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ABSTRACT

The separation of deleterious from benign mutations
remains a key challenge in the interpretation of ge-
nomic data. Computational methods used to sort
mutations based on their potential deleteriousness
rely largely on conservation measures derived from
sequence alignments. Here, we introduce LIST-S2,
a successor to our previously developed approach
LIST, which aims to exploit local sequence identity
and taxonomy distances in quantifying the conser-
vation of human protein sequences. Unlike its prede-
cessor, LIST-S2 is not limited to human sequences
but can assess conservation and make predictions
for sequences from any organism. Moreover, we pro-
vide a web-tool and downloadable software to com-
pute and visualize the deleteriousness of mutations
in user-provided sequences. This web-tool contains
an HTML interface and a RESTful API to submit and
manage sequences as well as a browsable set of pre-
computed predictions for a large number of UniPro-
tKB protein sequences of common taxa. LIST-S2 is
available at: https://list-s2.msl.ubc.ca/

INTRODUCTION

High-throughput sequencing technologies enable the af-
fordable mapping of mutations present in any species’ popu-
lation as well as within individuals affected by disease. Sep-
arating the large number of neutral mutations from those
that underlie deleterious phenotypes is an important bot-
tleneck to overcome in order to effectively use the grow-
ing wealth of available sequencing data. Numerous compu-
tational methods have been developed to predict the dele-
teriousness of mutations in coding regions by quantifying
the evolutionary constraints on affected residues, i.e. con-
servation methods, (e.g. SIFT (1), PROVEAN (2), phyloP
(3), GERP++ (4), SiPhy (5), PhastCons (6) and EVmuta-

tion (7)) or by combining conservation with features derived
from functional genomic and gene annotation data, i.e. en-
semble methods, (e.g., PolyPhen-2 (8), CADD (9), Eigen
(10), DANN (11) and fitCons (12)). Classically, conserva-
tion measures derived from sequence alignments are either
based on variant frequencies (13) (e.g. SIFT, PROVEAN,
EVmutation) or the phylogenetic relationships among pre-
selected subsets of species (e.g. phyloP, GERP++, SiPhy,
PhastCons). Recently, we introduced a new framework for
evolutionary conservation with measures that exploit lo-
cal sequence identity and taxonomy distances across species
(14). These measures are based on the assumption that vari-
ations observed in homologs from closely related species
are more significant in assessing conservation compared to
those in distantly related species. We used the new conserva-
tion measures to create a method (LIST) for predicting the
deleteriousness of human coding mutations which is cen-
tred on two features: Local Identity and Shared Taxa. LIST
comfortably outperforms methods that rely on existing con-
servation measures.

Here we introduce LIST-S2, an updated method for pre-
dicting the deleteriousness of mutations along with an ac-
companying web-tool, API and software. Unlike its pre-
decessor (LIST), LIST-S2 is not limited to human muta-
tions and is capable of making predictions for sequences
from any species (suffix S2). Results show that LIST-S2 sub-
stantially outperforms comparable methods that rely solely
on conservation, independent of the dataset used (Tables 1
and 2, Supplementary Tables S1–S4, Supplementary note
1). In addition, while restricted solely to conservation mea-
sures, LIST-S2 still outperforms ensemble methods that
combine conservation with features derived from functional
genomics studies and/or gene annotations (Supplementary
Tables S1–S4, Supplementary note 1).

MATERIALS AND METHODS

LIST-S2, similarly to LIST, is assembled hierarchically
from three modules. The position mutation module (PMM)
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Table 1. Optimization and benchmarking data sets used

Benign Deleterious
Set ID Protein set Definition Count Definition Count
OP1 A ExAC ≥ 0.5% 24 096 0.015% ≤ ExAC ≤ 0.03% 48 142
OP2 A ExAC ≥ 1% 18 109 ClinVar pathogenic annotation & ExAC > 0 2146
BE1 B ExAC ≥ 1% 10 971 ClinVar pathogenic annotation & ExAC > 0 1684
BE2 B gnomAD ≥ 1% 9578 UniProt missense pathogenic annotation 7414
BE3 B gnomAD ≥ 1% 9578 UniProt missense pathogenic cancer annotation 1147
BE4 B HumVar benign 7552 HumVar disease 7624

Table 2. The AUC values contrasting LIST-S2 performance to LIST and other conservation tools using four benchmarking datasets, BE1, BE2, BE3 and
BE4. The highest AUCs achieved are highlighted in bold

