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Analysis of adaptive platform trials
using a network approach
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Abstract
Background: Adaptive platform trials allow randomized controlled comparisons of multiple treatments using a com-
mon infrastructure and the flexibility to adapt key design features during the study. Nonetheless, they have been criti-
cized due to the potential for time trends in the underlying risk level of the population. Such time trends lead to
confounding between design features and risk level, which may introduce bias favoring one or more treatments. This is
particularly true when experimental treatments are not all randomized during the same time period as the control, lead-
ing to the potential for bias from non-concurrent controls.
Methods: Two analysis methods addressing this bias are stratification and adjustment. Stratification uses only compari-
sons between treatment cohorts randomized during identical time periods and does not use non-concurrent randomiza-
tions. Adjustment uses a modeled analysis including time period adjustment, allowing all data to be used, even from
periods without concurrent randomization. We show that these competing approaches may be embedded in a common
framework using network meta-analysis principles. We interpret the stages between adaptations in a platform trial as
separate fixed design trials. This allows platform trials to be viewed as networks of direct randomized comparisons and
indirect non-randomized comparisons. Network meta-analysis methodology can be re-purposed to aggregate the total
information from a platform trial and to transparently decompose this total information into direct randomized evidence
and indirect non-randomized evidence. This allows sensitivity to indirect information to be assessed and the two analysis
methods to be clearly compared.
Results: Simulations of platform trials were analyzed using a network approach implemented in the netmeta package in
R. The results demonstrated bias of unadjusted methods in the presence of time trends in risk level. Adjustment and
stratification were both unbiased when direct evidence and indirect evidence were consistent. Network tests of incon-
sistency may be used to diagnose inconsistency when it exists. In an illustrative network analysis of one of the treatment
comparisons from the STAMPEDE platform trial in metastatic prostate cancer, indirect comparisons using non-
concurrent controls were inconsistent with the information from direct randomized comparisons. This supports the pri-
mary analysis approach of STAMPEDE, which used only direct randomized comparisons.
Conclusion: Network meta-analysis provides a natural methodology for analyzing the network of direct and indirect
treatment comparisons from a platform trial. Such analyses provide transparent separation of direct and indirect evi-
dence, allowing assessment of the impact of non-concurrent controls. We recommend time-stratified analysis of concur-
rently controlled comparisons for primary analyses, with time-adjusted analyses incorporating non-concurrent controls
reserved for secondary analyses. However, regardless of which methodology is used, a network analysis provides a use-
ful supplement to the primary analysis.

Keywords
Adaptive design, indirect treatment comparison, mixed treatment comparison, multi-arm multi-stage study, network
meta-analysis, platform trial

Background

Platform trials provide a framework for undertaking
randomized controlled treatment comparisons of
potentially many treatments, while flexibly allowing
design adaptations as the study progresses.1,2 Adaptive
design changes include adding new treatments,
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dropping existing treatments, altering randomization
allocations, enrichment to selectively recruit partici-
pants likely to respond, and many others. The times of
design adaptations define a multi-stage structure for
platform trials which motivates an alternative name,
multi-arm multi-stage studies (MAMS).3

Despite the flexibility of platform trials, they have
been criticized because the adapting design may intro-
duce bias if there are time trends in the population risk
level.4,5 Indeed, if treatments are not all randomized
during identical time periods, the non-concurrent ran-
domization leads to a mixture of randomized and non-
randomized evidence.4

Although the design of a platform trial may adapt
over time, the multi-stage structure provides a sequence
of fixed design trials. The synthesis of information from
the multiple stages of a single platform trial is therefore
analogous to a meta-analysis of fixed design trials. Our
goal is to take advantage of this structure by using
meta-analytic principles to overcome some of the lim-
itations of platform trials, and to provide transparent
delineation between randomized and non-randomized
evidence.

The primary limitation of adapting the study design
over time is that key design features become con-
founded with time. This means that if the background
risk of participants is related to time of randomization,
comparisons of risk between treatments may be biased.
For example, if the underlying risk level of the popula-
tion decreases over time, and the allocation ratio of an
experimental treatment is increased over time relative
to the control, then this will bias the controlled com-
parison in favor of the experimental treatment.

