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The process of axonal regeneration after peripheral nerve injury (PNI) is slow and mostly 
incomplete. Previous studies have investigated the neuroprotective effects of fibroblast 
growth factor 10 (FGF10) against spinal cord injury and cerebral ischemia brain injury. 
However, the role of FGF10 in peripheral nerve regeneration remains unknown. In this 
study, we aimed to investigate the underlying therapeutic effects of FGF10 on nerve 
regeneration and functional recovery after PNI and to explore the associated mechanism. 
Our results showed that FGF10 administration promoted axonal regeneration and 
functional recovery after nerve damage. Moreover, exogenous FGF10 treatment also 
prevented SCs from excessive oxidative stress-induced apoptosis, which was probably 
related to the activation of phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) 
signaling. The inhibition of the PI3K/Akt pathway by the specific inhibitor LY294002 
partially reversed the therapeutic effects of FGF10 both in vivo and in vitro. Thus, from 
our perspective, FGF10 may be a promising therapeutic drug for repairing sciatic nerve 
damage through countering excessive oxidative stress-induced SC apoptosis.
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INTRODUCTION

Unlike the central nervous system (CNS), the peripheral nervous system (PNS) retains a certain 
regeneration capacity, which enables the regrowth of damaged axons and impaired nerves (Chen 
et al., 2007). Nevertheless, the regeneration rate of peripheral nerves is slow, and proximal nerve 
segments rarely regrow over long distances to their target organs. As a result, it affects the quality of 
life of patients and is a major socioeconomic burden (Sulaiman and Gordon, 2009; Gordon, 2016). 
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Because nerve regeneration is a complex process that involves 
interactions among cellular elements, cytokines, extracellular 
matrix, and growth factors, the complete recovery of injured 
nerves is difficult (Caillaud et al., 2018).

Schwann cells (SCs), the myelinating cells of the PNS, are 
essential for nerve regeneration and for the saltatory conduction 
of action potentials (Scherer and Wrabetz, 2008). Following 
nerve injury, denervated SCs begin to dedifferentiate, migrate, 
proliferate, and transform into regeneration-promoting new 
cells, called repair SCs (Jessen and Mirsky, 2016). This type of 
SCs is able to generate a favorable microenvironment for axonal 
growth by clearing degenerated myelin debris and secreting 
neurotrophic factors (Jessen et al., 2015). Thus, promoting 
SCs survival and inhibiting apoptosis are vital for maintaining 
structural and functional integrity following peripheral nerve 
injury (PNI).

Oxidative stress, characterized by excessive reactive oxygen 
species (ROS), is a critical initiating factor for PNI (Yang et al., 
2016; Ino and Iino, 2017; He et al., 2018). The overproduction 
of ROS disturbs the oxidation-antioxidant equilibrium and 
leads to mitochondrial dysfunction, lipid peroxidation, and 
cell apoptosis. Furthermore, excessive ROS production in SCs 
causes dysfunction in DNA synthesis, protein expression, and 
mitochondrial structure (Finkel and Holbrook, 2000; Wang 
et al., 2013). Therefore, it is essential to inhibit excessive ROS 
generation to maintain the SC function and the interactions 
between SCs and other cell types after PNI.

The nuclear factor transcription erythroid-like factor 2 
(Nrf2) plays a critical role in regulating redox homoeostasis. 
The activation of Nrf2 results in the accumulation of some 
enzymes, such as heme oxygenase‐1 (HO‐1), NAD(P)H:quinone 
oxidoreductase (NQO1), and superoxide dismutase (SOD2) 
(Son et al., 2013). Nrf2 is also closely related to cell apoptosis 
through upregulating the expression of Bcl-2, an antiapoptotic 
protein. Low levels of Bcl-2 expression and increased expression 
of proapoptotic proteins, including Bax and caspase-3, are typical 
markers of cell apoptosis (Niture and Jaiswal, 2011; Niture and 
Jaiswal, 2012; Niture et al., 2014).

The phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) 
pathway has been reported to play a major role in the modulation 
of axonal growth, myelin sheath formation, and SC function in 
the PNS. The activation of Akt in SCs increases the expression 
of myelin proteins, including myelin basic protein (MBP) and 
myelin basic zero (MPZ), which regulates remyelination. In 
contrast, inhibiting the PI3K/Akt pathway with LY294002 
significantly attenuates SCs migration (Lv et al., 2015; Domenech-
Estevez et al., 2016). Furthermore, the inhibition of this signaling 
pathway also obviously decreases the synthesis of proliferating 
cell nuclear antigen (PCNA; a marker of cell proliferation) in 
SCs (He et al., 2011). All of these findings show that the PI3K/
Akt pathway modulates the multiple functions of SCs, including 
migration, proliferation, and remyelination.