Deleterious count 1684 7414 1147 7624
Benign count 10 971 9578 9578 7552
Datasets BE1 (ClinVar & ExAC) vs. ExAC BE2 UniProt vs. gnomAD BE3 Cancer vs. gnomAD BE4 Humvar
LIST-S2 0.880 0.919 0.897 0.895
LIST 0.885 0.922 0.885 0.900
SIFT 0.817 0.883 0.820 0.880
PROVEAN 0.816 0.879 0.821 0.880
phyloP V 0.814 0.880 0.816 0.856
SiPhy 0.805 0.853 0.790 0.825
SIFT4G 0.798 0.859 0.792 0.857
GERP++ RS 0.774 0.823 0.795 0.793
phastCons V 0.771 0.825 0.768 0.797
phyloP M 0.744 0.804 0.772 0.780
phyloP P 0.716 0.765 0.745 0.737
phastCons M 0.716 0.792 0.791 0.749
phastCons P 0.707 0.777 0.799 0.730

estimates deleteriousness of a specific mutation by deter-
mining whether an amino acid matching the mutation oc-
curs in a homolog of a species closely or distantly related to
the species for which we are making the prediction. The sec-
ond module, the position module (PM; subdivided in PM1
and PM2i), assesses how vulnerable a sequence position is
to variations. Specifically, it determines whether amino acid
variations in this position occur in species closely or dis-
tantly related to the species of interest. The mutation mod-
ule (MM) finally assesses the likelihood of changing the ref-
erence to the mutant amino acid.

The PMM and PM comprise the core of this predictor,
contributing most to its prediction performance. Both mod-
ules exploit local sequence identity (LI) and shared taxa
(ST), two terms that we define as follows. Given a query
sequence aligned to a database sequence, we define the lo-
cal identity (LI) at position � as the number of residues
in the database sequence that are identical to those of the
query in a window of 11 residues centred at � , excluding the
residue at � . We define the shared taxa (ST) of the database
sequence as the number of taxonomy tree edges that are
shared between the species from which the database and
query sequences originate. In PMM and PM, local identity
(LI) and shared taxa (ST) are exploited in the conservation
measures, variant shared taxa (VST) and shared taxa profile
(STP), that we previously introduced in (14).

The purpose of VST is to have a measure of how close in
the taxonomy tree is a species that has a homolog (high LI)
with an amino acid at position � matching the mutation of
interest. The closer the species that has this matching amino
acid, the higher the number of taxonomy tree edges that the
species share (high ST) and thus the higher the VST value
for the given amino acid. Specifically, VST� is defined as a
vector of N = 20 such that for each possible amino acid vari-
ation (v) at position � VST� ,v is the ST of the database se-
quence with the highest LI and the amino acid v at � , given
the restriction that � is not located within two residues of

indels. If the highest LI is shared by several database se-
quences, we select the ST of the sequence with the highest
segment identity (SI), where SI is the number of residues
that are identical between the query and the continually
aligned segment of the database sequence that harbours
amino acid variation (v) at position � in the blastp output.
If multiple database sequences share the same highest SI (as
well as highest LI), then we select the highest ST. Previous
analysis has shown that mutations with higher VST� ,v val-
ues (i.e. observed in sequences from closely related species)
are less likely to be deleterious when compared to those with
lower VST� ,v values, and that the average VST� ,v for all 19
possible variations is higher for benign positions (14). Fig-
ure 1A,C provides two examples that illustrate this differ-
ence of VST� ,v for benign and deleterious mutations. The
mutation of histidine (H) to arginine (R) at position 317 in
the protein MEGF11 (UniProtKB: A6BM72) is frequent
(benign). Accordingly, the VST value for R at this position
is high (Figure 1A), i.e. R exists in closely related species.
By contrast, the mutation of lysine (K) to glutamine (Q) at
position 666 in protein SF3B1 (UniProtKB: O75533) has
been shown to be deleterious. The VST value for glutamine
at this position is low (Figure 1C), indicating that glutamine
is only found at this position in species that share few tax-
onomy tree edges with the query’s species, thus are far away
in the taxonomy tree.

