providing indirect evidence that these his-
tone marks act as important regulators of gene expression
[30]. Taken together, the results showed that ICGEC is
reliable in that the ICGEC-derived scores reflect biologic-
ally significant changes in the epigenetic circumstance of

Fig. 3 Robustness of ICGEC. a Sensitivity of the ICGEC algorithm to random initial weights. ICGEC was run 11 times, one time with equal weights,
and the other 10 times with randomly chosen initial weights. The correlation coefficients in regard to the gene scores (upper) and mark scores
(lower) between the use of equal weights and random initial weights after 1 to 12 iterations are indicated. b Sensitivity of the ICGEC algorithm to
a random subset of genes. ICGEC was run 11 times, one time with the full gene sets, and the other 10 times with approximately one-quarter
randomly selected genes in the full gene sets. The correlations for gene scores (upper) and mark scores (lower) are indicated between the use of
the full and partial data. It should be noted that the correlation coefficients were computed only for the sampled subset of genes. c Distributions
of gene scores produced with original data (yellow) and permuted data (gray). d Mark scores produced with original data (blue) and permuted
data (gray). The permuted data used in c and d were produced by breaking the row equivalence and column equivalence, respectively, of the
original two ordered epigenetic circumstance matrices from H1 and MSC by shuffling. ICGEC was run 10 times to produce 10 different permuted
datasets, from which the distributions of gene scores and marks scores were generated. The data in d are presented as the mean ± sd
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genes and to some extent mirror gene expression
dynamics.

ICGEC can reveal cell differentiation-related biological
processes
Triggered by various developmental cues, the human H1
cell line can be differentiated into different derived cell
lines. Considering two developmental programs of cell
fate determination, some genes may experience similar
changes in expression in both differentiation directions,
while some other genes may undergo an expression shift
in only one specific direction. The same rules apply to
the epigenetic status of genes. Therefore, an interesting
question concerns the correspondence between genes
showing alterations in their epigenetic circumstances
and genes showing dynamic expression. To explore this
issue and to demonstrate the potential biological signifi-
cance that ICGEC may reveal, we performed the following

comparative analysis. We divided the genes into four
equal groups: the genes in the group with the lowest gene
scores were defined as epigenetically dynamic genes
(EDGs), whereas the genes in the group with the highest
gene scores were defined as epigenetically conserved genes
(ECGs). Focusing on two specific differentiation processes,
1793 and 919 genes were only found to be differentially
expressed from H1 to MSC and H1 to NPC, respectively,
while 604 genes displayed significant expression changes
in both directions. In turn, 2597, 2639 and 2323 corre-
sponding EDGs were identified (Fig. 5a). Using a permuta-
tion test (see Methods), we found that the DEGs in the
“common”, “H1-to-MSC-only” and “H1-to-NPC only”
groups significantly overlapped with these corresponding
EDGs (Fig. 5b). Intriguingly, significant overlap was also
observed between ECGs and DEGs, but the degree of
overlap was lower than that between DEGs and EDGs, as
expected (Additional file 1: Figure S4A, B). We performed

Fig. 4 Reliability of ICGEC. a Correlation of gene scores between the use of the full data and the leave-one-mark-out data. The labels on the x-
axis indicate the individual marks to be removed during ICGEC calculation. b Heatmap showing the mark scores obtained with the full data and
the leave-one-mark-out data. Each colored cell indicates the mark score of a specific mark (y-axis) produced from datasets with either all marks
(“full”) or all but one mark (x-axis). c Barplot showing the number of DEGs (blue) and essential genes (gray) included in the gene sets with
different levels of epigenetic conservation. The 20 gene sets from left to right presented the lowest to highest gene scores. Genes were classified
into bins with proximately equal sizes according to their gene scores. d Number of DEGs in the most epigenetically dynamic gene set versus the
composition of the mark sets. The labels on the x-axis indicate that either all marks or all but one specific mark were used by ICGEC
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the same analysis by randomly selecting two other pairs of
derived cell lines. As a result, similar patterns were ob-
tained (Additional file 1: Figure S4C-F).
The EDGs assigned to the three categories allowed us to

further elucidate the biological processes associated with
the alteration of the epigenetic circumstance in only one
or two differentiation directions. Remarkably, the EDGs
identified only in the differentiation from H1 to MSC
(H1-to-MSC-only) were enriched in biological processes
related to terms such as “regulation of locomotion”, “posi-
tive regulation of multicellular organismal process”, “regu-
lation of cellular component movement”, “extracellular
structure organization”, and “blood vessel morphogen-
esis”, which seemed to be concordant with the physiology
of MSC. In contrast, the EDGs in the “H1-to-NPC-only”
group were enriched in the “G protein-coupled receptor
signaling pathway” and “nervous system process” terms,
which seemed to match the identity of NPC quite well
(Fig. 5c). However, biological process terms such as

“cellular component morphogenesis”, “regulation of ana-
tomical structure morphogenesis”, “positive regulation of
JNK cascade”, “endoderm development” and “cellular
component morphogenesis” were only enriched for the
EDGs in the “common” group. Therefore, these results in-
dicated that the genes sorted by ICGEC based on the
change in the epigenetic state can provide a reasonable
explanation for expression dynamics during cell differenti-
ation, at least from the perspective of epigenetics.
Overall, we not only demonstrated the epigenetic

mechanisms underlying the dynamic expression of genes
involved in cell fate decisions but also verified that
ICGEC is useful for identifying biologically significant
genes and processes during cell development.

