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In Brief
Accurately identifying
neoantigens is critical for many
clinical applications. We
generated immunopeptidomics
data from 25 stably transfected
monoallelic cell lines. Then, we
systematically reprocessed a
large corpus of public data to
improve major histocompatibility
complex (MHC) binding pocket
diversity and to empirically learn
the rules of antigen presentation.
In applying these datasets, we
trained SHERPA, an MHC binding
and presentation prediction
algorithm. SHERPA improves
performance compared with
existing tools by 1.44-fold in held-
out monoallelic data and 1.11-fold
for immunogenic epitopes.
Highlights
• Generated 25 stably transfected monoallelic cell lines and applied immunopeptidomics.• Harmonized 512 public immunopeptidomic samples through systematic reprocessing.• Developed pan-allele MHC-binding algorithm (SHERPA) utilizing 167 human HLA alleles.• SHERPA demonstrates up to 1.44-fold increased precision over competing algorithms.
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TECHNOLOGICAL INNOVATION AND RESOURCES Special Issue: Immunopeptidomics
Precision Neoantigen Discovery Using
Large-scale Immunopeptidomes and
Composite Modeling of MHC Peptide
Presentation
Rachel Marty Pyke1,‡ , Dattatreya Mellacheruvu1,‡, Steven Dea1, Charles W. Abbott1,
Simo V. Zhang1, Nick A. Phillips1, Jason Harris1, Gabor Bartha1, Sejal Desai1,
Rena McClory1, John West1, Michael P. Snyder2, Richard Chen1,§, and
Sean Michael Boyle1,*§
Major histocompatibility complex (MHC)-bound peptides
that originate from tumor-specific genetic alterations,
known as neoantigens, are an important class of anticancer
therapeutic targets. Accurately predicting peptide presen-
tation by MHC complexes is a key aspect of discovering
therapeutically relevant neoantigens. Technological im-
provements in mass-spectrometry-based immunopeptido-
mics and advanced modeling techniques have vastly
improved MHC presentation prediction over the past
two decades. However, improvement in the sensitivity and
specificity of prediction algorithms is needed for clinical
applications such as the development of personalized can-
cer vaccines, the discovery of biomarkers for response to
checkpoint blockade, and the quantification of autoimmune
risk in gene therapies. Toward this end, we generated allele-
specific immunopeptidomics data using 25 monoallelic cell
lines and created Systematic HLA Epitope Ranking Pan Al-
gorithm (SHERPA), a pan-allelic MHC-peptide algorithm for
predicting MHC-peptide binding and presentation. In
contrast to previously published large-scale monoallelic
data,weusedanHLA-nullK562parental cell lineandastable
transfection of HLA alleles to better emulate native presen-
tation. Our dataset includes five previously unprofiled alleles
that expand MHC-binding pocket diversity in the training
data and extend allelic coverage in under profiled pop-
ulations. To improve generalizability, SHERPA systemati-
cally integrates 128monoallelic and 384multiallelic samples
with publicly available immunoproteomics data and binding
assay data. Using this dataset, we developed two features
that empirically estimate the propensities of genes and
specific regions within gene bodies to engender immuno-
peptides to represent antigen processing. Using a com-
posite model constructed with gradient boosting decision
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trees, multiallelic deconvolution, and 2.15 million peptides
encompassing 167 alleles, we achieved a 1.44-fold
improvement of positive predictive value compared with
existing tools when evaluated on independent monoallelic
datasets and a 1.15-fold improvement when evaluating on
tumor samples. With a high degree of accuracy, SHERPA
has the potential to enable precision neoantigen discovery
for future clinical applications.

The concerted efforts of innate and adaptive immunity help
maintain homeostasis and fight pathogen attacks. The innate
immune system reacts quickly and is largely nonspecific while
the adaptive immune system is highly specific, typically takes
a longer time to develop, and is long-lasting. Within the
adaptive immune system, T cells survey the health of a cell by
examining major histocompatibility complex (MHC) protein
complexes on the cell surface. All nucleated cells express
MHC on their surface, and those cells presenting non-self and
aberrant peptides are identified and eliminated. Although
several factors are needed to mount an immunogenic
response from CD8+ T cells, MHC Class I presentation of
relevant peptides is a gatekeeping step (1–3).
Early in vitro and in vivo experiments evaluating binding

characteristics of various peptide MHC pairs indicated
that presented peptides had allele-specific motifs. In vitro
experiments primarily attempted to measure binding af-
finity of specific peptides and their cognate MHC com-
plexes using competitive binding assays in a hypothesis-
driven manner (4). Advances in liquid chromatography
and mass spectrometry (LC-MS/MS) heralded a new era
of large-scale immunopeptidomics and the ability to learn
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Improved MHC Presentation Prediction with Diverse Peptidomes
the rules of binding and presentation in an unsupervised
way (5). However, the assignment of peptides to their
cognate alleles was problematic (6). Further advances in
using genetically engineered cell lines expressing a single
allele of interest, often at high copy number, helped
circumvent this problem and produce unambiguous HLA
peptidomes (7).
Algorithms to model MHC binding have progressed along

with these technological advances. Early approaches relied
exclusively on MHC-peptide binding affinity data (8). As
immunopeptidomics data have become increasingly available,
more groups have incorporated these data into prediction
models. Several recent approaches employ multiallelic immu-
nopeptidomics data, including clustering-based deconvolution
(9, 10), iterative assignment (11), and directmodeling (12). Other
efforts capitalize on the unambiguous nature of monoallelic
data (7, 13, 14). Furthermore, some algorithms aim to model
MHC-peptide binding alone (10, 15, 16), whereas others extend
to modeling antigen processing and surface presentation as
well (7, 12, 13, 17). Although there is disagreement on the best
way to model MHC presentation, there is clear consensus that
advances in mass spectrometry have enabled scalable data
generation and significantly improved MHC-peptide binding
and presentation prediction algorithms.
With the goal of creating an accurate MHC-peptide binding

and prediction algorithm, we generated a high-quality dataset
comprising 25 monoallelic cell lines. All of the monoallelic cell
lines are distinct from previously published datasets due to
their stable transfection and background cell line (K562). We
also profiled five of the alleles that have not previously been
profiled using monoallelic immunopeptidomics technologies,
expanding the known MHC-binding pocket diversity and the
allelic representation in underprofiled Asian, African, and
Middle Eastern populations; the lack of information for un-
derrepresented groups is an area of high current interest (18).
Further, we combined our dataset with curated publicly
available binding affinity data and monoallelic immunopepti-
domics data to create a robust MHC-binding prediction al-
gorithm. In order to capture the diverse facets of antigen
processing and presentation, we systematically reprocessed
and deconvoluted publicly available multiallelic data from
several tissue types with different transcript expression pro-
files using our binding model trained on monoallelic data and
expanded our training data to encompass 167 alleles. We also
employed this large dataset to empirically learn patterns in
antigen processing at the protein and peptide level. We
applied gradient boosted decision trees to train our prediction
models, which we call SHERPA (Systematic HLA Epitope
Ranking Pan Algorithm). We evaluated SHERPA on held-out
monoallelic and independently generated multiallelic tumor
datasets to demonstrate that our integrated approach for
MHC-peptide presentation prediction has a 1.44 and 1.15 fold
improvement in performance, respectively, over the best
existing tools.
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EXPERIMENTAL PROCEDURES

Immunopeptidomics Using Monoallelic Cell Lines

Experimental Design and Statistical Rationale– In this study, all
peptides studied were derived from the MHC-I immunopeptidome.
Experimental work was performed on two sample types: monoallelic
cell lines and tumor tissue. For the monoallelic cell lines, 28 cell lines of
5 × 109 cells were processed. Three biological replicates were
assessed for a single cell line. One cell line was an HLA-null line used
as a negative control. Peptides from eight of the cell lines were pro-
cessed a single time. Peptides from the other 20 of the cell lines were
divided and processed on the mass spectrometer twice (11 with CID
only, nine with both CID and EThcD). For the tumor tissues, 12 tissues
were processed without controls or replicates. In addition to the
experimental work, publicly available peptides were also analyzed. A
Wald test and two-sided T tests were used in this study.

Cell Culture–We generated monoallelic cell lines by stably trans-
fecting K562 parental cells with a single allele of interest using Jump-
In technology (Thermo Fisher Scientific). Optimized plasmids
comprising the sequences for HLA, beta 2 microglobulin (B2M), and
IRES promoter were synthesized for each allele (GeneArt). Cells were
screened for plasmid integration and expanded to 500 M cells through
various passages. The cells were pelleted once surface expression of
target alleles was confirmed using flow cytometry (using W6/32 anti-
body). Transfection experiments were performed by Thermo Fisher
Scientific.

Immunoprecipitation of Peptide-MHC Complexes–Pelleted cells
were resuspended in octylthioglucoside lysis buffer, and the cell lysate
was incubated overnight with W6/32 antibody immobilized on Protein
A sepharose. After washing the resin, MHC-bound peptides were
eluted using 0.1 M acetic acid, 0.1% TFA. The success of immuno-
precipitation was verified by confirming the depletion of MHC Class I
complex in post-IP samples using ELISA (enzyme-linked immuno-
sorbent assay). Immunoprecipitations were performed by Cayman
Chemical.