The purpose of STP is to measure whether sequences
across the ST spectrum with an amino acid at position �
that differs from the one present in the query have ‘strong’
homologs (high LI) or only ‘weak’ homologs (low LI) to the
query sequence. Query sequence positions where variations
are observed in strong homologs (higher LI) from closely re-
lated species (higher ST) are likely to have higher tolerance
to mutations compared to other locations. Specifically, we
define STP� as a vector of size ST max such that for each
possible ST value s, 0 < s ≤ ST max, STP� ,s is the high-
est LI of the set of database sequences with ST = s that do
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Figure 1. Contrast in VST and STP vectors for benign and deleterious mutations. Shown are the VST (A) and STP vectors (B) for the frequent (benign)
human mutation A6BM72 H:317:R, as well as the VST (C) and STP vectors (D) for the human deleterious mutation O75533 K:666:Q, which has been
linked to malignant melanoma of the skin (CMM). In (A) and (C), the ST value of the mutant residue (VST� ,v = m) are shown in black and that of the
reference residue in orange. In (B) and (C), LI values at ST higher than two thirds the ST max are in black.

not have an amino acid matching that of the query at � .
ST max is defined as the query’s species taxonomy lineage
size. Our previous analysis has revealed that benign muta-
tions have higher average STP values for higher shared taxa
when compared to deleterious mutations. Figures 1B,D il-
lustrate this observation for the two mutated positions in
proteins MEGF11 and SF3B1. The position of the benign
mutation in protein MEGF11 (Figures 1B) has high LI val-
ues for high STs, which shows that this position is variable in
sequences of species close to the query’s species (high STs).
The opposite is observed for the position with a deleterious
mutation in Figures 1D.

VST� and STP� are used in the position mutation mod-
ule (PMM) and the position module (PM) to calculate mu-
tation scores as follows:

The PMM module scores mutations m at � based on the
formula:

PMMτ,m =
{

1 − VSTτ,v=m

ST max , LI ≥ α

1, LI < α
(1)

The minimum local identity cut-off (�) used in LIST-
S2 for PMM is 4, which maximizes PMM’s AUC value on
the OP1 dataset (see below). Higher VST� ,v = m, usually ob-
served for benign mutations (Figure 1A), result in lower
PMM� ,m deleteriousness scores when compared to delete-
rious mutations that generally have low VST� ,v = m values
(Figure 1C).

PM module scores are assembled from the two subcom-
ponents PM1 and PM2i. PM1 is derived from the VST� vec-
tor by averaging the PMM� ,m values for all possible muta-
tions m at � :

PM1τ =
∑20

m �=ref PMMτ,m

19
(2)

PM2i is derived from the average STP� ,s:

PM2iτ = 1 − 3 ∗ ∑ST max
s = s1 Lτ,s

ST max
(3)

Where s1 = ST max * 2/3, is learned using random
search to maximize the AUC of PM2i on OP1, and:

Lτ,s =
{

STPτ,s, STPτ,s ≥ β
0, STPτ,s < β

(4)

The minimum local identity (STP� ,s) cut-off (�) used in
LIST-S2 for PM2i is 6. This cut-off maximizes PM2i’s AUC
value on the OP1 dataset.

The PMM and PM modules are complemented by the
mutation module (MM) to assess the general amino acid
swap-ability between the reference (r) and the mutant (m)
residue and is calculated as:

MMm = 1
AASMr,m

(5)
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Where the amino acid swap-ability matrix is defined as:

AASMr,m = FPr,m

(FPr,m + RPr,m)
(6)

The rare probability matrix (RP) and the frequent prob-
ability matrix (FP) are defined as:

RPr,m = RCr,m∑19
mj,mj �=r RCr,mj

(7)

FPr,m = FCr,m∑19
mj,mj �=r FCr,mj

(8)

where RCr,m (FCr,m) is the count of rare (frequent) muta-
tions in the OP1 dataset (see below).

From the above we see that LIST-S2′ scores are derived
from four features: the VST of the mutant amino acid used
by the PMM module, the average VST of all 19 possible
variations at the mutation position used by PM1, the av-
erage values of the top one third of the STP vector used
by PM2i, and the general amino acid swap-ability matrix
AASM used by the MM module. Bayes rule is used to in-
corporate weighted scores of PM1 and PM2i into a PM
score, and then weighted scores of PM and PMM into a
CORE score (Figure 2), and weighted CORE scores are
combined with weighted MM scores into the final LIST-S2
scores as explained in Figure 2, and supplementary notes
S2 and S3. Supplementary Figure S1a,b shows the discrim-
inative power of each of the LIST-S2 sub-modules, as well
as the CORE, in AUC values.