ICGEC can identify differentiation direction-specific signatures
Cell line-specific genes are critical determinants of cell
identity. Therefore, it is fundamental to study differenti-
ation direction-specific genes. Traditionally, these genes

Fig. 5 Significant correspondence between epigenetic dynamics and expression dynamics. a Venn diagrams displaying the number of common
and direction-specific EDGs and DEGs during differentiation from H1 to MSC or NPC, respectively. The arrows indicate the three gene set pairs to
be tested for the degree of gene overlap. b Bar plot showing the proportions of DEGs in the corresponding EDGs. These proportions from
observed data were clearly significantly (P < 0.001) different from those from randomly permutated data. The simulated results are presented as
the mean ± sd. c Bubble chart showing the GO terms enriched for the three sets of EDGs. Dot sizes are scaled to the enrichment significance
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are determined by their expression patterns, and such
genes are collectively referred to as “marks”. To obtain
more comprehensive insight into the diversity of the differ-
entiation programs from H1 to different derived cell lines,
we screened the so-called “marks” that corresponded to
the four specific differentiation directions based on the epi-
genetic dynamics rather than the expression patterns.
Using the entropy-based method [13, 53, 54], 200, 543, 938
and 282 epigenetically dynamic differentiation-direction-
specific genes (DDSGs) were identified that displayed sig-
nificant changes in their epigenetic circumstance during
the differentiation of H1 into a specific derived cell line

(Fig. 6a). Strikingly, the known cell line-specific marks de-
termined by expression were mostly recovered from the
four sets of DDSGs (Fig. 6a). Furthermore, biological pro-
cesses related to stem cell maintenance and differentiation
were enriched for the DDSGs. For example, the DDSGs
corresponding to the differentiation from H1 to MSC were
enriched in “extracellular structure organization”, “animal
organ morphogenesis”, “tissue morphogenesis”, “skeletal
system development” and “connective tissue development”,
which appeared to be highly consistent with the character-
istics of MSC [55, 56] (Fig. 6b). The DDSGs associated
with TBL were overrepresented in terms such as “pituitary

Fig. 6 Characterization of DDSGs and DDUGs. a Heatmap showing the gene scores of DDSGs. Genes are organized by the cell line in which the
epigenetic conservation is lowest across the four developmental directions. Known mark genes defined by expression pattern that happen to be
DDSGs are shown on the right. b Bubble chart displaying the overrepresented GO terms for DDSGs. c Heatmap showing the gene scores of
DDUGs. d Comparison of mark scores for each histone mark across the four differentiation directions. The data are clustered for better
representation. The labels on the x-axis in (a-d) represent the specific derived cell line-associated differentiation directions
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gland development” and “nephron morphogenesis”. In
parallel, DDSGs that corresponded to the other two dif-
ferentiation directions were enriched in related bio-
logical processes (Fig. 6b). Additionally, we determined
745 epigenetically conserved differentiation-direction-
ubiquitous genes (DDUGs) that exhibited consistently
high epigenetic conservation across the four differen-
tiation processes (Fig. 6c). As expected, essential
genes were enriched in the DDUGs (Hypergeometric
test, P-value = 5.57 × 10− 90). Therefore, the results in-
dicated that ICGEC enables the reliable identification
of differentiation direction-specific signatures.
Particular genes may undergo significant changes dur-

ing the cell differentiation process with regard to the
epigenetic circumstance; on the other hand, some spe-
cific types of histone modifications may undergo rela-
tively large changes during the same process. As shown
in Fig. 6d, regardless of the absolute magnitude of the
mark scores for different histone modifications, histone
acetylation marks such as H4K8ac, H3K4ac, H3K18ac
and H3K9ac displayed considerable variation across dif-
ferent differentiation directions, which suggested that
these marks may play important but distinct roles in dif-
ferent developmental trajectories. In a sense, this result
was compatible with the observation that global deacety-
lation of histones is required during stem cell differenti-
ation [57, 58]. In summary, ICGEC provides a basis for a
comprehensive comparative analysis across multiple cell
lines based on the integrated epigenetic data of genes,
thereby revealing novel biological insights.

DEGs and non-DEGs within EDGs exhibit distinct
biological significance
Although the EDGs included disproportionately high
numbers of DEGs, they also included a considerable
number of non-differentially expressed genes (non-
DEGs) that exhibited higher gene scores than the DEGs
among the EDGs on average (Additional file 1: Figure
S5). We sought to understand why some of the EDGs
were DEGs while others were not between two cell lines.
Considering that the ICGEC just provides a measure of
overall epigenetic conservation of genes and marks, we
speculate that the different expression dynamics of the
DEGs and the non-DEGs might be related to the differ-
ence in the influence degree of the different marks on
the two sets of genes. To explore this possibility, we sim-
ply compared the DEGs and the non-DEGs with regard
to the dynamics of each mark acting on them. Specific-
ally, we calculated the Pearson correlation coefficient of
each histone modification between before and after the
cell differentiation of H1 for the DEGs and the non-
DEGs, separately. When the marks were sorted by the
difference in the similarity between DEGs and non-
DEGs, H3K79me1 and H3K27ac stood out, as they