There have been two primary approaches for dealing
with this confounding. The first approach, which we
will call adjustment, uses a modeled analysis including
an adjustment for randomization time. An example of
a platform trial following this strategy is the REMAP-
CAP trial in COVID-19.4,6 In this trial, the primary
analysis uses a time epoch adjustment allowing all data
to be used in treatment comparisons, even for periods
in which there was no concurrent randomization to the
treatments being compared. The second approach,
which we will call stratification, involves using the
stages of a platform trial as time strata, and only using
those strata that include concurrent randomization to
the treatments being compared. An example of a plat-
form trial using this strategy is the STAMPEDE trial
in prostate cancer.3,7 Advocates of adjustment argue
that it allows more information to be extracted, while
advocates of stratification argue that it preserves ran-
domization and is, therefore, less susceptible to bias
and modeling assumptions.

In this article, we present an approach to analyzing
platform trials that embeds both approaches within a
common framework. We use network meta-analysis
principles, providing an established methodology for

combining direct and indirect comparisons.8 We show
how a platform design may be viewed as a network of
direct and indirect comparisons, which may be decom-
posed into randomized and non-randomized evidence.
This allows both the adjusted and stratified approaches
to be conveniently compared in a common framework
that allows transparent assessment of their consistency.

Methods

Our proposed analysis method is based on viewing a
platform trial as a network of direct and indirect treat-
ment comparisons. The stratified and adjusted approaches
described above correspond, respectively, to restricting the
analysis to direct comparisons or aggregating the informa-
tion from the direct and indirect comparisons. The aggre-
gation of direct and indirect treatment comparisons is
called a mixed treatment comparison.9,10 Methods for
undertaking mixed treatment comparisons are well-known
in meta-analysis and may be re-purposed for the analysis
of a single platform trial.

Mixed treatment comparisons

Figure 1 depicts an illustrative platform trial with four
stages and five treatment arms, including one control
and four experimental treatments. The study is initiated
at time T0 and adaptations occur at times T1, T2, and
T3 followed by termination of the study at time T4. The
adaptations at times T1, T2, and T3 involve adding and
dropping treatment arms and changing the randomiza-
tion probabilities.

The MAMS structure in Figure 1 is equivalent to
four distinct randomized trials with four different fixed
designs: (1) control versus A; (2) control versus A, B,
and C; (3) control versus A, C, and D; and (4) control
versus A and D. Within each stage-specific design, ran-
domization is fully preserved, and the design does not
change. Thus, within stages, the concurrent randomiza-
tion prevents any bias resulting from changes in back-
ground risk. However, between stages there are design
changes that are confounded with time, so comparisons
between stages are susceptible to bias from changes in
background risk.

Figure 1 yields a collection of direct and indirect
treatment comparisons. A direct comparison compares
treatment cohorts concurrently randomized within the
same study stage, whereas an indirect comparison com-
pares treatment cohorts randomized during different
stages with a reference treatment common to both
stages. For example, stage 2 provides a direct compari-
son of control and treatment B, yielding an effect esti-
mate ûdirect

B0 . These treatments may also be compared
indirectly, using stages 1 and 2 with treatment A as the
common reference. If ûdirect

A0 is the effect estimate from
the direct comparison of control and treatment A in
stage 1, and ûdirect

AB is the effect estimate from the direct
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comparison of treatments A and B in stage 2; then, the
indirect effect estimate of control versus treatment B is
ûindirect

B0 = ûdirect
A0 � ûdirect

AB .10 The synthesis of the direct
estimate ûdirect

B0 and the indirect estimate ûindirect
B0 into a

single summary of the comparison between control and
treatment B is then a mixed treatment comparison. For
appropriately chosen weights w1 and w2 based on the
variability of the treatment effect estimates, combina-
tion of the two estimates then leads to a mixed treat-
ment comparison of treatment B and control

ûmixed
B0 =w1ûindirect

B0 +w2ûdirect
B0 =w1ûdirect

A0 � w1ûdirect
AB

+w2ûdirect
B0

ð1Þ

From equation (1), the mixed treatment effect estimate
is a linear combination of the three direct treatment
effect estimates. As we will see, network meta-analysis
generalizes this notion to complex networks of treat-
ment comparisons by using linear combinations of
direct treatment effect estimates to optimally combine
direct and indirect information.

Use of the direct effect estimate ûdirect
B0 alone is equiv-

alent to a stratified analysis approach for platform
studies. Furthermore, as we will see later in the simula-
tion study, use of the mixed comparisons estimate
synthesizing ûindirect

B0 and ûdirect
B0 is analogous to an

adjusted analysis approach. In the next section, we dis-
cuss this synthesis process before going on to explore
the difference between the two analysis approaches.