Previous analysis revealed that the scores of each of the
three modules used in LIST need to be rescaled to com-
pensate for the alignment depth before hierarchical integra-
tion (14). In supplementary note S2, we describe the details
of the optimization of LIST-S2′ hierarchical structure, in-
cluding the steps taken to compensate for alignment depth
and to determine Bayes rule input weights. Moreover, scores
have been fitted to target distributions during this integra-
tion and for the final output, which we describe in detail in
supplementary note S3.

Data sets

We used two sets of human allele frequencies: the Exome
Aggregation Consortium (15) (ExAC) based on 60,706 in-
dividuals and the Genome Aggregation Database v2.1.1
(gnomAD) based on 118 479 cancer-free individuals (http:
//gnomad.broadinstitute.org/). We also used three sets of
deleterious mutations: UniProt missense mutations that
have been associated with diseases (UPPath, N = 19,744),
UniProt mutations that have been associated with cancer
(CANCER, N = 2647), and ClinVar germline missense mu-
tations that are also observed at least once in the ExAC data
(CEPath, N = 4070). We also used CD-HIT (16) to divide
the SwissProt human protein sequences (release 2017 07) at
random into two equal sets, such that sequences in A have
<50% identity to those in B. Mutations that map to proteins
in set A are used for optimization while those that map to
proteins in set B are used for benchmarking.

Figure 2. Architecture of LIST-S2. For each position � in the query se-
quence, a variant shared taxa VST� vector and a shared taxa profile STP�

vector are constructed. The scores of PMM and PM1 are derived from
VST� , and the PM2i score is derived from STP� . The three scores that are
derived from sequence alignments (PMM, PM1 and PM2i) are rescaled to
compensate for alignment depth [CAD]. The PM score is assembled from
the weighted scores of PM1 (weight 1.0) and PM2i (weight 1.0) using Bayes
rule and then redistributed to fit a normal distribution. The CORE score
is computed by joining the weighted scores of PMM (weight 0.7) with PM
(weight 1.0) and then redistributing the outcome to fit a normal distribu-
tion. The amino acid swap-ability matrix (AASM) is derived from ExAC
mutations. MM scores are the inverse of the AASM values for the reference
(r) and the mutant (m) amino acids. The final LIST-S2 score is computed
by joining the weighted scores of CORE (weight 1.0) with MM (weight
0.3) and then redistributing it to fit a uniform distribution. For a detailed
description of compensating for alignment depth [CAD] and score weights
see supplementary note S2, and for redistributing scores to fit a target dis-
tribution see supplementary note S3.

Optimization data. Two datasets that map to proteins in
set A were used for optimization. In the OP1 dataset, muta-
tions in ExAC with allele frequency in the range of 0.015%
to 0.03% were considered deleterious (positive class), count-
ing 48 142 and mutations with allele frequency ≥0.5% were
considered benign (negative class), counting 24 096. The
OP2 dataset includes the CEPath (see above) deleterious
mutations, counting 2146, and frequent ExAC mutations
(frequency ≥ 1%) as benign class, counting 18 109.

Benchmarking data. Mutations that map to proteins in
set B and have precomputed scores for 24 predictors
in dbNSFP4.0a (17) (namely: SIFT (1), SIFT4G (18),
PROVEAN (2), phyloP (3) X 3, SiPhy (5), phastCons (6)
X 3, GERP++ (4), Eigen (10), CADD (9), DANN (11),

http://gnomad.broadinstitute.org/
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PolyPhen-2 (8), FATHMM-MKL (19), PrimateAI (20),
MutationTast (21), MutationAssessor (22), MPC (23) and
fitCons (12) X 4) are used for benchmarking. Four bench-
marking data sets were used: BE1 includes frequent ExAC
mutations (frequency ≥ 1%) that are not in CEPath, count-
ing 10 971, as the benign negative class and CEPath mu-
tations, counting 1684, define the deleterious positive class.
In BE2, benign mutations are those with an allele frequency
≥1% in gnomAD that are not part of UPPath (see above),
counting 9578, and deleterious mutations are those that
are part of UPPath, counting 7414. In BE3, benign mu-
tations are those with allele frequency ≥1% in gnomAD
that are not part of UPPath, counting 9578, while delete-
rious are those defined in the CANCER set (see above),
counting 1147. Finally, BE4 is the subset of HumVar mu-
tations provided by PolyPhen-2, counting 7624 deleteri-
ous and 7552 benign mutation, where the deleterious class
includes all mutations associated with diseases or a loss
of activity/function, excluding those associated with can-
cer, and the benign class includes those mutations that
are frequent (allele frequency ≥ 1%) (Table 1). The pre-
computed ranked scores of all tools used in the bench-
marking, except those from EVmutations and LIST, were
collected from dbNSFP4.0a. Precomputed LIST scores
were collected from (24), precomputed LIST-S2 scores
used can be found at (25), and EVmutation scores were
collected from https://marks.hms.harvard.edu/evmutation/
human proteins.html. Table 1 summarizes the optimization
and benchmarking datasets used.