always exhibited relatively large differences across the four
differentiation directions (Fig. 7a and Additional file 1:
Figure S6A-C). Additionally, for most marks, such similar-
ities were smaller for the DEGs, indicating that the epigen-
etic circumstance was more dynamic in the DEGs than in
the non-DEGs. Furthermore, we related the changes in
gene expression to the changes in the marks between two
cell lines to be compared for the DEGs and the non-DEGs
separately. Consequently, all but two repressive marks,
H3K27me3 and H3K9me3, were found to be positively as-
sociated with gene expression to varying degrees, which
was highly consistent with the known functions of these
marks in gene regulation. It was no coincidence that
H3K79me1 and H3K27ac were among the few marks
showing the greatest reduction in correlation between the
expression changes and epigenetic changes in DEGs rela-
tive to those in non-DEGs across the four differentiation
directions (Fig. 7b and Additional file 1: Figure S6D-F), as
they have well-documented regulatory functions in gene
transcription [59, 60]. The overall conclusions hold when
using the Spearman correlation, which is robust to ex-
treme values and outliers, although the exact order of
marks has changed as compared with the results of using
the Pearson correlation (Additional file 1: Figure S7).
In addition, GO enrichment analysis clearly distinguished

the DEGs from the non-DEGS identified between H1 and
MSC: the former were significantly associated with terms
such as “regulation of multicellular organismal develop-
ment”, “regulation of cell differentiation”, “regulation of
anatomical structure morphogenesis” and “regulation of
cell development”, while the latter were enriched in terms
such as “cell-cell adhesion via plasma-membrane adhesion
molecules” (Fig. 7c). In addition, TFBS enrichment analysis
indicated that the DEGs and non-DEGs were preferentially
targeted by distinct TFs: the former were collectively regu-
lated by dozens of TFs with diverse functions, such as TFs
related to the cell cycle (E2F family, TFDP1), early develop-
ment (SP, EGR family) and cellular growth (NRF1), whereas
the latter were favored by a muscle differentiation-related
TF, Myog (Additional file 1: Figure S8). Therefore, the
ICGEC-derived results in combination with differential ex-
pression analysis may provide a basis for understanding the
distinct molecular functions of DEGs and non-DEGs
among EDGs during cell fate determination.
Overall, our in-depth analysis not only provided evidence

that the different marks may contribute to the altered epi-
genetic circumstances between the DEGs and non-DEGs but
also indicated that the ICGEC-derived results provide a start-
ing point from which genes with distinct expression dynam-
ics and accompanying biological functions can be identified.

Discussion
In this study, we proposed ICGEC, a novel method for
quantifying the relative degree of epigenetic conservation
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of genes and marks between two cell lines. Although
ICGEC will become ICC if all the marks are given the
same weights throughout the process of computation, it

is quite different from ICC, which only characterizes
genes in terms of their epigenetic dynamics, as ICGEC
can simultaneously assess the conservation of histone

Fig. 7 Distinct epigenetic signatures and biological functions between DEGs and non-DEGs among EDGs. a Pearson correlations in terms of the
histone modification levels between H1 and MSC for DEGs and non-DEGs. b Pearson correlations in terms of the expression changes and
epigenetic changes for each mark for DEG and non-DEGs. Here, the expression change was calculated for DEGs and non-DEGs as the difference
in the expression levels of the corresponding genes divided by the sum between H1 and MSC. Similarly, the epigenetic changes for each mark
were calculated. The marks in (A-B) are positioned by the difference in the correlations between DEGs and non-DEGs in ascending order. c
Bubble chart showing different GO terms enriched for the DEGs and non-DEGs

Tang et al. BMC Genomics          (2020) 21:356 Page 11 of 19



marks. To the best of our knowledge, no other methods
developed thus far exhibit this characteristic. Interest-
ingly, although ICC implicitly employs equal mark
weights rather than more appropriate weights such as
those used in ICGEC, a primary analysis of H1 and MSC
indicated that ICC yields similar outcomes to ICGEC in
terms of gene scores (data not shown). This seems to be
understandable, as reflected by the relatively high and
similar ICGEC-derived mark scores for almost all except
for one or two marks (Fig. 3d). However, we consider it
a coincidence because the two methods are designed for
addressing different challenges. In order to solve the dif-
ficulty of cross-species gene expression comparison that
the transcriptomes to be compared are unusually from
different set of conditions, making it infeasible to dir-
ectly compare the expression data from two species, ICC
was proposed to compare the expression context rather
than the expression profiles. Its essence is to compares
the architecture of the co-expression networks. While
ICGEC, bearing in mind that different epigenetic marks
contribute to gene regulation in varying degrees, was
proposed to evaluate the epigenetic conservation for
both genes and marks between two cell types of a same
species. Therefore, the two algorithms applying to a
same data would result in different results regarding the
conservation of genes only if a large variation is existed
among the marks regarding their contribution to the
overall epigenetic context. A great advantage of ICGEC
over ICC is that ICGEC is able to determine the relative
extent to which a mark might play a major or minor role
in maintaining the epigenetic circumstance of genes
across two cell lines genome wide. Most importantly, as
illustrated in Fig. 7 and Additional file 1: Figure S6A-C,
by jointly analyzing gene expression and the ICGEC-
derived results, we can reveal the epigenetic mechanism
underlying the different expression patterns of different
sets of genes between two conditions, which may improve
our understanding of gene transcription regulation.
During implementation, the ICGEC algorithm utilizes two

context matrices, G2GC
G�G and M2MC

M�M, both of which are
derived from G2MC and used for estimating the similarity of
the epigenetic context between corresponding genes and
marks, respectively, under two conditions. Basically, we could
produce a similar estimate based on the epigenetic circum-
stance by directly comparing the G2MC1 and G2MC2 of two
cell lines. This means that we implicitly consider the archi-
tecture of the gene regulatory network equivalently under
the two conditions and admit that the raw epigenetic signal
values are comparable. However, in many cases, the raw data
from two conditions may be ill matched; they could be
produced by different experimental techniques or different
laboratories. Therefore, a transformation operation is neces-
sary, which ensures the reliability of ICGEC.