Peptide Sequencing Using LC-MS/MS

Eluted peptides were desalted using solid-phase extraction (SPE;
Empore C18), loaded on a column, eluted using 80/20 acetonitrile/
water (0.1% TFA), lyophilized, and stored. Samples were reconstituted
in 0.1% TFA before they were analyzed using liquid chromatography–
mass spectrometry (LC/MS/MS). Chromatographic separation was
performed using a 2 h gradient on a Waters NanoAcquity system.
Peptides were analyzed using a Thermo Fisher Fusion Lumos mass
spectrometer in data-dependent mode (MS1: Orbitrap at 60,000
FWHM resolution, m/z range: 300–800; isolation window: 1.6 Da;
fragmentation: EThcD and CID; MS2: Orbitrap at 15,000 FWHM; cycle
time: 3 s). MS experiments were performed by MS Bioworks, LLC.

Peptide Identification–Peptides were identified using PEAKS
software (PEAKS Studio 10.0 build 20190129) (19) using the default
two-step identification workflow, where the first step performs de
novo sequencing to identify mass tags, and the second step performs
a database search on a subset of putative proteins identified using de
novo mass tags. The workflow was run with the following settings.
Protein database: Swissprot proteome database (20,402 entries;
dated 03-20-2019); precursor mass tolerance: 10 ppm; fragment mass
tolerance: 0.02 Da; enzyme specificity: none; fixed modifications:
carbamidomethylation of cysteine (+57.0215); variable modifications:
oxidation of methionine (+15.9949), N-terminal acetylation (+42.0106).
Peptide-to-spectrum matches (PSMs) were filtered at 1% FDR, esti-
mated using decoy sequences.

Postprocessing and Quality Control–Peptides identified at 1%
false discovery rate (FDR) were filtered further to remove spurious
peptides using the following constraints: spurious peptides were
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defined as polymeric peptides, peptides from highly chimeric spectra
(n > 2), and identifications with less than ten fragment ions
(Supplementary Code). Background contaminants, profiled using a
mock transfection (GFP), were filtered out. Samples were manually
inspected for the presence of motif signatures (using Gibbs Clustering
software (9)) and peptide yields (heuristic cutoff of 500 peptides per
sample).

Extraction and Processing of Public Datasets

Extraction and Processing of Publicly Available Mono- and Multi-
allelic Data–Publicly available immunopeptidomics data were identi-
fied after an exhaustive literature search. Raw data (.raw files) were
downloaded and systematically processed similar to in-house data.
HLA types to sample mappings were extracted from corresponding
publications. Peptide identifications from samples that passed
rigorous quality control criteria (as described above) were aggregated.

Processing of in Vitro Binding Affinity Data–Raw HLA-peptidome
data were downloaded from the Immune Epitope Database (IEDB)
(date: 03-09-2020) and filtered to identify entries corresponding to
in vitro binding assays. The “Object Type” column was filtered to
exclude any nonlinear peptides, and the “Units” column was filtered to
exclude any non-nM entries. Further, only four digit MHC Class I
peptides of length 8 to 11 were retained. The peptides were derived
from the following “Method/Technique” categories: “purified MHC/
competitive/radioactivity,” “purifiedMHC/direct/fluorescence,” “puri-
fied MHC/competitive/fluorescence,” “cellularMHC/competitive/fluo-
rescence,” “cellular MHC/direct/fluorescence,” “cellular MHC/
competitive/radioactivity,” “binding assay,” and “lysate MHC/direct/
radioactivity.” Ligands with IC50 values less than 500 nm were iden-
tified as binders.

Measurement and Analysis of Transcript Expression

Sequencing of Monoallelic Cell Lines–Representative samples of
monoallelic K562 cell lines generated in-house were sequenced in
triplicate using our in-house commercial platform ImmunoID NeXT
with 200 million paired end reads (150 base pair) of sequencing for
RNA from tumor samples. Reads were aligned in accordance with
Personalis Cancer RNA pipeline and transcript per million (TPM)
values were extracted. Another cell line, B721.221, with large amounts
of publicly available monoallelic data, was sourced from the American
Type Culture Collection (ATCC) and profiled in triplicate using Immu-
noID NeXT similarly to minimize technological variance.

Generation of Transcriptome for External Immunopepdomics
Datasets–For one of the largest publicly available monoallelic
datasets generated using B721.221 cell (MSV000080527;
MSV000084172) lines, we regenerated the transcriptome data on
ImmunoID NeXT (7, 13), as described above. For the rest of the
samples in the expanded dataset, we imputed TPM values with our
internal database by taking the median values from all samples with
a matching tissue type.

Evaluation of Differential Transcriptome Abundances Across Cell
Lines and Tissue Types–To evaluate the differences in expression
between K562 and B721.221, we performed differential gene
expression analysis using the Deseq2 package (20), which takes in
raw transcript counts from all replicates of a sample set to determine
differentially expressed genes. We used a threshold of an absolute
value log2 fold change of greater than or equal to 2 in conjunction with
an adjusted p-value threshold of less than or equal to 0.01 to identify
differential gene expression. We then visualized the differentially
expressed genes in a volcano plot to show cell line gene expression
differences, using the Bioinfokit tool by Renesh Bedre (https://github.
com/reneshbedre/bioinfokit/tree/v0.9). We then took the identified
genes that were enriched in K562 and the genes that were depleted in
K562 as compared with B721.221 and calculated the Gene Ontology
(GO) enrichment terms for both gene sets using http://geneontology.
org/. To evaluate the differences in expression between the tissue
types, we restricted our analysis to the tissues with unique expression
profiles (n = 30). Then, we identified the 5000 genes with the highest
standard deviation between the expression profiles and visualized
those genes as rows and the unique expression profiles as columns in
a clustered heatmap.

Exploratory Analysis of Immunopeptidomics Data

Relationship Between Expression and Peptide Presentation–Pep-
tides identified in K562 monoallelic samples were assigned a tran-
script expression value (TPM) by mapping each peptide to one or
more proteins, and proteins to one or more transcripts. The highest
TPM was assigned as the representative value when there are multiple
mappings. A set of random peptides (n >50 million) were also
generated and assigned TPMs as described. TPMs were binned to
deciles, and enrichment of presented peptides in each bin was
calculated as the log ratio of number of presented peptides to back-
ground random peptides.

Relationship Between Cleavage Specificities and Peptide Presen-
tation–To understand the cleavage preferences of the proteasome in
our monoallelic cell lines, we mapped each peptide to a protein (as
described above) and identified the right and left flanking sequences
(five amino acids) of the peptides. A set of random peptides (n >50
million) were also generated and assigned flanking sequences as
described to serve as a null dataset. To calculate the enrichment or
depletion of amino acids at each position in the flanking regions, we
subtracted the observed amino acid frequency from the random
amino acid frequency and divided by the random amino acid fre-
quency. Of note, the C- and N-termini of the protein were also
considered in addition to the individual amino acids. We visualized the
enrichment and depletion as a heatmap.

Clustering Alleles by Binding Pocket Similarity–The binding pocket
was represented by a pseudo-sequence of 34 amino acids as
described previously (8). The distance between alleles was calcu-
lated by taking the sum of the BLOSUM62 scores for the amino
acids in each allele at each position across the pseudo-sequence.
All of the unique alleles with in-house or public monoallelic immu-
nopeptidomics data were compared with one another and visual-
ized as a heatmap.

Estimating Allelic Coverage in Underrepresented Ethnic Pop-
ulations–Allele frequencies from several ethnic populations were
downloaded from http://www.allelefrequencies.net/ on 05-22-2020.
The frequencies of the five novel alleles in underrepresented ethnic
populations were taken directly from the data on the website. To es-
timate the allelic coverage of all of the unique alleles in the whole data
across ethnic populations, we focused on the data derived from the
National Marrow Donor Program (NMDP, n = 18 populations). For
each population, we performed a Monte Carlo simulation to generate
10,000 synthetic individuals with the allelic frequencies for that pop-
ulation specified by NMDP. Then, we calculated the percentage of the
alleles in the synthetic cohort that were represented in the expanded
dataset (in-house monoallelic, public monoallelic, IEDB, and public
multiallelic).

Generation of Peptide Motifs–We generated the motifs for each
allele using the weblogo software (version: 3.7.1). All motifs were
based on a specific length of peptide (8-, 9-, 10-, or 11-mers). Motifs
for public datasets were based on the peptides derived from our in-
ternal processing pipeline.

Generation of Position-specific Frequencies of Amino Acids of the
Binding Pocket–To assess the representativeness of our expanded
dataset to the full space of known alleles, we calculated the frequency
of amino acid at each position of the binding pocket pseudo-
sequence for both all of the alleles in the IMGT (the international
Mol Cell Proteomics (2021) 20 100111 3
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ImMunoGeneTics information system; http://www.imgt.org/) and our
expanded dataset. We visualized these frequencies as stacked bar
plots.