Network analysis

Figure 1 also displays a network representation of the
direct comparisons available within the illustrative plat-
form trial. Vertices represent treatments while edges

represent direct comparisons between the associated
treatments. The width and number associated with each
edge represent the number of stages providing each
direct comparison. Where two vertices are not directly
connected, if they can be reached from each other by
passing through a third vertex, then an indirect compar-
ison is available with the third treatment as reference.
For the network displayed in Figure 1, direct compari-
son of treatments B and D is unavailable. However,
since vertex D can be reached from vertex B via each of
the other three treatments, indirect comparisons are
available with each of the other three treatments as ref-
erence. We now discuss the synthesis of such direct and
indirect evidence using network meta-analysis and
demonstrate its application to the network representa-
tion of platform trials.

Network analysis methods are more straightforward
to describe when we assume that there is a common
control arm in all stages. This is not an essential
assumption but will often be true in platform trials and
can be relaxed with additional technical details.11

For each stage s= 1, . . . , S, we have a Cs 3 K

design matrix Xs specifying the treatment contrasts for
that stage, where Cs and K are the number of treatment
contrasts possible in stage s and the number of non-
control treatments, respectively. We also have a Cs 3 1

column vector ûs of treatment contrast estimates for
stage s and a K 3 1 column vector of parameters u for
the treatment contrasts with the common control. This
leads to a total of C =

P
s

Cs stage-specific treatment

comparisons for the entire study. For example, in
Figure 1, there are K = 4 contrasts compared to the

control, with u= uA0 uB0 uC0 uD0½ �T. Across all
stages, there are C1 = 1, C2 =C3 = 6, C4 = 3, and
C = 16 contrasts. For stage 1, the estimate and design

Figure 1. Platform trial with four treatments compared to a common control. Design adaptations occur at three timepoints
denoted by vertical dashed lines, yielding four stages. Colored bands denote the stages that each treatment is available for
randomization, with the corresponding stage-specific randomization probabilities. The network diagram depicts the network and
number of direct treatment comparisons available within the platform.
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matrix are then û1 = ûA0

� �
and X1 = 1 0 0 0½ �, while for

stage 2, they are û2 = ûA0 ûB0 ûC0 ûAB ûAC ûBC

� �T
and

X2 =

1 0 0 0

0 1 0 0

0 0 1 0

1 �1 0 0

1 0 �1 0

0 1 �1 0

2
6666664

3
7777775
:

Using this notation, the linear model for a general plat-
form trial is then specified in terms of a C 3 1 vector of

estimates û= ½û1 û2 :::ûS�T and a C 3 K design matrix

X= XT
1 XT

2 ::: X
T
S

� �T
using the linear relationship

m uð Þ=EðûÞ=Xu. This linear model may be fitted by
weighted least squares, which is implemented by mini-
mizing the weighted sums of squares

Q uð Þ= ½û� m uð Þ�T W ½û� m uð Þ� ð2Þ

for some appropriately chosen C 3 C weight matrix W .
This yields the network estimates of the control contrast
parameters u,

û
network

= XT WX
� ��1

XT W û ð3Þ

from which the effect estimates associated with other
contrasts may also be obtained.

Equation (3) is a weighted linear combination of the
direct effect estimates and is a generalization of the
basic mixed comparison approach exemplified in equa-
tion (1). The weight matrix employed in equation (3) is
chosen by using the variance–covariance structure
implied by the stage-specific treatment effect standard
errors and the stage-specific designs, and it is analogous
to the inverse variance weights used in regular meta-
analysis. This weighing process gives greater weight to
effect estimates having smaller standard errors, but it is
also necessary to accommodate correlations between
treatment comparisons from the same stage. These cor-
relations stem from the fact that a comparison of treat-
ment A with control shares the same control
participants as the comparison of treatment B with
control, within the same stage. Thus, the two treatment
effect estimates are correlated and collectively provide
less information than if they had been obtained from
different study stages. Full details of this variance–
covariance weighting process are described by
Schwarzer et al.11 and references therein. The weight
matrix may also be used to quantify the proportion of
the overall evidence that is provided by direct treatment
comparisons, which is referred to as the direct evidence
proportion. This allows decomposition of the full net-
work analysis into its randomized and non-randomized
components, facilitating a comparison of the two
sources of information.12