The negative ICGEC scores observed in this study are
harder to interpret in a biological context than the non-
negative scores because it is generally easy for us to
accept that a gene with a score very close to 1 indicates
that gene with a near perfect epigenetic conservation
and a gene with a score around 0 indicates the gene with
a very low conservation, but it is more difficult to under-
stand the negative score. So it is appealing to implement
a new scoring system limited by [0,1]. The simplest way
to achieve the goal is to perform a linear transformation
on the original scores. However, a serious defect of such
kind of transformation is that the real difference of the
original scores derived from different comparisons is
masked. In fact, the negative score can be understood
according to how the ICGEC scores are produced. Basic-
ally, the scores are the weighted PCCs of two big vectors
corresponding to the epigenetic context of two condi-
tions. So theoretically, the scores can be any values
between − 1 and + 1. However, due to the intrinsic bio-
logical connection between the cells to be compared, for
a vast majority of genes, their gene scores are positive,
only a very small number of genes being negative. In
contrast, when the biological relationship is broken or
weakened, the scores shift to the side of lower values:
the number of genes with negative scores will increase,
but the number of genes with positive scores will de-
crease (Fig. 3c and Additional file 1: Figure S9). So
ideally, if the raw data matrices from two closely related
cell lines have no noise, the genes with a full conserva-
tion should get a score of + 1, while the genes with the
lowest conservation should get a score close to 0. How-
ever, in reality there exist noise from various sources, so
that a small number of genes would inevitably get
numerically negative ICGEC scores. In our view, the epi-
genetic status of these gene has substantially changed
just like those genes with gene scores around 0.
We evaluated the relative importance of individual

marks to the overall epigenetic circumstance using
“mark removal” analysis. In essence, unary, binary, tern-
ary, quaternary and any plausible n-ary mark removal
analyses could be performed to systematically explore
the effects of any higher-order combinations of marks
on the gene scores. This kind of analysis would be useful
to identify those marks as a whole that their combined
functions are currently unknown but they indeed play a
potential role in gene regulation via a yet unknown
complex functional interplay, thereby spurring new hy-
potheses. In addition, the “mark removal” analysis also
revealed the high redundancy among the marks, suggest-
ing that the results might be robust even when applying
ICGEC to some particular subsets of marks. When data
collection is technically difficult or costly for some
marks, it becomes especially important for a method,
like ICGEC, capable of using a subset of marks to

Tang et al. BMC Genomics          (2020) 21:356 Page 12 of 19



produce results comparable to those obtained with full
datasets. An ensuing question is how to find the subset
of marks. A straightforward method is to perform a
series of n-ary mark removal analysis to evaluate the
equivalence between all possible sets of marks based on
the change in gene score. However, it should be pointed
out that there are also some caveats for using only a sub-
set of marks. First, it would be impossible to find a
unique subset of marks. For example, supposing seven
marks A-G are under study, if the removal analysis indi-
cates that mark A represents an equivalent contribution
as mark B, mark C in combination with mark D is
equivalent to the combination of marks E, F and G, then
four schemes (marks A, C and D; marks A, E, F and G;
marks B, C and D; marks B, E, F and G) are valid with
regard to the subsets. Second, the larger statistical noise
during the course of PCC calculation resulting from
using less marks might be further exaggerated due to
the iterative process of ICGEC, leading to a worse result.
Third, although many studies have revealed that a few
“core” marks are sufficient to predict gene expression,
other marks can still exert their influence to gene regula-
tion, probably acting on a smaller set of genes and/or in
a more subtle manner. In a word, running ICGEC with
less marks seems to provide a reasonable alternative
solution to the same question, but it must be used care-
fully, particularly in the situation that only a few marks
are involved in the analysis.
Given the close relationship between gene expression

and epigenetic modifications, one might think that a gene
with a significant change in gene expression level should
experience a significant change of its epigenetic status.
Thus, it seems counterintuitive that the ECGs had a signifi-
cant overlap with the DEGs. While research progress in
the past decade has proved that gene expression is
subjected to a complex and multi-layered regulation [61].
Besides histone post-translational modification, DNA
modification, DNA accessibility, nucleosome occupation
and spatial topology of chromosomes have played import-
ant roles in gene expression regulation. Therefore, ICGEC
offers a new opportunity to distinguish these different
mechanisms for the change in gene expression level.
In this study, we applied ICGEC to the epigenomic

data of the human embryonic stem cell line H1 and four
cell lines derived from H1. The reason for choosing
these data was that the raw data were produced under
strict experimental curation and processed via a unified
analysis pipeline. In addition, the full datasets have been
subjected to extensive comparative epigenomic analysis
[13] and are frequently used as good data resources for
exploring other questions [15, 52, 62, 63]. While it must
be noted that ICGEC can be used with imperfectly-
matched data or data with low to moderate levels of
noise (Additional file 1: Figure S9) and that it is not