Feature Engineering and Building Prediction Models

Data Splitting for Training and Evaluation– In order to rigorously
evaluate our performance on novel peptides, we ensured that no
peptides with overlapping 8-mer cores were present across the
training, validation, and testing datasets. We took the unique set of
peptides across our monoallelic immunopeptidomics, multiallelic
immunopeptidomics, and IEDB datasets. Then, we grouped peptides
that contained any identical 8-mer substrings (“nested” peptides) and
placed each peptide group in one of ten different subsets. Once we
had roughly equal peptide numbers in each subset, we assigned one
subset to be for validation (~10%), one subset to be for testing
(~10%), and the final eight subsets to be for training (~80%). More-
over, we fully held out 32 multiallelic samples from the training dataset
(described in detail in the “Benchmarking and evaluation of prediction
models” section) and evaluated the models on a subset of the pep-
tides (~10%) that were fully held out from training (as described
above). All publicly available multiallelic data (except for the 32 held-
out samples) was used for feature engineering of the gene pro-
pensity and hotspot scores because systematically holding out pro-
teins or peptides would skew the scores. Only the ~80% training
subset of the multiallelic data was used for deconvolution.

Specifications of Prediction Models–We trained two types of pre-
diction algorithms, one that models binding and another that models
presentation. The binding algorithm models MHC peptide interaction
affinities and takes as inputs the HLA-binding pocket, the amino acid
sequence, and the length of peptide ligands. The presentation algo-
rithm jointly models both antigen processing and peptide-MHC
(pMHC) binding, whose inputs include: the HLA-binding pocket,
amino acid sequence and length of peptide ligands, proteasomal
processing footprints manifested in the left and right flanking regions
of peptide ligands, abundance of source proteins engendering peptide
ligands as measured by gene expression, and two features that model
the propensity of antigen processing and presentation. Features
corresponding to these inputs are generated as follows:

1. HLA-binding pocket (B): The binding pocket is represented by a
pseudo-sequence of amino acids as described previously (8).
Briefly, 34 positions on the protein sequence of the HLA that are
a distance of 4 Å or lesser in crystallographic structures were
selected from the full protein to serve as the pseudo-sequence.
The amino acid sequence is encoded using a BLOSUM62
substitution matrix, where each amino acid is represented by a
20-dimensional vector constituting the relative weights of amino
acid substitutions. We chose BLOSUM62 encoding as opposed
to a one-hot encoding approach under the assumption that
substitutions between amino acids with evolutionary similarity
have a lower impact on epitope-binding changes than sub-
stitutions between amino acids that are very dissimilar.

2. Peptide ligand (P): The amino acid sequence of the peptide
ligand is encoded using a BLOSUM62 substitution matrix, where
each amino acid is represented by a 20-dimensional vector
constituting the relative weights of amino acid substitutions.
Since HLA ligands could be of variable lengths (8- to 11-mers),
we have adopted a middle-padding approach described previ-
ously and adjusted all peptides to a length of 11 amino acids by
inserting blanks in the middle (12). Briefly, for every peptide with
fewer than 11 amino acids, we assign one to three 20-
dimensional vector(s) of zeros to the center of the peptide
encoding to reach the maximal 11-mer length. We take this
approach to have a pan-length algorithm that keeps the peptide
anchors in consistent columns of the matrix.
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3. Peptide length (L): The number of amino acids in the peptide
ligand is designated as the peptide length.

4. Left and right flanking regions (F): Peptide sequences (5-mers) to
the left and right of the peptide ligand in the source protein are
used as the left and right flanking regions respectively. Multi-
mappers are resolved by assigning the protein with the highest
transcript expression to the peptide. These left and right flanking
5-mers are encoded using BLOSUM62 substitution matrix as
described above.

5. Abundance of source protein (T): Peptide ligands are redun-
dantly assigned to all source proteins and then to transcripts.
The transcript with the highest expression (calculated as the
TPM) is chosen. Both the transcript and the TPM are then
assigned to the peptide ligand.

6. Gene propensity score (G): Publicly available multiallelic data
was used to estimate gene propensity. Peptide ligands from
each sample are mapped to source proteins and then to tran-
scripts redundantly. The number of peptides mapping to each
transcript-associated protein were determined. To calculate the
expected number of peptides for each transcript-associated
protein, the number of transcripts per million for each protein
across all multiallelic data sources are determined and normal-
ized by the protein length and the number of peptides derived
from each sample. Then, the number of observed and expected
peptides for each protein are summed across all of the multi-
allelic datasets. Finally, the observed values were divided by the
expected values to derive a gene propensity score for each
protein (gene). Proteins without any observed transcripts across
all samples are (potentially pseudo genes) given a score of −3 to
deprioritize them.

7. Hotspot score (H): Publicly available multiallelic data were used
to estimate the hotspot score. Peptide ligands from each sample
are mapped to source proteins. When peptides were able to
map to multiple proteins, all potential mappings are used. The
number of peptides overlapping a particular amino acid repre-
sents the hotspot score of that amino acid. To assign a hotspot
score for a peptide, the peptide is mapped to its source protein
and the amino acid hotspot score spanning the peptide is
averaged.

We evaluated the contribution of each feature to the XGBoost
model using the “gain” metric, which measures the relative contribu-
tion of a feature to the main model by aggregating the individual
contributions of the feature in each tree. Higher values indicate greater
importance.

Generating Negative Examples (Nonbinders)– Immunopeptidomics
experiments only generate peptides that successfully bind to and are
presented by MHC molecules. Thus, we synthetically generated
negative examples instead of experimentally identifying them. We
generated 20 negative examples for every positive example in our
training and validation datasets. To generate a negative example, we
randomly selected a protein from the Swissprot proteome (down-
loaded on 03-20-2019) and then randomly selected a peptide from
within that protein. Peptides were selected to have length 8, 9, 10, or
11 with equal probability. Flanking regions were assigned based on
the true flanking regions around the selected peptides. A gene
expression value (TPM) was assigned by randomly selecting a tran-
script from the transcriptome of the associated positive example. The
gene propensity score and hotspot score were assigned based on the
protein and position in the protein of the peptide selected for the
negative example.

Training the Prediction Algorithm–All models were trained using a
gradient boosted decision tree algorithm implemented using an open-
source package XGBoost (21). All numeric and encoded features were
provided as a vectorized input feature vector for training the algorithm.

http://www.imgt.org/
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Optimal training parameters were selected based on a subset of
samples using sequential model-based optimization, implemented
using the open-source package HyperOpt (22). The resulting training
parameters used for the final training were as follows: loss function—
binary logistic; max depth—10; eta—0.01; subsample—0.7; early
stopping rounds—5; min child weight—0.5; max delta step—1; tree
method—hist; number of estimators—500. Large training sets were
subset and processed in parallel based on available compute re-
sources and processed on a high-performance cluster.

Calibrating Raw Scores Using Percent Rank Values–A set of
500,000 peptides were randomly selected from the human proteome.
Once we trained a model, we calculated the predictions across the set
of random peptides with every allele. Then, we ranked the random
peptides according to their raw prediction probability (output of
XGBoost) for each allele. For each new peptide predicted, the
assigned rank is the percentage of the random set that is predicted to
bind or to be presented with a better raw score than the new peptide.
The ranks range from 0 to 100 with lower scores meaning better
bound or presented peptides. The ranks are recalculated for each
model and allele combination.

Applying Prediction Models to Multiallelic Cell Line and Patient
Samples–The MONO-binding model was used to generate binding
ranks for the peptides in the public multiallelic samples (including tu-
mors, tissues, and cell lines) with immunopeptidomics data. Only
peptides with 8, 9, 10, and 11 amino acids were considered. In total,
10% of multiallelic data was held out for testing purposes. Predictions
were made for all HLA alleles (up to six) of each sample. Samples
without HLA typing were excluded from this analysis.

Deconvolution of Multiallelic Data–Once predictions were made for
all HLA alleles of each multiallelic sample with immunopeptidomics
data, the data was deconvoluted to decide which allele–peptide pairs
should be included in the training dataset for the final model. First, we
excluded all allele–peptide pairs with a predicted binding rank of ≥0.5
to exclude all peptides that do not bind to any of the designated al-
leles. Second, if there were multiple alleles predicted to bind to a
specific peptide, we selected the allele–peptide pair with the lowest
rank (best binder) and excluded all other pairs. Then, we removed any
duplicate allele–peptide pairs. Finally, we generated 20 negative ex-
amples (as described above) for every new positive example derived
from the multiallelic data.

Training Composite Models–We trained a total of three prediction
models for our composite model. In addition, we also trained five more
models to help us better understand features that contribute to
optimal performance. The prediction models in our composite model
were trained as follows:

1. MONO-Binding: Trained using the IEDB, in-house monoallelic
immunopeptidomics and public monoallelic immunopeptido-
mics data with B, P, and L as features.

2. SHERPA-Binding: Trained using the IEDB, in-house monoallelic
immunopeptidomics, public monoallelic immunopeptidomics,
and deconvoluted multiallelic immunopeptidomics data with B,
P, and L as features.

3. SHERPA-Presentation: Trained using the in-house and public
monoallelic immunopeptidomics data with SHERPA-binding, F,
T, G, and Has features.

The additional prediction models were trained as follows:
1. PUBLIC-Binding: Trained using the public monoallelic immu-

nopeptidomics data with B, P, and L as features.
2. MONO-Binding-LOO: 126 allele-specific models trained using

the IEDB, in-house monoallelic immunopeptidomics, and public
monoallelic immunopeptidomics data with B, P, L, IEDB-
binding, INHOUSE-binding, and PUBLIC-binding as features.
Each allele-specific model was trained without peptides in the
training dataset from the respective alleles.
3. SHERPA-Binding+F: Trained using the IEDB, in-house mono-
allelic immunopeptidomics, public monoallelic immunopeptido-
mics, and deconvoluted multiallelic immunopeptidomics data
with SHERPA-binding and F as features.