RESULTS AND DISCUSSION

Benchmarking

Using the four benchmarking datasets described above
(BE1-4), we contrasted the performance of LIST-S2 to that
of LIST and other conservation methods. Our analysis (Ta-
ble 2, Supplementary Tables S1–S5) reveals that LIST-S2
performs similar to LIST and substantially better than lead-
ing alternatives. Our analysis using the BE1 dataset indi-
cates that, compared to other conservation methods, LIST-
S2 provides a higher sensitivity for any specificity value
(Figure 3A) and a higher precision for any recall (Figure
3B). In addition, LIST-S2 outperforms ensemble tools (Fig-
ure 3C, Supplementary Tables S1–S4). EVmutation and
LRT have specific alignment requirements and, thus, score
considerably lower numbers of mutations. LIST-S2 also
achieves higher AUCs for the subset of mutations scored by
EVmutation and LRT (Supplementary Table S1–S4). LIST-
S2 also does better than all other tested methods when eval-
uating mutations in protein parts predicted to be disordered
(IDRs) by ESpritz (26) or IUPred (27) (Supplementary Ta-
bles S1–S4).

Interpreting LIST-S2 scores

LIST-S2 scores are redistributed to fit a uniform distribu-
tion (learned from OP2), i.e. approximately rank scores.
These scores reflect the deleteriousness of mutations in tis-
sues where the mutated proteins are transcribed.

Understanding germline mutations. Germline mutations
exists in all cells, however, the deleteriousness effect of
germline deleterious mutations is limited to the tissue(s)
that transcribe the proteins harbouring these mutations and
are involved in the pathways related to the deleteriousness
of these mutations. Consequently, to reduce the number
of candidate mutations, studies identifying the underlying
genetic causes of specific disorders often prioritize genes
linked to these disorders. For instance, to identify mutations
linked to autism spectrum disorder (ASD), the authors
of (28) prioritized mutations observed in genes known to
have links to neurodevelopmental conditions. Thus, LIST-
S2 scores should be used and interpreted in a specific con-
text to optimize their usefulness.

Understanding cancer somatic mutations. In most cancer
applications, we start with a set of somatic mutations ob-
served in a tumour, and we need to identify driver mutations
that propel the proliferation of cancer from those that have
no effect on the cancer proliferation also known as passen-
ger mutations. We note that the lack of effect on cancer pro-
liferation for a large fraction of passenger mutations is likely
the result of being in genes that are not transcribed or have
no role in the cancer cell and therefore are not subject to
any selective constraint. Studies show that closed chromatin
marks are found to be associated with regions of high can-
cer somatic mutation density compared to regions with high
gene activity and open chromatin (29). As a result, many
passenger mutations that are in closed chromatin regions
have the characteristics of deleterious mutations that would
likely generate a deleterious effect in normal tissues and thus
should be scored by LIST-S2 and other tools as deleterious
overshadowing or obfuscating driver variations that are ac-
tually contributing to the growth of tumours. Compared to
conservation and ensemble methods, LIST-S2 achieves sub-
stantially higher performance in separating variations as-
sociated with cancer from those that are frequent (benign)
(Figure 3D, Supplementary Table S3). However, since pas-
senger mutations are not necessarily benign, the search for
drivers needs to be limited to genes known to be associated
with oncogenesis. Thus, LIST-S2 can be used to predict the
deleteriousness of mutations in cancer driver genes (e.g. the
299 identified by (30)) that are also expressed in the cancer
tissue, since mutations with higher LIST-S2 scores are more
likely to alter the functionality of these driver genes which
make them candidate driver mutations.

SERVER DESCRIPTION

Input

Protein sequences with identifier headers in fasta format.
Optional OX = n can be included in the header to explicitly
identify the sequence Taxa ID as n, otherwise, the Taxa ID
of the sequence with the highest alignment (Bits score) will
be used as the query Taxa ID.