limited to the analysis of gene-centric metrics, ICGEC
can also be applied to the epigenomic data of noncoding
regions and extended for cross-species comparison. A
specific application of ICGEC is to create genome-wide
tracks of conservation for marks between two cell types
given the appropriate data. Basically, this can be accom-
plished in the following way. First, the genome can be
divided into 1Mb-sized windows. Second, for each win-
dow, 1000 non-overlapping regions of 1 kb are defined,
and their associated epigenetic levels for various marks
can then be estimated. Third, ICGEC is applied to calcu-
late the overall conservation of each mark in each 1Mb
window. Lastly, the genome-wide conservation can be
visualized for every mark.
In this study, the set of genes that were categorized as

epigenetically dynamic according to the ICGEC-derived
gene scores but were not identified as differentially
expressed caught our attention. Although DNA methyla-
tion is always a potential factor related to gene expres-
sion alteration [64], we sought to understand those
phenomena that may be related to or at least partially
caused by the changes in epigenetic circumstances
underpinned by dozens of types of histone modifica-
tions. Through detailed comparative analysis of DEGs
versus non-DEGs among the EDGs, we revealed that a
few marks, including H3K79me1 and H3K27ac, with
well-known functions in gene transcription regulation
might be involved in this process (Fig. 7a and b). In
addition, we showed that in striking contrast to the
DEGs favored by TFs related to processes such as the cell
cycle, early development and cellular growth, the non-
DEGs among the EDGs were preferentially targeted by
TFs involved in muscle differentiation (Additional file 1:
Figure S8). Coincidentally, MSC are committed to differ-
entiate into muscle, adipose, bone, cartilage and connect-
ive tissues during development [56]. Therefore, we
speculate with caution that the epigenetically dynamic but
non-differentially expressed genes might indicate a poised
state in which these genes would be activated in response
to an indicator of the next developmental stage. Strikingly,
the non-DEGs exhibited lower expression than the DEGs
on average in MSC (one-sided Wilcox rank-sum test, P-
value = 1.20 × 10− 93). Correspondingly, the levels of both
active H3K4me3 and repressive H3K27me3 were higher
in the non-DEGs than in the DEGs (one-sided Wilcox
rank-sum test, P-value =1.12 × 10− 5 and 3.80 × 10− 3,
respectively), which is reminiscent of the concept of a
“bivalent promoter” [38]. The identification of the exact
function of these non-DEGs and the molecular mechan-
ism underlying their transcriptional behavior awaits fur-
ther experimental verification.
So far, the results presented in the main text are based

on the epigenetic signal from the entire gene locus (Pro-
moter+Body). One might wonder whether the other way
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of quantifying the signals might influence the ICGEC re-
sults. To investigate this issue, we applied ICGEC to the
data of H1 and MSC, where the epigenetic signal was
recomputed by three other ways: 1) from the promoter
region alone; 2) from the gene body region alone; and 3)
from promoter and gene body regions, separately. Obvi-
ously, as shown from the similarity of gene scores, the
method of quantifying the epigenetic signal indeed has
influenced the ICGEC results (Additional file 1: Figure
S10). It seems that the “Promoter+Body” scheme pro-
duces gene scores very similar to that from the “Body
only” scheme, but differs with the “Promoter only”
scheme to the largest degree (Additional file 1: Figure
S10A). We also found a small variation regarding the
proportions of DEGs in EDGs among the four schemes,
whereas a relative large difference was observed for the
proportions of essential genes in ECGs (Additional file 1:
Figure S10B, C). In our view, it makes sense that the epi-
genetically conserved gene set should be enriched with
essential genes, while the epigenetically dynamics gene
set should be depleted with essential genes. Clearly, the
“Promoter+Body” scheme outperforms the alternatives
in this respect.
In this work, only the binary information of TF bind-

ing was used for the TFBS enrichment test. Actually,
adjacent TF binding sites for the same TF species
(homotypic clusters) are prevalent in the promoters and
enhancers of humans and other organisms [65]. Also, it
is suggested that the specific organization of homotypic
clusters can modulate the temporal dynamics of TF
binding through multiple physical mechanisms, thereby
influencing gene expression [66]. Therefore, the enrich-
ment analysis used here seems a bit simplistic. However,
if we distinguish one occurrence of a TFBS from
multiple occurrence, it may introduce additional noise
because the identification of cis-regulatory module in
which homotypic clusters reside is a pretty complex
process. Therefore, we chose the simple method to com-
pare the DEGs and non-DEGs within EDGs. Interest-
ingly, our primary analysis showed that for almost all the
TF that preferentially target the DEGs or non-DEGs,
their target genes contained in the DEGs or non-DEGs
indeed had statistically more TFBS instances in their
promoters than the targets within the whole protein-
coding genes (data not shown).
A common problem in cross-species gene expression

analysis is that the ill-match of expression datasets
causes a large difference in the distribution of gene-gene
correlation coefficients between different conspecific and
allospecific datasets. To overcome this problem, Guan
et al. proposed a metric, local network similarity (LNS)
to quantify expression divergence of orthologous genes
[67]. A merit of LNS is that it explicitly adjusts the vari-
ance of the distribution of within- and between-species

gene-gene correlation coefficients by adopting a two-
step normalization strategy: using the Fisher transform-
ation to transfer the correlation coefficients firstly and
then normalizing these data to the standard normal dis-
tribution. We compared two versions of ICGEC, either
embedding with the Guan’s normalization procedure or
without. As a result, the ICGEC scores were almost un-
changed (the PCCs for gene score and mark score are
0.987 and 0.963, respectively). It is understandable be-
cause it seems that the two distributions of gene-gene
correlation coefficients differed slightly, though statisti-
cally significant (Additional file 1: Figure S11). We advise
the users to run ICGEC with Guan’s normalization into
account if the distribution of the correlation coefficients
data represents a large difference between the two
conditions.