An important assumption of network meta-analysis
is that the underlying difference between two treatments
is identical for all direct and indirect comparisons
between the two treatments. The concept of inconsis-
tency in network meta-analysis refers to the violation of
this assumption and is a useful addition to platform
trial analysis methodology. Inconsistency is an exten-
sion of the concept of heterogeneity in regular meta-
analysis. Generalizations of Cochrane’s Q-statistic and
I2 for assessing heterogeneity are available for network
meta-analyses and are based on the weighted sums of
squares in equation (2).11 In the context of platform
trials, heterogeneity translates to differences in treat-
ment effects between stages that compare the same
treatments, while inconsistency translates to an interac-
tion between treatment comparisons and the stage-
specific design. This occurs when the magnitude of a
treatment effect is modified by the presence (or absence)
of other treatments in a particular stage of the platform
trial. The detection of such inconsistency may reflect
conflict between the direct and indirect evidence in a
platform trial and provides information about whether
the adjusted or stratified analysis approaches are more
appropriate. Comparison of effect estimates based only
on direct comparisons with those based only on indirect
comparisons is an important aid for this assessment.
Application of these network meta-analysis tools to
platform trials will be illustrated further in the Results
section.

Implementation

Various software packages are available for network
meta-analysis and may be used to implement the analy-
sis methods for platform trials described here. One such
package is the netmeta package in R, which we will use
to illustrate our proposed analysis approach.13

For binary endpoints, data from a platform trial
would be organized as events and sample sizes by treat-
ment arm for participants randomized in each stage of
the study. In Table 1, we provide illustrative binary
data in this format for the illustrative platform design
presented in Figure 1. This binary data structure is pre-
processed by the function pairwise and then inputted to
either the netmetabin or netmeta function for analysis.
For other types of endpoints, the stage-specific effect
estimates and standard errors are inputted directly to
the netmeta function. Data from the STAMPEDE trial
will be analyzed in this way using log hazard ratios
(HRs). Importantly, participants contribute only to the
stage-specific effect estimate from the stage in which
they were randomized, regardless of whether the end-
point involves follow-up during a subsequent stage.

Other analytical and graphical functions are also
available in the netmeta package. For the purpose of
investigating the difference between adjusted and strati-
fied analyses, decomposition of the analysis into direct
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randomized evidence and indirect non-randomized evi-
dence is particularly important.12 This facility is pro-
vided by the function netsplit, applied to the output
from a netmetabin or netmeta analysis, together with a
test of inconsistency between the direct and indirect evi-
dence using the separate indirect and direct evidence
(SIDE) back-calculation method of König et al.12

Graphical functions for constructing a network dia-
gram of the design and presenting forest plots of the
analysis results are also available and will be illustrated
in the Results section. Further details of the netmeta
package are presented by Schwarzer et al.11

Results

Simulated analyses

We begin by providing the results of simulated analyses
using the four-stage platform design depicted in Figure
1, under various scenarios. The purpose of the simula-
tions is to investigate the bias of an unadjusted analysis
in the presence of time trends in background risk, and
whether adjustment and stratification can address this
bias.

In the first scenario, platform trials were simulated
with a binary endpoint that occurs with a risk (prob-
ability) of 0.5 in the control arm. The RR compared to
control was 1.0 for arms B and C, and 0.5 for arms A
and D. The randomizations to each arm occurred with
probabilities shown in Figure 1. We refer to this sce-
nario as the homogeneity scenario.

The homogeneity scenario was then altered to pro-
vide the time trend scenario, in which the risk in the

control arm was assumed to have a decreasing trend
over time, beginning with 0.5 in stage 1, followed by
0.4, 0.3, and 0.2 in stages 2 to 4, respectively. In this
scenario, the RR for each treatment remained the same
as in the homogeneity scenario. For each scenario, 1000
trials were simulated, first with an average of n= 100

randomizations per treatment per stage, and then again
with n= 200.

While the homogeneity and time trend scenarios are
the primary simulations discussed here, various other
simulations were also conducted. These include a differ-
ential time trend scenario in which the RR decreases
over time and an inconsistency scenario in which the
RR for one treatment was inconsistent between stages.
Full specification of these scenarios is provided in the
Supplemental Material.