Output

LIST-S2 computes the potential deleteriousness of every
possible amino acid mutation of the input protein sequence.
Scores reflect the deleteriousness of each possible mutation

https://marks.hms.harvard.edu/evmutation/human_proteins.html
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Figure 3. Contrasting the performance of LIST-S2 to other methods in separating human germline deleterious. (A) The ROC curves contrasting LIST-S2
to the four best performing conservation methods using the BE1 dataset: SIFT, PROVEAN, PhyloP V (based on 100 Vertebrata species) and SiPhy. AUC
values are provided for each method in parentheses. (B) The precision recall curves contrasting LIST-S2 to the same four methods. (C) Comparison of
AUC values for LIST-S2 and common conservation as well as ensemble methods. (D) The AUC values in separating Cancer from frequent mutations (BE3
dataset) for LIST-S2 and common conservation as well as ensemble methods.

at each protein position, where higher scores imply higher
potential deleteriousness. We also provide the alignment
depth and average deleteriousness of all mutations at each
position as a general conservation score. Results can either
be visualized in the form of a heatmap (Figure 4) or down-
loaded as a text file.

Usage example

Figure 4 shows the heatmap output for the Putative POU
domain, class 5, transcription factor 1B protein (Q06416).

The LIST-S2 web-tool is comprised of four main components

The processing queue along with its two user-facing clients
(HTML interface and RESTful API) and a browsable set
of precomputed predictions (Figure 5). Each client acts as
a lightweight interface to the processing queue, which is
the component actively processing user-provided sequences.

This microservice-like design allows flexibility and robust-
ness in server distribution and scaling.

Processing queue

The processing queue accepts ‘job requests’ from a client to
process user-provided sequences and is only accessible via
the provided HTML interface and API. In order to prevent
any one client or user from overwhelming the LIST-S2 in-
stances it uses a prioritized, tiered system of queues, one for
each combination of client and user. The processing queue
then distributes the incoming jobs to be processed by LIST-
S2.

HTML interface

One of two user-facing clients of the processing queue. This
client (https://list-s2.msl.ubc.ca/) provides a web-interface
for submitting/managing jobs to be processed by LIST-S2

https://list-s2.msl.ubc.ca/
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Figure 4. Example of a prediction score visualization. Top, a heatmap matrix for the potential deleteriousness of every possible amino acid mutation.
Middle, position average conservation of all possible mutations at that position. Bottom, alignment depth at each position.

Figure 5. LIST-S2 Web-tool architecture. User-provided sequences can be
submitted through either the HTML or RESTful interface. These jobs can
then be viewed and managed by interacting with either the provided web-
site or through API calls (optional python wrapper also provided). Jobs
submitted in this way are queued and prioritized by the Processing Queue
before being distributed to a LIST-S2 instance for results to be computed.
Alternatively, precomputed results can be viewed through the Precom-
puted Predictions interface which houses previously computed results on
UniprotKB protein sequences.

as well as interactive visualizations (Figures 4 and 5) of the
resulting scores.

RESTful API

The second of the two user-facing clients of the processing
queue. This client (https://list-s2-api.msl.ubc.ca/) provides

a set of REST endpoints to programmatically submit, re-
trieve and delete jobs from the processing queue. We pro-
vide a python wrapper to help simplify the use of the API
from both command-line and scripts.

Precomputed predictions

An interface (https://precomputed.list-s2.msl.ubc.ca/) for
browsing and visualizing precomputed predictions of a
large number of UniprotKB protein sequences of common
taxa. Currently contains predictions for over 700 000 se-
quence.

FINAL REMARKS

The LIST-S2 web server introduced here enables users to
compute and visualize the deleteriousness of mutations
in protein sequences of any organism. We validated its
performance on human mutations but future studies are
required to validate performance on mutations in other
species for which benchmarking data is currently sparse
or not available. Moreover, we provide the downloadable
software together with the associate preformatted UniProt
TrEMBL/SwissProt database release 2019 02 so that our
measures and prediction scores can more easily be com-
bined with orthogonal data to improve predictions further.

DATA AVAILABILITY

We provide a web-tool (https://list-s2.msl.ubc.ca/) which in-
cludes an HTML interface to compute and visualize the
deleteriousness of mutations in user-provided sequences
and a RESTful API to submit and manage sequences as
well as a browsable set of precomputed predictions for a
large number of UniprotKB protein sequences of common
taxa. We also provided a downloadable software (https:
//github.com/NawarMalhis/LIST-S2).

https://list-s2-api.msl.ubc.ca/
https://precomputed.list-s2.msl.ubc.ca/
https://list-s2.msl.ubc.ca/
https://github.com/NawarMalhis/LIST-S2
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SUPPLEMENTARY DATA
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