Conclusions
We proposed a new method, ICGEC, which provides a
convenient and robust way to measure the overall epi-
genetic conservation of individual genes and marks to be
investigated between two conditions. As exemplified by
the analysis of the basic process of human embryonic
stem cell differentiation, we demonstrated that ICGEC,
whether used alone or in combination with traditional
expression analysis, can provide novel biological insights.
Importantly, it is easy for us to apply ICGEC to other
genomic entities such as the genome-wide DNA-
hypersensitive sites, given that the relevant epigenetic
features are correctly calculated. In addition, ICGEC can
be flexibly used for between-species comparisons. There-
fore, this method can be deemed a general method tai-
lored for comparative epigenomic analysis.

Methods
Data collection
The original histone modification data and transcriptome
data from the H1 human embryonic stem cells and four
cell lines derived from them (mesendoderm cells (ME),
trophoblast-like cells (TBL), mesenchymal stem cells
(MSC), neural progenitor cells (NPC)) were produced by
the NIH Roadmap Epigenomics Mapping Consortium
[11]. In this study, sixteen types of histone modifications,
including H2AK5ac, H2BK120ac, H2BK5ac, H3K18ac,
H3K23ac, H3K27ac, H3K27me3, H3K36me3, H3K4ac,
H3K4me1, H3K4me2, H3K4me3, H3K79me1, H3K9ac,
H3K9me3 and H4K8ac, were included in the whole ana-
lysis because they were available for all five cell lines. For
these marks, downloaded processed data files in Broad-
Peak format were used to produce the epigenetic circum-
stance matrix. For the transcriptome data produced by
RNA-Seq, we downloaded a unified data (RPKM) file and
reads mapping (BAM) files for different purposes. The
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download links to these datasets analyzed in this study are
shown in Additional file 2: Table S1 and S2.
A total of 3316 human essential genes were retrieved from

the database of essential genes (essentialgene.org/) [68].

Construction of the epigenetic circumstance matrix of
genes
By reference to a recently published paper [47], the sig-
nal intensity of a mark on each gene (i.e., the level of
histone modification) was calculated as the weighted
sum of the peak signal values over all peaks within a spe-
cified genomic region. Here the peak signal value de-
notes the average intensity of each histone modification
peak, which was directly retrieved from the downloaded
BroadPeak format files. Basically, this calculation can be
represented by

Pn
p¼1Lp � Sp=Lg , where n is the total

peak number of a specific histone modification that are
either completely located within or partially overlapped
with an entire gene locus between 2 kb upstream to the
TSS and the TTS of this gene g; Lp is the length of a
peak overlapping with the genomic region; Lg denotes
the length of the whole region of focus on a gene g; and
Sp is the peak signal value. Accordingly, five epigenetic
circumstance matrices that corresponded to the respect-
ive cell lines were constructed. It must be noted that
there are other methods of quantifying the epigenetic
level of genes. For example, the signal intensity of a
mark can be estimated from the promoters alone, from
the gene body regions alone or from the promoter and
gene body regions, separately.

ICGEC method
Preprocessing and normalization of raw epigenetic data
matrices
First, for two cell lines, C1 and C2, to be compared by
ICGEC, their associated epigenetic circumstance matri-
ces, G2MC1 and G2MC2 , were ordered to ensure that the
equivalent rows corresponded to the epigenetic circum-
stances of the same genes and that the equivalent col-
umns corresponded to the epigenetic levels of all genes
for the same types of marks in the two cell lines. Next,
the matrices were preprocessed and normalized as fol-
lows. First, the genes in which at least half of the histone
modifications presented zero signals in both matrices
were discarded. Second, the resultant matrices were

logarithmically transformed. Third, two matrices, G2

MC1m
G�M and G2MC2m

G�M , were produced, which were scaled
by marks from the logarithmic matrices. Fourth, two

additional matrices, G2M
C1g

G�M and G2M
C2g

G�M , were pro-

duced, which were scaled by genes from G2MC1m
G�M and G

2MC2m
G�M , respectively. Accordingly, four normalized

matrices were prepared to be directly used by ICGEC.

The normalization procedure ensures that the resultant
matrices exhibit zero mean and unit variance with re-
spect to the marks and genes in each cell line, allowing a
meaningful comparison of the same genes and marks
between two conditions through their associated gene
profiles and mark profiles, respectively [69].

Iterative calculation of gene scores and mark scores
In general, the main program of ICGEC is comprised of
one outer loop and two inner loops, which are organized
into five main steps.
In the first step, the epigenetic context matrices G2

GC1
G�G and G2GC2

G�G were derived from G2MC1m
G�M and G2

MC2m
G�M , respectively, by calculating the weighted Pearson

correlation coefficients (wPCCs) between every pair of
genes using the wtd.cors function implemented in the R
package ‘weights’ [70]. This step represents the entry of
the outer loop. The first time through the loop, identical
initial weights of all marks were given.
Second, wPCCs were calculated for equivalent rows in

G2GC1
G�G and G2GC2

G�G , which corresponded to the esti-
mates of similarity between the epigenetic context of the
corresponding genes under two conditions. Identical ini-
tial weights of all genes were used. This step represents
the entry of the first inner loop. Through the inner loop,
new gene weights are returned, which will be used there-
after in the next cycle until convergence.