For each simulated platform trial, the data were
analyzed using the netmeta package described in the
Methods, producing a direct randomized RR estimate
for each comparison, an indirect non-randomized esti-
mate, and a combined network estimate. In addition,
we computed unadjusted and adjusted RR estimates,
the latter from a log-link binary regression model
adjusting for a stage effect, which is typically called
relative risk regression.14

Table 1 provides the full data for the first simulation
of the homogeneity scenario with n= 100. An example
network analysis is shown in Figure 2, which is the gra-
phical output from the netmeta package applied to the
data in Table 1. The most important aspect of Figure 2
is the decomposition of total information across the
platform network, into a direct randomized component

Table 1. Example data for the platform design shown in Figure 1.

Stage Treatment Number randomized Percent
randomized

Events Risk RR

1 Control 103 51.5% 54 52.4% 1
1 A 97 48.5% 25 25.8% 0.49
2 Control 83 20.8% 47 56.6% 1
2 A 97 24.3% 27 27.8% 0.49
2 B 111 27.8% 39 35.1% 0.62
2 C 109 27.3% 54 49.5% 0.87
3 Control 95 23.8% 42 44.2% 1
3 A 99 24.8% 21 21.2% 0.48
3 C 109 27.3% 53 48.6% 1.10
3 D 97 24.3% 19 19.6% 0.44
4 Control 102 34.0% 50 49.0% 1
4 A 96 32.0% 27 28.1% 0.57
4 D 102 34.0% 29 28.4% 0.58
All Control 383 29.5% 193 50.4% 1
All A 389 29.9% 100 25.7% 0.51
All B 111 8.5% 39 35.1% 0.70
All C 218 16.8% 107 49.1% 0.97
All D 199 15.3% 48 24.1% 0.48

RR: relative risk.

Percent randomized is the percentage of randomizations to each treatment within that stage. Risk is events divided by number randomized.
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and an indirect non-randomized component. The pro-
portion of information obtained from direct compari-
son is 1 for control versus A and 0 for B versus D, while
all other comparisons have a mixture of direct and indi-
rect evidence.

Figure 3 provides a selection of simulated treatment
effect distributions from the various scenarios. First, all

estimation methods are unbiased except for the unad-
justed method which has substantial bias when there is
a time trend in the control risk. Importantly, this bias
is eliminated by the other methods, which is the inten-
tion of the stratified and adjusted approaches. It may
also be seen that the comparison of control and treat-
ment D is a situation where the indirect information

Figure 2. Network analysis of the platform trial depicted in Figure 1, with data provided in Table 1. For each possible treatment
comparison, the direct randomized estimate, the indirect non-randomized estimate, and the mixed network estimate of the relative
risk (RR) and 95% confidence interval (CI) are provided. Also provided for each treatment comparison is the number of stages with
direct comparisons and the proportion of overall evidence coming from direct comparisons.
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adds very little, so that the network and adjusted meth-
ods are almost identical to the direct method. However,
for comparison of treatments A and B, the indirect
information is more substantial, leading to greater effi-
ciency for the network and adjusted methods compared
to the direct method. A complete tabulation of all
simulation results is provided in the Supplemental
Material where, as well as the above observations, we
observe that the adjusted regression and the network
approaches are essentially equivalent across all com-
parisons and scenarios.

Overall, the primary conclusion of the simulation
study is that time trends in the background risk level

may lead to bias in unadjusted analyses, while stratifi-
cation and adjustment may be used to address this bias.

STAMPEDE trial

The STAMPEDE trial is a multi-stage platform trial of
various treatments for metastatic prostate cancer with
a primary endpoint of overall survival.3,7,15,16 The trial
was initiated in 2005 with a control arm of androgen-
deprivation therapy (ADT) which continued until 2015,
after which ADT was dropped as the control therapy.
During the period in which ADT was the control, an
additional eight experimental therapies were initiated

Figure 3. Results of 1000 simulations of the platform design depicted in Figure 1, for the treatment comparisons D versus control
and A versus B. For each comparison, the true relative risk (RR) is 0.5 and each treatment has an average of 100 randomizations per
stage. In all panels, the shaded area depicts the distribution of the direct (stratified) estimates, with other methods shown in the
legend. The left column assumes constant control risk over time, whereas the right column assumes a decreasing trend in the
control arm risk over time.
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and dropped at various times. These adaptation times
define seven stages within which the design remained
fixed. The precise periods between adaptations have
been published in various sources, see for example the
study’s protocol17 (Table 6, page 10) in which the seven
stages correspond with the first seven protocol changes
after activation. The complete network of available
randomized treatment comparisons for the era in which
ADT was the control therapy is shown in Figure 4.
This network diagram demonstrates the potential com-
plexity of direct and indirect treatment comparisons
available in a large platform trial, such as
STAMPEDE.