4. SHERPA-Binding+FT: Trained using the IEDB, in-house mono-
allelic immunopeptidomics, public monoallelic immunopeptido-
mics, and deconvoluted multiallelic immunopeptidomics data
with SHERPA-binding, F and T as features.

5. SHERPA-Binding+FTG: Trained using the IEDB, in-house
monoallelic immunopeptidomics, public monoallelic immuno-
peptidomics, and deconvoluted multiallelic immunopeptidomics
data with SHERPA-binding, F, T, and G as features.

Benchmarking and Evaluation of Prediction Models

Generation of the Monoallelic Held-out Test Data–For the mono-
allelic immunopeptidomics datasets (in-house and public), ~10% of
the positive examples were held out of the training and validation
datasets. Each positive example was supplemented with 999 negative
examples to reflect the positive-to-negative ratio accepted by the field
(5, 23–26). For the IEDB data, ~10% of the positive and negative data
was withheld from the training dataset. No supplementary negative
examples were added, so the ratios in the test dataset reflect the
positive-to-negative peptide ratio in IEDB. All monoallelic validation
figures rely on the monoallelic immunopeptidomics test data except
for one comparison which uses the IEDB test data.

Calculation of Evaluation Metrics–Three metrics were used to
evaluate the performance of the prediction models. The metrics are as
follows:

1. Positive predictive value (PPV): PPVs were calculated by making
predictions on the entire test dataset and calculating the per-
centage of peptides in the top X% of predictions that are pos-
itive examples, with X representing the portion of the dataset
that are positive examples. Each PPV was calculated individually
for the peptides of each allele and combined using a median
giving a single metric. Of note, the positive-to-negative ratios of
the monoallelic immunopeptidomics and IEDB test datasets
vary, so the interpretations of the plots are different.

2. Precision–recall curves: Precision–recall curves were generated
by calculating the precision and the recall for every possible
cutoff and plotting them as a single line.

3. Fraction of observed peptides predicted by model: This metric
was used for all multiallelic tumor validation analyses. First, a
single score is selected to represent each peptide observed with
immunopeptidomics by making predictions on all of the pa-
tient’s HLA alleles and selecting the best (lowest) rank among
the predictions. Then, the score is calculated by determining the
percentage of observed peptides that are given a rank of ≤0.1.

Leave-one-out Pan-allelic Analysis–To evaluate the pan-allelic
performance of the MONO-binding model used for model-based
deconvolution, we trained 126 independent models with the same
features as the MONO-binding model. For each model, we excluded
the peptides from a specific allele from the set of peptides used to
train the MONO-binding model. To generate the predicted motif for
each allele, we predicted the binding rank for 500,000 random pep-
tides for a given allele with the model for which the allele had been
excluded from training. Then, we generated the motif for peptides with
the top percentile of binding ranks. Motifs were only visualized for
alleles with at least 50 positive peptides in the training data. To
generate the precision–recall curve, we used all 126 models to predict
the binding ranks of the monoallelic immunopeptidomics data (in-
house and public) that was excluded from training and validation (10%
test dataset). The predictions for each allele were made with the model
that excluded that allele from training.
Mol Cell Proteomics (2021) 20 100111 5



Improved MHC Presentation Prediction with Diverse Peptidomes
Generating Validation Data Using Tissue Samples–A total of 12
fresh-frozen tumor samples (five colorectal and seven lung) and
matched adjacent normal fresh-frozen samples were selected for
patient validation. These samples were purchased from a biobank and
were collected under IRB-approved protocols and abide by the
Declaration of Helsinki principles. Each tumor sample was divided into
two pieces. Immunoprecipitation of MHC complexes followed by LC-
MS-MS (as described above) was performed in a portion of each tu-
mor sample to yield immunopeptidomics data. DNA and RNA were
extracted from the remaining tumor sample, and DNA was extracted
from the adjacent normal sample for analysis with ImmunoID NeXT (as
described above). The RNA extracted from the tumor sample was
used to yield transcriptomic data.

Extraction of Held-out Validation Datasets from External Multiallelic
Samples– In total, ~10% of multiallelic immunopeptidomics data with
nonoverlapping “nested” peptides with the training and validation
datasets was withheld from deconvolution and training to serve as a
test dataset. We used ten samples from each of two specific datasets
to validate our internal tumor immunopeptidomics performance
(PXD007635, PXD009602) (27, 28). Only samples with HLA-A, -B, and
-C typing at four-digit resolution were used for the analysis.

Immunogenicity Evaluation– In order for a peptide to incite an
immunogenic response, it must be presented on the cellular surface
by an MHC allele. Thus, we evaluated the ability of the algorithms to
positively identify immunogenic peptides. We used the dataset
described in Chowell et al. (29) for this analysis and focused exclu-
sively on the immunogenic peptides. Then, we evaluated the per-
centage of immunogenic peptides that were predicted by the various
models at ≤0.1 percentile rank.

Running Comparison Prediction Algorithms–NetMHCpan-4.1-BA,
NetMHCpan-4.1-EL, and MHCFlurry-2.0-BA were used as compari-
son prediction algorithms. All algorithms were run according to default
settings. Percentile rank outputs were used for each analysis.
RESULTS

Generation of Monoallelic Immunopeptidomics Data

In order to generate high-quality data, we used an HLA-null
K562 parental cell line and engineered monoallelic cell lines
that expressed a single HLA allele of interest (Fig. 1A).
Expanded cells with good surface expression of target alleles
were used for immunoprecipitation of peptides associated
with MHC complexes, followed by elution of ligands and
peptide sequencing using LC-MS/MS. Our stable transfection
protocol, which ensures single-site integration of the
target allele, minimizes expression biases and enables
modeling of antigen processing in closer-to-native condition.
Moreover, our K562 parental cell line provides a different
background than the majority of previously published mono-
allelic data (B721.221 parental cell line), providing a novel and
standardized system to study peptide presentation.
We generated data for 25 alleles (supplemental Table S1) and

identified an average of 1575 unique peptides per allele (range:
905–2712) (Fig. 1B). We first evaluated the allele-wise length
distribution and recapitulated previously described observa-
tions, with HLA-A alleles presenting longer peptides than HLA-B
alleles (two-sided t test, p = 0.0066, supplemental Fig. S1) (13).
We also compared the motifs in our raw data with those
6 Mol Cell Proteomics (2021) 20 100111
published previously. Whereas most of the motifs are concor-
dant, we also observed somedifferences (supplemental Fig. S2).
As an example, a previously published dataset (7, 13) for HLA-
B*35:01 showsa tryptic digest like lysine/arginine signature for 8,
10, and 11-mers on the C-terminal end of the peptide, whereas
our data shows amotif that is consistent with the ones observed
with 9-mers (Fig. 1C). We observe similar patterns in HLA-
A*29:02,HLA-A*30:02, andHLA-B*57:01 (supplemental Fig. S3),
suggesting that there may be contamination in the publicly
available datasets. Since MHC-binding algorithms learn allele-
specific motifs, such subtle differences are critical to create ac-
curate prediction models. We then evaluated the relationship
between transcript abundance and peptide presentation
(Fig. 1D). We observed a positive correlation between the pro-
pensity of a transcript to engender presented peptides and its
expression level, represented by the TPM.Wealso evaluated the
proteasomal cleavage signatures of presented peptides by
examining the left- and right-flanking amino acids (Fig. 1E). The
relative enrichment of amino acids compared with a random
background set indicates an overrepresentation of lysine and
arginine on theC-terminal end of the peptide. This observation is
in concordance with previously described tryptic and chemo-
tryptic enzymatic activity of proteasome cleavage (7, 13). Of
note, we observe an enrichment of peptides originating from
either the C-terminal or N-terminal of the source protein, indi-
cating preferential proteasomal processing of peptides requiring
relatively lesser enzymatic cleavage (two-sided t test, p = 3.77e-
32, supplemental Fig. S4). Enrichment was not observed in the
N-terminal end of the peptide in other monoallelic datasets (7,
13), possibly due to overexpression of MHC with transient
transfection protocols leading to a lack of discrimination among
presented peptides.