Third, the matrices G2M
C1g

G�M and G2M
C2g

G�M were con-

verted into M2MC1
M�M and M2MC2

M�M , respectively, by cal-
culating the wPCCs between every pair of marks. The
weights of the genes used herein were obtained from the
above inner loop.

Fourth, we manipulated the matrices M2MC1
M�M and M

2MC2
M�M in the same way as in the second step to obtain

mark weights instead of gene weights. Through this sec-
ond inner loop, the mark weights were updated until
convergence. Additionally, identical initial mark weights
were used.
Last, the main program judges whether the weights

that were just returned from the two inner loops pre-
sented sufficiently small differences from their predeces-
sors. If yes, the program will end with the gene weights
and mark weights returned; at this time point, these
weights are called gene scores and mark scores. If no,
the program will return to the first step and iteratively
update the weights until convergence. ICGEC is robust
to the initial gene weights and mark weights.

Identification of differentially expressed genes
The differentially expressed genes (DEGs) between H1
and the four derived cell lines were identified using Cuf-
flinks (Version 2.2.1) [71]. Specifically, the DEGs were
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defined as genes showing at least two-fold changes in ex-
pression levels and an FDR < 0.01. In total, 3425, 6262,
6968 and 5062 DEGs were obtained between H1 and
ME, TBL, MSC and NPC, respectively.

Permutation test
To reveal whether the genes with altered epigenetic cir-
cumstances and the genes showing dynamic expression
exhibited significant overlap, the observed number of
DEGs identified in only one or two differentiation direc-
tions in the corresponding EDGs was compared with
random expectation. The significance level was esti-
mated using a permutation test. Specifically, for the
DEGs identified in either differentiation direction, we
randomly repartitioned them into three sets with the
gene numbers equal to the sizes of corresponding ob-
served DEG sets, and the number of genes in the simu-
lated datasets that overlapped with the corresponding
EDGs was counted. This process was repeated 1000
times, and an empirical P value was derived by compar-
ing the actual values with the simulated data.

Gene ontology (GO) analysis
ToppGene [72] was used to identify enriched GO terms
in the gene sets of interest using default parameters. The
reference gene set was all of the genes included in the
matrices under comparison. The overrepresented GO
terms (Benjamini-Hochberg multiple test correction: q-
value < 0.05) with respect to the “Biological Process”
subontology were identified.

TFBS enrichment analysis
The potential transcription factor binding sites (TFBS)
in the genomic regions of 500 bp around the TSSs of the
target genes were scanned using FIMO with default pa-
rameters according to the PWMs of 572 known TFs
[73]. The PWMs were downloaded from the JASPAR
database (http://jaspar.genereg.net/downloads/). For
each TF, the hypergeometric test was used to determine
whether a gene set was preferentially regulated by the
TF relative to all of the genes addressed by ICGEC.

Identification of epigenetically dynamic differentiation-
direction-specific genes
To identify epigenetically dynamic differentiation-
direction-specific genes (DDSGs), we used Shannon
entropy-based method [13, 53, 54]. Specifically, all
negative gene scores were reset to 1.0 × 10− 6, and the
entropy of each gene with regard to its four ICGEC-
derived gene scores resulting from the comparisons
between H1 and the four derived cell lines was then
computed. Next, the DDSGs were further refined from
the genes with the bottom 20% entropy values. We re-
quired that the gene score of a DDSG in the associated

differentiation direction was at least 2.5 times lower
than in other directions and no more than the 5%
quantile of the entire gene score. Additionally, epige-
netically conserved differentiation-direction-ubiquitous
genes (DDUGs) were selected from the top 20% of
genes, whose gene scores were greater than the 80%
quantile of the entire gene score.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-6771-1.