The pre-specified primary analysis for STAMPEDE
uses a stratified approach in which treatment compari-
sons are restricted to patients who were concurrently
randomized. The restriction to direct randomized com-
parisons in STAMPEDE contrasts with, for example,
the approach taken in the REMAP-CAP platform trial
where both randomized and non-randomized treatment
comparisons are combined using an adjusted
analysis.4,6 We now illustrate the potential impact of
combining direct randomized evidence with indirect
non-randomized evidence using our network approach
for one particular comparison, ADT+DOC versus
ADT+ABI.

The randomized comparison of ADT and
ADT+DOC was based on randomizations during the
years 2005–2013, which reached a conclusion that
ADT+DOC is superior for overall survival (HR 0.78,
CI 0.66–0.93).7 The randomized comparison of ADT
and ADT + ABI was based on randomizations

during the years 2012 and 2013, which reached a con-
clusion that ADT + ABI is superior (HR 0.63, CI
0.52–0.76).15 The randomized comparison of the two
experimental treatments ADT + DOC and
ADT + ABI was based on randomizations during the
years 2012 and 2013, which favored ADT + DOC
but did not provide evidence of a difference (HR 1.16,
CI 0.82–1.65).16 Nonetheless, the period 2005–2011
provides further information about ADT + DOC
that could potentially be used for further exploration
of the difference between the two experimental thera-
pies, using ADT as a common reference treatment.

A combined network comparison of ADT + DOC
and ADT + ABI may be conducted using rando-
mized comparisons from two periods, 2005–2011 and
2012–2013. For the 2005–2011 stage, there is just one
randomized comparison of interest, ADT versus
ADT + DOC. For the 2012–2013 stage, there are
three randomized comparisons of interest: ADT versus
ADT + DOC; ADT versus ADT + ABI; and
ADT + DOC versus ADT + ABI. The log HR and
associated standard errors for each of these stage-
specific randomized comparisons were used in a net-
work analysis implemented in the netmeta package and
reproduced in the Supplemental Material.

Figure 4 displays the results of the network analysis.
Visually, there is a difference between the direct and
indirect treatment comparisons, with an averaging of
the two effects in the network analysis, and the test of
inconsistency is statistically significant (p = 0.017).
The analysis also produces an assessment of heteroge-
neity across the network, which in this case assesses dif-
ferences between the ADT versus ADT + DOC
comparison in the two stages (Q = 1.49, df = 1,
p = 0.22).

Figure 4 illustrates the transparent decomposition of
the complete network into a direct randomized compo-
nent and an indirect non-randomized component. The
STAMPEDE trial pre-specified the use of randomized
comparisons in the primary analysis, and the inconsis-
tency of the two information sources in Figure 4 pro-
vides strong support for that approach. The cause of
the inconsistency cannot be determined from this anal-
ysis but may be due to time trends in the population
risk combined with a treatment effect magnitude that is
dependent on underlying risk. Regardless of the cause
of the inconsistency, this analysis identifies the poten-
tial for it to be present and illustrates how it can be
transparently reported.

Conclusion

This article has shown that an adaptive platform trial
provides a network of stage-specific treatment compari-
sons that may be analyzed using the methodology of

Figure 4. Network analysis of the STAMPEDE multi-stage
platform trial of prostate cancer therapies during the years
2005–2015. The network diagram depicts the network and
number of direct treatment comparisons between combinations
of androgen-deprivation therapy (ADT), docetaxel (DOC),
zoledronic acid (ZOL), celecoxib (CEL), abiraterone (ABI),
radiotherapy (RAD), and enzalutamide (ENZ). For the
comparison of ADT + DOC and ADT + ABI, the direct,
indirect, and network estimates of the hazard ratio (HR) for
overall survival are shown with 95% confidence intervals.
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network meta-analysis. We have described the network
approach at a conceptual level, emphasizing the combi-
nation of randomized and non-randomized informa-
tion using weighted linear combinations of stage-
specific direct treatment comparisons. Our approach
was guided by the methods and software available in
the netmeta package in R.11,13 However, alternative
network methods and software exist and could be used
in an analogous manner.18 Rather than advocating spe-
cific methods and software, our goal has been to pres-
ent the general principles of network meta-analysis as a
relevant methodology for analyzing platform trials.