Novel Monoallelic Cell Lines Enhance Diversity of Training
Data and Reveal Subtle Binding Preferences

Beyond the added value of our unique parental cell line and a
stable transfection approach, our dataset includes five alleles
that had not previously been profiled usingmonoallelic cell lines.
We selected these five alleles on the basis of two criteria: (1) the
uniqueness of the allele-binding pocket compared with previ-
ously profiled alleles (Fig. 2A) and (2) the population frequency of
the allele in ethnic populations that are underrepresented in
current datasets (Fig. 2B). For example, we clustered alleles by
their binding pocket similarity and selectedHLA-A02:52 from the
HLA-A02 subcluster due to its high frequency in Iranian Kurdish
populations (7% frequency, Fig. 2B). Though several HLA-A02
alleles have been profiled by previous groups (light gray), we
found small differences in themotif from closely clustered alleles
despite very similar binding pockets. For example, unlike sur-
rounding HLA02 alleles, we observed the presence of tyrosine in
the second anchor position (C-terminal end of peptide) for HLA-
A02:52. Moreover, although HLA-A02:52 clusters tightly with



FIG. 1. Generation and overview of the monoallelic data. A, a schematic of the experimental procedure to generate the monoallelic training
data. An HLA allele and B2M were stably transfected into an HLA-null K562 parental cell line. The MHC-peptide complex was purified using a
w6/32 antibody and the peptides were gently eluted off the complexes. The peptides were sequenced with LC-MS/MS and identified with
a database search. B, bar plots showing the peptide yields and distribution of peptide lengths for each of the 25 monoallelic cell lines. C, a
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HLA-A02:07, HLA-A02:07 has a strong preference for aspartic
acid at position 3, whereas HLA-A02:52 has no preference.
Similarly, we profiled three HLA-B15 alleles (HLA-B15:11, HLA-
B15:13, and HLA-B15:18) that are frequent across several Asian
populations, including the second most frequent allele in a Bei-
jing population at over 12% (HLA-B15:11). Despite inclusion in
the sameallele subgroupandhavingbindingpockets that cluster
together, the three alleles have very distinct associated peptide
motifs with each having different preferences at each anchor
position. These three alleles highlight the value of our novel al-
leles in the creation of a pan-allelic model, which relies on
learning how amino acid changes impact binding preference.
Another novel allele, HLA-B81:01, falls outside of amajor binding
pocket cluster, but its peptide motif shows strong similarities to
surrounding alleles (Fig. 2A). Of note, HLA-B81:01 hasmoderate
population frequency across over a dozen African populations
(2–6% frequencies). Taken together, our novel alleles enhance
both binding pocket diversity and population representation in a
manner that is not represented in previously published training
data.

Large-scale Data Integration Enhances the
Representativeness of HLA Peptidome

Given the large amount of publicly available immunopepti-
domics and binding affinity data from diverse tissue types and
cell lines, we reasoned that a systematic integration of all
available high-quality datasets would improve the represen-
tation of training data and enable feature engineering. Toward
this end, we downloaded a large corpus of publicly available
raw data (supplemental Table S2), comprising 2.15 million
peptides from 512 experiments and covering 167 distinct al-
leles. A majority of the datasets are multiallelic (384 experi-
ments from 15 projects) (12, 23, 27, 28, 30–39), but there are
also a large number of monoallelic experiments (128 experi-
ments from six projects) (7, 13, 40–44) and alleles with binding
assay data (n = 90 alleles) (26) (Fig. 3A). As anticipated, the
tissue types in the multiallelic datasets have diverse expres-
sion profiles (Fig. 3B). Furthermore, we observed significant
differences in the gene expression profiles of transcripts from
B721.221 cell lines (used in a large-scale monoallelic dataset
generated from B721.221 cell line with alleles from HLA-A, -B,
and -C) (7, 13) and K562 cell lines (used in our in-house data
generated) (Fig. 3C). In total, 21% of transcripts display sig-
nificant differences in expression between B721.221 and
K562 cell lines, and these variations impact key pathways that
comparison between motifs of peptides generated from our monoallelic
allele. Motifs are shown for peptides of length 8, 9, 10, and 11. See supple
comparisons with other public datasets. D, a bar plot showing the distrib
compared with random expectation across several TPM ranges. Value
enrichment and depletion of five amino acids upstream and downstream
a random expectation. Red denotes the enrichment of amino acids and b
are denoted with “-.”

8 Mol Cell Proteomics (2021) 20 100111
change the functionality of the cells (supplemental Table S3).
Given the vast differences in underlying proteomes and anti-
gen processing machinery of various tissue types, incorpo-
ration of these diverse data is particularly important for
modeling presentation effectively.
We evaluated the representation of the MHC alleles in our

expanded dataset on two parameters—population coverage
and structural diversity of the binding pocket. We assessed
population coverage using a simulation study that utilizes allele
frequencies from the US National Marrow Donor Program as
documented in the allele frequency net database (45). The al-
leles within our extended dataset represent an average
coverage of 96% of observed alleles across various ethnic
populations in the United States (Fig. 3D). Our training data
spans a wide range of allele-binding pocket clusters that have
vastly different motif characteristics, indicating a robust repre-
sentation at the macro level. Since it is possible that relatively
small differences in binding pocket sequences might lead to
substantial differences in the presented motif, possibly due to
the varied importance of amino acids in the binding pocket (46),
we evaluated the representation at each position in the binding
pocket. We observed a high degree of concordance in the
distribution of frequencies between all known alleles and alleles
in our expanded training dataset (Fig. 3E). Of note, this
concordance remains high even when we exclude alleles only
present in multiallelic samples (supplemental Fig. S5, A and B).
By expanding our in-house dataset using publicly available
data, we not only enhance the breadth of our training data, in
terms of both tissue of origin and allelic diversity, but also
minimize potential biases introduced by data acquisition tech-
niques, such as chromatography and peptide fragmentation
approaches. Additionally, the expanded scale and scope help
minimize out-of-distribution modeling errors.

Modeling Peptide-MHC Presentation Using Novel Features
Encapsulating Antigen Processing

The unbiased and ex vivo nature of mass-spectrometry-
based immunopeptidomics data uniquely lends itself to
model both MHC-peptide binding and presentation. Modeling
binding entails learning the motif preferences of HLA alleles
and their cognate peptides, whereas modeling presentation
includes learning propensities of upstream antigen processing
in addition to binding motifs (Fig. 4A). Several features that
capture various aspects of antigen processing and the bio-
physical characteristics of MHC-peptide binding have been
cell line with HLA-B35:01 and a publicly available dataset for the same
mental Fig. S1 for motifs from all 25 cells. See supplemental Fig. S2 for
ution of the ratio of observed peptides from the monoallelic cell lines

s are shown with a log10 transformation. E, a heatmap showing the
of the peptides identified from the monoallelic cell lines compared with
lue denotes the depletion of them. The C- and N-termini of the protein



FIG. 2. Binding pocket diversity and population frequencies of novel alleles. A, heatmaps for HLA-A and -B that represent the binding
pocket similarity between alleles with monoallelic immunopeptidomics data. Dark blue squares represent alleles that have very similar binding
pockets while white squares represent alleles with divergent binding pockets. The 25 alleles profiled with our monoallelic system are denoted in
orange. The five alleles that have not previously been profiled are denoted in green. Motifs for these novel alleles are shown alongside motifs for
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discussed in the literature, the most prominent of these are
peptide sequence, binding pocket sequence, expression of
source protein, cleavage patterns, and various propensities for
presentation that are not captured by expression (12). We use
a combination of widely applied and novel features to model
MHC-peptide binding and presentation.
We modeled binding using three features: the amino acid

sequence of the peptide ligand (P), the binding pocket
pseudo-sequence of the presenting allele (B), and peptide
length (L). In addition to these three binding-specific features,
we integrated four additional features into our presentation
model that encapsulate antigen processing. First, as evi-
dence from our monoallelic immunopeptidomics data, the
abundance of the source protein has a strong influence on
peptide presentation (Fig. 1D). Accordingly, we used a
transformed value of transcript expression (T) as a surrogate
for protein expression. Second, our data also showed the
strong preference of amino acids flanking the presented
peptides for proteasomal cleavage; therefore, we incorpo-
rated the five amino acids upstream and downstream of each
peptide (F) as an additional feature (Fig. 1E). It has been
discussed previously that certain proteins or regions within
proteins have a higher propensity for MHC presentation (23,
33, 47). We have noticed similar trends in the large set of
public data that we had downloaded and reprocessed sys-
tematically (supplemental Table S2). We evaluated the
dependence of the number of peptides presented (adjusted
for transcript length) as a function of transcript expression of
its cognate gene. As expected, we observed a positive cor-
relation in the median values, but we also observed several
outliers that do not follow this trend (data points highlighted
in red boxes, Fig. 4B). We modeled this skew (propensity)
and developed a gene propensity score (G) as our third
feature (supplemental Fig. S6A, see Experimental
Procedures). Similarly, we noticed positional preferences
within proteins when we compared observed and expected
peptides from various locations within a protein. An anec-
dotal example of such a skew in Actin Beta gene (ACTB) is
shown in Figure 4C. Briefly, position-specific coverage of
observed peptides was contrasted with expected coverage
based on predictions for the 30 most frequent alleles in our
dataset. Importantly, we found a lack of correlation between
predicted and observed peptide profiles across the entire
proteome (supplemental Fig. S6B). We modeled this phe-
nomenon using position-specific coverage of immunopep-
tides in our large dataset and developed a hotspot score (H)
as our final feature (see Experimental Procedures). An
ensemble of these propensity scores and other features
described above facilitate the modeling of antigen process-
ing and surface presentation.
related alleles in gray. Black boxes denote the cluster of alleles containing
five novel alleles in several populations of diverse world ethnicities. Da
purple denotes low population frequencies.
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Systematically Incorporating Binding Affinity, Monoallelic
and Multiallelic Data into a Composite Model