Additional file 1: Figure S1. Relationship between gene expression
levels and epigenetic levels estimated from promoter and gene body
regions for different histone modifications. Boxplots show the distribution
patterns of the levels of 16 investigated marks from gene body (upper
panel) or promoter (lower panel) regions for genes in MSC with low
expression (RPKM≤1), intermediate expression (1 < RPKM≤10) and high
expression (RPKM > 10)). Statistical analysis indicates that the genes with
high expression have higher epigenetic levels than the genes with low
expression for all except for two repressive marks H3K27me3 and
H3K9me3 that display an opposite trend (one-sided Wilcox rank-sum test,
P-value < 0.05). Figure S2. Reliability of ICGEC on using the NarrowPeak
data. (A) Correlation of gene scores between the use of the full data and
the leave-one-mark-out data. The labels on the x-axis indicate the individ-
ual marks to be removed during ICGEC calculation. (B) Heatmap showing
the mark scores obtained with the full data and the leave-one-mark-out
data. Each colored cell indicates the mark score of a specific mark (y-axis)
produced from datasets with either all marks (“full”) or all but one mark
(x-axis). Figure S3. Comparison of the gene scores between genes show-
ing at least a two-fold change in expression level versus those without
such a change. Boxplots showing that the stably expressed genes
(|log2FC| ≤ 1) have a higher gene scores than the dynamically expressed
genes (|log2FC| > 1) between H1 and MSC. However, no such pattern
was observed for permuted data (right). Figure S4. Correspondence be-
tween genes showing alterations in the epigenetic circumstances and
genes showing dynamic expression. (A) Venn diagrams displaying the
number of common and direction-specific ECGs and DEGs during differ-
entiation from H1 to MSC or NPC, respectively. The arrows indicate the
three gene set pairs to be tested for the degree of gene overlap. (B) Bar
plot showing that the proportions of DEGs in the corresponding ECGs
are significantly higher than those from using randomly permutated data
for the comparison from H1 to MSC or NPC. The simulated results are
presented as the mean ± sd. (C-D) Bar plots showing that the proportions
of DEGs in the corresponding EDGs are significantly higher than those
from using randomly permutated data for the for the comparison from
H1 to MSC or NPC and for the comparison from H1 to MSC or TBL, re-
spectively. (E-F) Bar plots showing that the proportions of DEGs in the
corresponding ECGs are significantly higher than those from using ran-
domly permutated data for the comparison from H1 to MSC or NPC and
for the comparison from H1 to MSC or TBL, respectively. Figure S5.
Comparison of the gene scores between DEG and non-EDG among
EDGs. Boxplots showing that the gene scores of DEGs among EDGs are
significantly lower than those of non-DEGs among EDGs for the compari-
son between H1 and MSC. Figure S6. (A-C) Pearson correlations in terms
of the histone modification levels between H1 and ME, between H1 and
TBL, and between H1 and NPC, respectively, for DEGs and non-DEGs, re-
spectively. (D-F) Pearson correlations in terms of the expression changes
and epigenetic changes for each mark between H1 and ME, between H1
and TBL, and between H1 and NPC, respectively, for DEG and non-DEGs.
The similar method of creating Fig. 7a was used to calculate the expres-
sion changes and epigenetic changes for each mark for the DEGs and
non-DEGs. The marks in (A-F) are positioned by the difference in the cor-
relations between DEGs and non-DEGs in ascending order. Figure S7.
(A-D) Spearman correlations in terms of the histone modification levels
between H1 and MSC, between H1 and ME, between H1 and TBL, and
between H1 and NPC, respectively, for DEGs and non-DEGs, respectively.
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(E-H) Spearman correlations in terms of the expression changes and epi-
genetic changes for each mark between H1 and MSC, between H1 and
ME, between H1 and TBL, and between H1 and NPC, respectively, for
DEG and non-DEGs. The similar method of creating Fig. 7a was used to
calculate the expression changes and epigenetic changes for each mark
for the DEGs and non-DEGs. The marks in (A-H) are positioned by the dif-
ference in the correlations between DEGs and non-DEGs in ascending
order. Figure S8. TFs that preferentially bind to DEGs and non-DEGs
among EDGs, respectively, between H1 and MSC. The bar length repre-
sents the significance level of q-value (in logarithmic scale). Figure S9.
Effect of additional noise on the performance of ICGEC. (A) Density plot
showing the shift of the gene score produced from datasets without (s =
0) or with (s = 0.2, 0.4, 0.6, 0.8 and 1.0) additional artificial noise. (B) Hier-
archical clustering plot showing the similarity of gene scores produced at
different noise levels. The similarity is estimated as PCC over all genes
with regard to their gene scores. The arrow indicates the dataset without
additional noise. (C-D) Heatmaps showing the overlap degree of EDGs
(C) and ECGs (D), respectively, identified between using datasets with
additional noise at five levels and without. The EDGs or ECGs identified at
the five noise levels were divided into 20 bins of approximately equal
size, then the number of genes that were present at the equivalent bins
corresponding to the dataset without additional noise were counted. For
this part of analysis, we began with the epigenetic data matrices (s = 0)
from the H1 and MSC cell lines, then we added different levels of add-
itional noise to both matrices to produce artificially less perfect datasets,
finally we evaluate the performance of ICGEC based on the results shown
here. The added noise was derived from the distribution U (− 1, 1) × s × e,
where s represented the noise strength from low to high with corre-
sponding values from 0.2 to 1 with a step size of 0.2, e was the original
modification level, and U (− 1,1) denoted a uniform distribution from − 1
to 1. Our results indicate that ICGEC performs well in despite of low-to-
moderate level of noise. Figure S10. Comparison of ICGEC using epigen-
etic signal data from four methods. (A) Pair-wise Pearson correlation co-
efficient of ICGEC gene scores derived from using the four methods that
quantify the epigenetic signal of genes from the promoter alone (Pro-
moter), gene body regions alone (Body), from the promoter and gene
body regions (Promoter+Body), and from the promoter and gene body
regions, separately (Promoter+Body (32)). (B, C) Bar plot showing the
number of DEGs (B) and essential genes (C) in EDGs or ECGs, respect-
ively. The genes with ICGEC gene scores on the top and bottom one-
quarter of all genes were defined as epigenetically dynamic genes (EDGs)
and epigenetically conserved genes (ECGs), respectively. Figure S11.
Comparison of the distributions of gene-gene correlation coefficients be-
tween H1 and MSC cell lines. Density plot showing the distribution pat-
tern of gene-gene correlation coefficients, which were calculated from
the gene epigenetic context matrices for H1 and MSC cell lines, separ-
ately. Kolmogorov-Smirnov test indicates that two distributions are signifi-
cantly (P-value < 0.05) different from each other though the two density
plots seem to be similar to some extent.

Additional file 2: Table S1. The download links to the histone
modification data used in this study. Table S2. The download links to
the RNA sequencing data used in this study.
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