An important characteristic that distinguishes differ-
ent platform trials is the choice of a Bayesian or fre-
quentist approach. Both approaches are common, and
the Bayesian REMAP-CAP and frequentist
STAMPEDE trials exemplify the two. However, the
distinction between Bayesian and frequentist
approaches to analyzing platform trials is tangential to
the issues discussed in this article. Direct versus indirect
evidence, and adjustment versus stratification, have
similar relevance to the analysis of platform studies
regardless of whether a Bayesian or frequentist frame-
work is used. Software for implementing Bayesian net-
work analyses is also available.19,20 It is beyond our
scope to investigate these methods here; however, it
would be of interest for future research to undertake
simulation studies of Bayesian network analyses analo-
gous to the simulations presented here.

An issue of growing importance in adaptive trials is
treatment effect bias arising from response-driven
design adaptations.21,22 In the context of platform stud-
ies, the observed design structure is randomly generated
by the outcome of decisions to drop treatments or
adaptively change randomization probabilities.
Conditional likelihood methods that condition on this
observed design have been proposed to adjust for
potential estimation biases, and these methods have
been studied in the context of traditional group sequen-
tial designs,23 as well as designs with other adaptive
features24 and meta-analyses of group sequential stud-
ies.25,26 It may be possible to extend our network
approach for platform studies by using conditional
stage-specific treatment effect estimates.

Our work has implications for the design of plat-
form trials. We have assumed that design adaptations
occur at discrete times that define the stages of a multi-
stage platform design. This means that within a stage
the design remains fixed. Frequent adaptation limits
the information provided by each fixed design and for-
goes the opportunity to assess the consistency between
randomized and non-randomized evidence. Instead, we
recommend an adaptation frequency guided by the typ-
ical timing of interim analyses in a group sequential
trial. Furthermore, in assessing the consistency between

direct and indirect evidence, formal tests of inconsis-
tency are available and should be conducted. However,
like tests of interaction, such tests may have low power
in some circumstances. Since designing a platform trial
typically involves extensive simulations to inform design
assumptions, it would be possible to assess the power of
inconsistency tests as part of these design simulations.

We also recommend that the reporting of platform
trials should take advantage of the underlying fixed
designs by providing the stage-specific treatment effects,
as illustrated in Table 1. These could be valuable for
subsequent systematic reviews and re-analyses. For
example, the STAMPEDE trial has contributed to sub-
sequent reviews and re-analyses that may have bene-
fited from stage-specific information.27,28 Nonetheless,
in the absence of stage-specific treatment effects, it may
still be possible to use innovative ways to extract the
information, such as reconstruction of individual
patient data from published Kaplan–Meier plots.29 The
Supplemental Material provides an illustration of this
approach.

Although the purpose of this article has not been to
advocate for one or other of the stratified or adjusted
approaches, it is natural to consider which approach is
more appropriate. The direct randomized treatment
comparisons from a platform trial provide a higher
quality of evidence than the indirect non-randomized
treatment comparisons, which provides an argument
for using the stratified approach in the primary analy-
sis. As discussed in the Background section, the
STAMPEDE and REMAP-CAP trials are exemplars
of the stratified and adjusted approaches, respectively.
Given the inconsistency between randomized and non-
randomized comparisons in the STAMPEDE case
study, we would recommend the STAMPEDE
approach of restricting to concurrent randomizations
as the most appropriate primary analysis method, with
the REMAP-CAP approach of including non-
concurrent randomizations reserved for secondary anal-
yses. Indeed, it could be argued that non-concurrent
controls are unnecessary if the trial is adequately pow-
ered, and we would recommend every effort be made to
power adaptive platform trials based on concurrently
randomized treatment comparisons. Nonetheless, we
acknowledge the existence of differing viewpoints on
the use of non-concurrent controls and advocate further
research on their advantages and disadvantages.

In summary, regardless of whether a platform trial
plans to use only direct randomized evidence in the
primary analysis or plans to use all available informa-
tion including indirect non-randomized evidence, this
article has shown that transparent display of direct
and indirect comparisons using a network analysis
provides a valuable supplement to the planned
primary analysis.
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