Both in vitro binding assays and monoallelic immunopepti-
domics experiments produce allele-specific data, but assigning
a peptide to its cognate allele, also known as deconvolution, is a
key challenge in modeling multiallelic data. Several approaches
have been applied to perform deconvolution (10–12). We utilized
our comprehensive binding affinity and monoallelic datasets to
develop a model-based deconvolution approach to convert
multiallelic data into pseudo monoallelic data (Fig. 5A,
supplemental Table S4). First, we generated a binding prediction
model using exclusively monoallelic data (in-house monoallelic
data, public monoallelic data, and in vitro binding assay data
extracted from IEDB). Unlike the binding affinity data from IEDB
that generates both positive and negative examples, immuno-
peptidomics data only generates positive examples, so we
generated negative examples using a large set of random pep-
tides from the human proteome at a 1:20 ratio. A large proportion
of negative examples helps minimize the risk of learning random
or systematic biases in synthetically generated negative exam-
ples. This monoallelic model (MONO-binding) is able to accu-
rately predictmotifs for alleles excluded from the training dataset
(Fig. 5B, supplemental Fig. S7). Given our confidence in the
model trained with allele-specific data (MONO-binding), we
applied it to each of the multiallelic datasets to assign each
peptide in a sample to its cognate allele and generate pseudo
monoallelic data. From289multiallelic sources representing 118
uniqueHLA alleles,webeganwith over 1.15million peptides and
successfully mapped about 700,000 peptides to alleles (~60%
mapping rate). Then, the monoallelic and pseudo monoallelic
data were merged to train a comprehensive binding model
(SHERPA-binding). Finally, SHERPA-binding was used as a
primarymodel (p-model) or feature for ourSHERPA-presentation
model. This finalmodel incorporates all presentation features but
is trained exclusively on monoallelic data to avoid overfitting to
the multiallelic datasets that generated the gene propensity and
hotspot features. As expected, when we examined the feature
importance for each of the models, we observe the peptide an-
chor residues and diverse binding pocket amino acids have the
greatest influence over the SHERPA-binding model, and
SHERPA-binding has the greatest influence over the SHERPA-
presentation model (supplemental Fig. S8). For all models, pre-
diction probabilities were calibrated into percentile ranks to
remove allele-specific biases as described earlier (15).

Benchmarking the Performance of SHERPA Binding and
Presentation Models

To evaluate our models, we first tested their performance on
~10% held-out monoallelic data (positive examples), mixed
the newly profiled alleles. B, a heatmap showing the frequencies of the
rk purple denotes high population frequencies of the alleles and light



FIG. 3. Systematic expansion of HLA ligandome through the incorporation of publicly available data. A, box plots representing the
number of unique peptides per sample from monoallelic and multiallelic immunopeptidomics samples that were reprocessed through our
pipeline. Bar plot showing the number of samples for each project. Samples are colored according to their project. Peptide yields are log10
transformed. See supplemental Table S2 for additional details. B, a heatmap of expression values (TPM) of highly differentiated genes between
tissue and tumor types of publicly available multiallelic immunopeptidomics data. Low expression is shown with red, and high expression is
shown with blue. C, a volcano plot denoting the differential gene expression between the monoallelic parental cell lines, B721.221 and K562.
Gene transcripts with significant upregulation in B721.221 compared with K562 are shown in green while gene transcripts with significant
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FIG. 4. Modeling binding and presentation. A, a schematic showing the difference between MHC binding and MHC presentation. MHC
binding involves the ability of an MHC allele to bind to a paired peptide and is modeled with the peptide (P), allele-binding pocket (B), and peptide
length (L). MHC presentation involves all steps in the antigen processing pathway in addition to MHC binding and is modeled with the peptide
(P), allele-binding pocket (B), peptide length (L), gene expression (T), flanking regions around the peptide (F), propensity of the gene to engender
peptides (G), and propensity of the region within the gene to engender peptides (H). B, boxplots representing the distribution of peptides per
transcript observed in the reprocessed multiallelic immunopeptidomics data across transcript deciles. The peptides observed are normalized by
transcript length. Red boxes denote the transcripts that generate many observed peptides despite low expression levels and transcripts that
generate few observed peptides despite high expression levels. C, the distributions of expected and observed peptides from across the ACTB
protein. Expected peptides, shown in gray, are generated by summing the number of frequent alleles predicted to bind each peptide (Rank <2 by
netMHCpan4.0). The 30 most frequent alleles in the reprocessed multiallelic immunopeptidomics dataset were used for the analysis. Observed
peptides are measured from the reprocessed multiallelic immunopeptidomics data and are shown in green.
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with negative examples in a 1:999 ratio to mimic true ratio (5,
23–26). We chose this prevalence to reflect the underlying
characteristics of peptide presentation (5, 23–26). The MONO-
binding model significantly outperformed NetMHCpan-4.1-
BA, NetMHCpan-4.1-EL, and MHCFlurry-2.0-BA (0.53, 0.34,
0.44, and 0.40, respectively, Fig. 5C, supplemental Data 1A).
When we restricted the input data to be only the publicly
available monoallelic data (PUBLIC-binding), SHERPA still
outperformed the other three models, suggesting that the
XGBoost modeling approach or our strict data curation added
upregulation in K562 compared with B721.221 are shown in red. Gene tra
a bar plot denoting the weighted fraction of alleles in 18 ethnicity popul
training dataset, including monoallelic cell lines profiled in house, public
IEDB. E, two stacked bar plots showing the frequencies of amino acids a
IMGT (top) and all alleles from the expanded training dataset, including
multiallelic data, and binding assay data from IEDB.
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significant value (supplemental Fig. S9A). The binding model
trained on the full dataset (SHERPA-binding), comprising both
monoallelic and pseudo monoallelic data, had the same PPV
compared with MONO-binding, a model trained on mono-
allelic data alone (0.53 and 0.53, respectively; Fig. 5C).
SHERPA-presentation has a better PPV compared with
SHERPA-binding, attesting to the utility of presentation-
specific features. We further evaluated the contribution of
each of our features and confirmed that each feature has an
additive effect on performance (Fig. 5D). Flanking regions had
nscripts with no significant up- or downregulation are shown in gray. D,
ations from the National Marrow Donor Program within the expanded
monoallelic data, public multiallelic data, and binding assay data from
t each position in the pseudo binding pocket for all annotated alleles in
monoallelic cell lines profiled in house, public monoallelic data, public



FIG. 5. Overview of composite modeling approach and model performance. A, a schematic of the composite modeling approach. Inhouse
monoallelic immunopeptidomics data, public monoallelic immunopeptidomics data, and IEDB data are used to train MONO-binding. MONO-
binding is used to deconvolute the multiallelic immunopeptidomics data to create pseudo monoallelic data. All monoallelic and pseudo mon-
oallelic data is combined to train the SHERPA-binding model. The SHERPA-binding model is used as a feature along with other presentation
features to train the SHERPA-presentation model on monoallelic immunopeptidomics data. B, a precision–recall curve demonstrating the
predicted pan-performance on unseen alleles (MONO-binding-LOO) compared with MONO-binding and NetMHCpan4.1-BA, NetMHCpan-4.1-
EL, MHCFlurry-2.0-BA. A model was trained for each allele with the data for that allele excluded from the training dataset. The MONO-binding-
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a relatively minor impact on performance (~0.01 PPV gain
compared with SHERPA-binding). We found the largest per-
formance gain with the addition of abundance (TPM, ~0.03
increase in PPV above SHERPA-Binding+F) and gene pro-
pensity (~0.05 increase in PPV above SHERPA-Binding+FT),
but we also observed significant gain with the addition of
the hotspot score (~0.01 PPV above SHERPA-Binding+FTG).
For an orthogonal allele-specific validation, we assessed the
performance of the models using the held out IEDB data. Of
the comparison models, NetMHCpan-4.1-BA had the best
performance. MONO-binding and SHERPA-binding per-
formed similarly to NetMHCpan-4.1-EL and MHCFlurry-2.0-
BA (supplemental Fig. S9B, supplemental Data 1B). Finally,
we evaluated the precision and recall at various rank values for
both our multiallelic binding and presentation models. We
observed a consistently and significantly higher precision and
recall compared with other models at all rank values (Fig. 5E,
supplemental Fig. S9, C–E). Using this analysis, we empirically
determined a rank threshold of 0.1 to be our definition of a
“binding” or “presented” peptide.

Experimental Validation of SHERPA Using Tissue Samples

To understand the utility of our prediction models in a pa-
tient sample, we performed immunopeptidomics on tumor
samples from seven lung cancer patients and five colorectal
cancer patients. In these experiments, we observed robust
peptide yields (4043 median, supplemental Fig. S10A,
supplemental Table S5, supplemental Data 1C). As expected,
we did not observe any neoantigens from these patients in the
immunopeptidomics data, as data-dependent acquisition
(DDA)-based IP-MS protocols lack the required sensitivity of
detection. A total of 46 alleles were represented across the 12
patients, and two of the alleles were outside of our training
dataset. Thus, testing our performance on these samples
provided an opportunity to assess our prediction accuracy on
trained alleles, as well as the pan-allelic prediction capability
on untrained alleles. To establish a prediction score for each
peptide across all six potential patient alleles (patient-centric
rank), we used the rank from the allele with the lowest rank to
represent how well a peptide is bound or presented by that
patient. We observed a strong performance of our models,
which recovered 1.15 times more experimentally observed
peptides among those that were predicted to be bound or
presented than the next best model (MHCFlurry-2.0-BA)
(Fig. 6A). Further, the multiallelic models outperformed the
exclusively allele-specific models, highlighting the importance
LOO curve represents the predictions from each of the models on the te
denoting the distributions of positive predictive values (top 0.1%) across
Distributions are shown for (C) NetMHCpan4.1-BA, NetMHCpan-4.1-EL
presentation, and (D) SHERPA-binding, SHERPA-binding+F, SHERPA
boxplots showing the distribution of precision and recall values acros
presentation across several percentile rank thresholds. A percentile rank
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of the multiallelic deconvolution approach. Of note, we
observed one sample with significantly lower recall than those
from the other patients across all models. We explored that
patient further and found that the patient has human leukocyte
antigen (HLA) loss of heterozygosity across two HLA genes
(-A and -B; supplemental Fig. S10B), highlighting the impor-
tance of considering a comprehensive view of the patient HLA
features during neoantigen prediction. Although all models
used a percentile ranking approach, we found that MHCFlurry-
2.0-BA predicts an average of 30 percentile rank for negative
peptides (compared with the expected ~50 percentile rank for
all other models), suggesting that the sensitivity metric used in
this analysis may be overrepresenting MHCFlurry’s perfor-
mance (supplemental Fig. S10, C and D). To further corrobo-
rate our results, we performed the same analysis in the ~10%
of the peptides from tissue data from ovarian cancer and
colorectal cancer studies that had been held out from multi-
allelic training (27, 28). We found similar trends across both of
these external datasets, on data that were not part of our
training data, with the SHERPA-presentation model showing
the best results, showing 1.03 to 1.22 times more experi-
mentally observed peptides predicted than MHCFlurry-2.0-BA
(Fig. 6, B and C).

Immunogenicity

Although the SHERPA models do not specifically predict
the likelihood that a peptide will be immunogenic, MHC pre-
sentation is a gatekeeping step of an immunogenic response.
Thus, one would expect that all immunogenic peptides are
successfully bound and presented on the cell surface. As an
additional evaluation, we used the dataset of immunogenic
peptides described by Chowell et al. (29) to evaluate the ability
of the models to predict these epitopes. Across the entire
dataset, we observe the best performance by the MONO-
binding model and the SHERPA-binding model (Fig. 6D,
supplemental Data 1D). We see variable but similar perfor-
mance across the specific alleles. Of note, we observe a 1.11-
fold improvement over the next best model for HLAA*02:01,
the most studied allele (Fig. 6E). Together, this evidence
suggests that the performance of the SHERPA models is
generalizable and resilient to data sources.

DISCUSSION

Many personalized cancer immunotherapies require precise
neoantigen identification. Although advances in next-
generation sequencing technologies have enabled large-
st data of the allele excluded from the training data. C and D, boxplots
alleles within the monoallelic immunopeptidomics held-out test data.

, MHCFlurry-2.0-BA, MONO-binding, SHERPA-binding and SHERPA-
-binding+FT, SHERPA-binding+TTG, and SHERPA-presentation. E,
s alleles in the monoallelic immunopeptidomics data for SHERPA-
of 0.1 is selected as the optimal threshold.
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FIG. 6. Performance of SHERPA on tissue samples and immunogenic epitopes. Boxplots showing the distribution of prediction per-
formance across (A) tumors profiled with immunopeptidomics in-house (lung and colorectal, left), (B) by Schuster et al. (ovarian, middle) and (C)
Loffler et al. (colorectal, right). Performance is defined as the fraction of peptides observed with immunopeptidomics that are predicted to bind in
the top 0.1% of all peptides percentile rank ≤0.1. Performance is shown for the following models: NetMHCpan4.1-BA, NetMHCpan-4.1-EL,
MHCFlurry-2.0-BA, MONO-binding, SHERPA-binding, and SHERPA-presentation. D and E, bar plots showing the sensitivity of NetMHCpan4.1-
BA, NetMHCpan-4.1-EL, MHCFlurry-2.0-BA, MONO-binding, and SHERPA-binding on the Chowell et al. immunogenicity dataset: (D) perfor-
mance across all epitopes and (E) performance across high frequency alleles.

Improved MHC Presentation Prediction with Diverse Peptidomes
scale survey of putative neoantigens, algorithmic neoantigen
ranking continues to have limited accuracy. Our work seeks to
improve precision neoantigen discovery by addressing both
the training data and modeling approach. Since prediction
models are highly dependent upon their training data, we
generated immunopeptidomics data using monoallelic cell
lines that unambiguously map a peptide to an HLA allele. To
ensure generalizability of SHERPA beyond our model system,
we further expanded the HLA-peptidome by incorporating
publicly available monoallelic immunopeptidomics data from
Mol Cell Proteomics (2021) 20 100111 15
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different parental cell lines, allele-specific binding array data,
and multiallelic tissue immunopeptidomics data. Moreover, we
developed a modeling approach that integrates the data types
strategically and mines the breadth of data to model antigen
processing across a variety of tissue types.
While a combination of several factors leads to marked

improvements in performance of SHERPA, we believe that
three aspects set it apart. First, SHERPA employs the largest
training data of any neoantigen prediction tool to our knowl-
edge. Peptides from 167 unique human alleles and antigen
processing from 30 unique expression profile backgrounds
ensure the representativeness of our training data. Second,
we designed features that mine extensive tissue-based
immunopeptidomics data to model presentation and demon-
strate ~0.06 improvement in our monoallelic PPV assessment
with their inclusion. Third, SHERPA’s composite modeling
approach for integrating multiple data types reduces inherent
biases caused by a single data source and allows for robust
multiallelic deconvolution.
Our work is timely because it addresses two critical needs in

the field. First, the Human ImmunoPeptidome Project outlined
the need for large cohort immunopeptidomics studies in their
effort to comprehensively map the human immunopeptidome
(48). With this project, we contribute a new set of monoallelic
immunopeptidomics data on a different cell line background
than previous large studies and a previous set of lung and
colorectal tumor tissues. Second, the scientific community
has an urgent need for representing diverse ethnic pop-
ulations in medical research and immunogenomics (18, 49).
We addressed this issue by profiling five novel HLA alleles that
are frequent in underrepresented Asian, African, and Middle
Eastern populations.
Though our work shows great improvement, both SHERPA

and the field of neoantigen prediction continue to face some
key challenges. We integrated different data types (binding
array and immunopeptidomics) to decrease bias and increase
generalizability, whereas the vast majority of previous pMHC
data was produced using very similar protocols. Accordingly,
developing newer approaches to affinity purification other
than the commonly used W6/32 antibody immunoprecipita-
tion, applying newer data acquisition strategies such as data-
independent acquisition, and generating immunopeptidomics
data under different cell states are avenues for future
improvement. In addition, gene expression is an imperfect
surrogate for protein abundance. Other methods, such as
ribosome footprinting, may provide a better estimate of pro-
tein levels. Moreover, some of the features used in the
SHERPA-presentation model are exclusively designed to the
human proteome without holding out specific proteins or
protein subregions, so the results of the SHERPA-
presentation model should be interpreted in light of the in-
clusion of all proteins and protein regions in the feature gen-
eration process. The SHERPA-binding-FT model is a more
accurate representation of performance on nonhuman
16 Mol Cell Proteomics (2021) 20 100111
candidates. Finally, SHERPA does not specifically predict the
likelihood that a ligand will be immunogenic; however,
SHERPA captures a higher percentage of immunogenic epi-
topes than other methods, suggesting that peptides predicted
by SHERPA will be more likely to be immunogenic.
In summary, we demonstrate that SHERPA is an important

method that balances the tension between the clarity of mono-
allelic motifs and the generalizability of tissue data while
consistently outperforming previous models. Its improved per-
formance is expected to be useful in neoantigen prediction for
immunotherapy.
DATA AVAILABILITY

The MS proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner
repository with the dataset identifier PXD023064 (50).
Evaluation data can be downloaded with the following
links: https://doi.org/10.6084/m9.figshare.14916552.v1;
https://doi.org/10.6084/m9.figshare.14916549.v1; https://doi.
org/10.6084/m9.figshare.14916555.v1; https://doi.org/10.6
084/m9.figshare.14916558.v1.

Supplemental data—This article contains supplemental
data.

Acknowledgments—The cell line transfections were con-
ducted at Thermo Fisher Scientific. The immunopeptidomics
experiments were conducted at Cayman Chemicals and MS
Bioworks, LLC. We thank Josette Northcott for her help in
interpretation of the flow cytometry data. We thank Eric Levy,
Euan Ashley, Russ B. Altman, and Atul Butte for their helpful
feedback on the article. Personalis Inc provided the funding
for this project.
Author contributions—R. M. P., D. M., R. C., and S. M. B.
conceptualization; R. M. P., D. M., and S. D. data curation;
R. M. P. and D. M. formal analysis; J. W. and R. C. funding
acquisition; R. M. P., D. M., and S. M. B. methodology; S. M.
B. project administration; C. W. A. resources; R. M. P., D. M.,
S. D., S. V. Z., N. P., J. H., and G. B. software; R. C. and S. M.
B. supervision; R. M. P., D. M., and S. D. validation; R. M. P.
and D. M. visualization; R. M. P. and D. M. writing—original
draft; S. D., C. W. A., Sejal Desai, R. M., M. P. S., R. C., and S.
M. B. writing—review and editing.

Conflict of interest—R. M. P., D. M., S. D., C. W. A., S. V. Z.,
N. P., J. H., G. B., Sejal Desai, R. M., J. W., R. C., and S. M. B
are full- time employees of Personalis and owners of Per-
sonalis stock. M. P. S. co-founded Personalis and owns
Personalis stock.

Abbreviations—The abbreviations used are: ATCC, Amer-
ican Type Culture Collection; B, binding pocket (model
feature); ELISA, enzyme-linked immunosorbent assay; F,

https://doi.org/10.6084/m9.figshare.14916552.v1
https://doi.org/10.6084/m9.figshare.14916549.v1
https://doi.org/10.6084/m9.figshare.14916555.v1
https://doi.org/10.6084/m9.figshare.14916555.v1
https://doi.org/10.6084/m9.figshare.14916558.v1
https://doi.org/10.6084/m9.figshare.14916558.v1


Improved MHC Presentation Prediction with Diverse Peptidomes
flanking regions (model feature); FDR, false discovery rate; G,
gene propensity (model feature); GFP, green fluorescent pro-
tein; H, hotspot score (model feature); HLA, human leukocyte
antigen; IEDB, Immune Epitope Database and Analysis
Resource; IMGT, International ImMunoGeneTics Information
System; L, peptide length (model feature); LC-MS/MS, liquid
chromatography with tandem mass spectrometry; LOO, leave
one out model; MHC, major histocompatibility complex;
NMDP, National Marrow Donor Program; P, peptide (model
feature); P-models, primary models; pMHC, major histocom-
patibility complex-peptide; SHERPA, Systematic HLA Epitope
Ranking Pan Algorithm; T, protein abundance as measured by
TPM (model feature); TPM, transcripts per million.

Received December 22, 2020, and in revised from, May 7, 2021
Published, MCPRO Papers in Press, June 12, 2021, https://doi.org/
10.1016/j.mcpro.2021.100111

REFERENCES

1. Wells, D. K., van Buuren, M. M., Dang, K. K., Hubbard-Lucey, V. M.,
Sheehan, K. C. F., Campbell, K. M., Lamb, A., Ward, J. P., Sidney, J.,
Blazquez, A. B., Rech, A. J., Zaretsky, J. M., Comin-Anduix, B., Ng, A. H.
C., Chour, W., et al. (2020) Key parameters of tumor epitope immuno-
genicity revealed through a Consortium approach improve neoantigen
prediction. Cell 183, 818–834

2. Yadav, M., Jhunjhunwala, S., Phung, Q. T., Lupardus, P., Tanguay, J.,
Bumbaca, S., Franci, C., Cheung, T. K., Fritsche, J., Weinschenk, T.,
Modrusan, Z., Mellman, I., Lill, J. R., and Delamarre, L. (2014) Predicting
immunogenic tumour mutations by combining mass spectrometry and
exome sequencing. Nature 515, 572–576

3. Schumacher, T. N., and Schreiber, R. D. (2015) Neoantigens in cancer
immunotherapy. Science 348, 69–74

4. Sette, A., Vitiello, A., Reherman, B., Fowler, P., Nayersina, R., Kast, W. M.,
Melief, C. J., Oseroff, C., Yuan, L., Ruppert, J., Sidney, J., del Guercio, M.
F., Southwood, S., Kubo, R. T., Chesnut, R. W., et al. (1994) The rela-
tionship between class I binding affinity and immunogenicity of potential
cytotoxic T cell epitopes. J. Immunol. 153, 5586–5592

5. Hunt, D., Henderson, R., Shabanowitz, J., Sakaguchi, K., Michel, H., Sevilir,
N., Cox, A., Appella, E., and Engelhard, V. (1992) Characterization of
peptides bound to the class I MHC molecule HLA-A2.1 by mass spec-
trometry. Science 255, 1261–1263

6. Andreatta, M., Lund, O., and Nielsen, M. (2013) Simultaneous alignment and
clustering of peptide data using a Gibbs sampling approach. Bioinfor-
matics 29, 8–14

7. Abelin, J. G., Keskin, D. B., Sarkizova, S., Hartigan, C. R., Zhang, W.,
Sidney, J., Stevens, J., Lane, W., Zhang, G. L., Eisenhaure, T. M.,
Clauser, K. R., Hacohen, N., Rooney, M. S., Carr, S. A., and Wu, C. J.
(2017) Mass spectrometry profiling of HLA-associated peptidomes in
mono-allelic cells enables more accurate epitope prediction. Immunity
46, 315–326

8. Nielsen, M., Lundegaard, C., Blicher, T., Lamberth, K., Harndahl, M., Jus-
tesen, S., Røder, G., Peters, B., Sette, A., Lund, O., and Buus, S. (2007)
NetMHCpan, a method for quantitative predictions of peptide binding to
any HLA-A and -B locus protein of known sequence. PLoS One 2, e796

9. Andreatta, M., Alvarez, B., and Nielsen, M. (2017) GibbsCluster: Unsuper-
vised clustering and alignment of peptide sequences. Nucleic Acids Res.
45, W458–W463

10. Bassani-Sternberg, M., Chong, C., Guillaume, P., Solleder, M., Pak, H.,
Gannon, P. O., Kandalaft, L. E., Coukos, G., and Gfeller, D. (2017)
Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen
predictions and identifies allostery regulating HLA specificity. PLoS
Comput. Biol. 13, e1005725

11. Reynisson, B., Alvarez, B., Paul, S., Peters, B., and Nielsen, M. (2020)
NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC
antigen presentation by concurrent motif deconvolution and integra-
tion of MS MHC eluted ligand data. Nucleic Acids Res. 48, W449–
W454
12. Bulik-Sullivan, B., Busby, J., Palmer, C. D., Davis, M. J., Murphy, T., Clark,
A., Busby, M., Duke, F., Yang, A., Young, L., Ojo, N. C., Caldwell, K.,
Abhyankar, J., Boucher, T., Hart, M. G., et al. (2018) Deep learning using
tumor HLA peptide mass spectrometry datasets improves neoantigen
identification. Nat. Biotechnol. 37, 55–63

13. Sarkizova, S., Klaeger, S., Le, P. M., Li, L. W., Oliveira, G., Keshishian, H.,
Hartigan, C. R., Zhang, W., Braun, D. A., Ligon, K. L., Bachireddy, P.,
Zervantonakis, I. K., Rosenbluth, J. M., Ouspenskaia, T., Law, T., et al.
(2020) A large peptidome dataset improves HLA class I epitope pre-
diction across most of the human population. Nat. Biotechnol. 38, 199–
209

14. O’Donnell, T. J., Rubinsteyn, A., Bonsack, M., Riemer, A. B., Laserson, U.,
and Hammerbacher, J. (2018) MHCflurry: Open-source class I MHC
binding affinity prediction. Cell Syst. 7, 129–132

15. Jurtz, V., Paul, S., Andreatta, M., Marcatili, P., Peters, B., and Nielsen, M.
(2017) NetMHCpan 4.0: Improved peptide-MHC class I interaction pre-
dictions integrating eluted ligand and peptide binding affinity data. J.
Immunol. 199, 3360–3368

16. Shao, X. M., Bhattacharya, R., Huang, J., Sivakumar, I. K. A., Tokheim, C.,
Zheng, L., Hirsch, D., Kaminow, B., Omdahl, A., Bonsack, M., Riemer, A.
B., Velculescu, V. E., Anagnostou, V., Pagel, K. A., and Karchin, R. (2020)
High-throughput prediction of MHC class I and II neoantigens with
MHCnuggets. Cancer Immunol. Res. 8, 396–408

17. O’Donnell, T. J., Rubinsteyn, A., and Laserson, U. (2020) MHCflurry 2.0:
Improved pan-allele prediction of MHC class I-presented peptides by
incorporating antigen processing. Cell Syst. 11, 418–419

18. Diversifying clinical trials. Nat. Med. 24, (2018), 1779
19. Zhang, J., Xin, L., Shan, B., Chen, W., Xie, M., Yuen, D., Zhang, W., Zhang,

Z., Lajoie, G. A., and Ma, B. (2012) PEAKS DB:de NovoSequencing
assisted database search for sensitive and accurate peptide identifica-
tion. Mol. Cell. Proteomics 11, M111.010587

20. Love, M. I., Huber, W., and Anders, S. (2014) Moderated estimation of fold
changeanddispersion forRNA-seqdatawithDESeq2.GenomeBiol.15, 550

21. Chen, T., and Guestrin, C. (2016) XGBoost: A scalable tree boosting sys-
tem. In: Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. https://doi.org/10.1145/
2939672.2939785

22. Bergstra, J., Komer, B., Eliasmith, C., Yamins, D., and Cox, D. D. (2015)
Hyperopt: A Python library for model selection and hyperparameter
optimization. Comput. Sci. Discov. 8, 014008

23. Bassani-Sternberg, M., Pletscher-Frankild, S., Jensen, L. J., and Mann, M.
(2015) Mass spectrometry of human leukocyte antigen class I pepti-
domes reveals strong effects of protein abundance and turnover on an-
tigen presentation. Mol. Cell. Proteomics 14, 658–673

24. Rammensee, H. G., Friede, T., and Stevanoviíc, S. (1995) MHC ligands and
peptide motifs: First listing. Immunogenetics 41, 178–228

25. Rammensee, H., Bachmann, J., Emmerich, N. P., Bachor, O. A., and
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