FGF10 is a member of the fibroblast growth factors (FGFs) 
that plays important roles in regulating biological functions 
such as morphogenesis, proliferation, and the inhibition of 
apoptosis (Kelleher et al., 2013). FGF10, which was originally 
identified in rat embryos, mediates biological signaling in a 

paracrine manner (Itoh, 2016). Furthermore, FGF10 is widely 
distributed in many organs, such as adipose tissue, the lungs, the 
limbs, and the prostate, and plays an essential role in regulating 
cell mitogenesis, proliferation, differentiation, and migration 
(Min et al., 1998; Thomson and Cunha, 1999; Jimenez and 
Rampy, 1999; Sakaue et al., 2002). A recent study showed that 
FGF10 expression in neurons is increased after spinal cord 
injury (SCI) and that exogenous FGF10 administration induces 
functional recovery and attenuates the inflammatory response by 
activating PI3K/Akt signaling in an animal model of SCI (Chen 
et al., 2017). Another study demonstrated that FGF10 protects 
neurons and ameliorates cerebral ischemia injury by activating 
the PI3K/Akt signaling pathway and reducing NF-κB-mediated 
neuroinflammation (Li et al., 2015b; Li et al., 2016). However, 
the effects of FGF10 on functional recovery after PNI and the 
associated molecular mechanism have not been documented 
to date.

The aim of the present study was to investigate whether 
FGF10 plays a neuroprotective role in facilitating axonal 
regeneration and functional recovery after PNI and to explore 
the related molecular mechanisms. Our results indicate that 
FGF10 treatment reduces SCs apoptosis, enhances axonal growth 
and regeneration, and improves functional recovery following 
PNI. Furthermore, this beneficial effect is most likely regulated 
by attenuating PI3K/Akt signaling-mediated oxidative stress 
both in vivo and in vitro. Collectively, our results suggest that 
FGF10 performs a certain role and may be a potential agent for 
the treatment of PNI.

MATERIALS AND METHODS

Reagents and Antibodies
FGF10 was obtained from the School of Pharmacy, Wenzhou 
Medical University (Wenzhou, China). Antibodies against p-Akt 
(#13038), Bax (#14796), Bcl-2 (#2764), and cleaved-caspase-3 
(#9664) were obtained from Cell Signaling Technology. 
Antibodies against MBP (ab40390), NF200 (ab4680), Nrf2 
(ab62352), NQO1 (ab34173), MPZ (ab31851), and Akt 
(ab179463), Histone H3 (ab176842) and the PI3K/Akt inhibitor 
LY294002 (ab120243), were purchased from Abcam. Antibodies 
against GAPDH (10494-1-AP), HO-1 (10701-1-AP), SOD2 
(24217-1-AP), and PCNA (10205-2-AP) were purchased from 
Proteintech. An antibody against S100 (sc-53438) was obtained 
from Santa Cruz Biotechnology.

Animals
Male SD rats (200~220 g) were purchased from the Laboratory 
Animal Center of Fujian Medical University (Fujian, China). A 
temperature of 23 ± 2 °C, a humidity of 35-60%, and a 12:12 h 
light-dark cycle were applied as standardized laboratory 
conditions for housing all rats. Meanwhile, they were provided 
with food and water and were habituated to these conditions 
for at least 7 days before the experiment. The use of animals 
in this study was approved by the Animal Experimentation 
Ethics Committee of Wenzhou Medical University, Wenzhou, 
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China. The living conditions and experimental procedures were 
conducted in accordance with the National Institutes of Health 
Guideline concerning the Care and Use of Laboratory Animals.

PNI Model and Drug Injection
The procedure for generating the animal model was described 
previously (Li et al., 2017b). In brief, each animal was anaesthetized 
by an intraperitoneal injection of 10% chloral hydrate (3.5 ml/
kg). An incision was made in the skin to expose the right sciatic 
nerve. Then, this exposed nerve was crushed with two vascular 
clips (Oscar, China). The vascular clips clamped the sciatic nerve 
7 mm proximal from the sciatic notch at the two ends with 30 g 
of force for 2 min. Thereafter, the incised skin was sutured with a 
4-0 nonabsorbable suture.

Following surgery, all the animals were randomly allocated to 
four groups (n = 10 for each): the sham group, the PNI group, 
the FGF10 group, and the FGF10+LY294002 group. The sham 
group received the same surgical procedure to expose the sciatic 
nerve but did not undergo compression injury. For the FGF10 
group, each rat was injected intramuscularly with 5 μg of FGF10 
solution (25 μg/ml) once daily for 28 consecutive days. For the 
FGF10 + LY294002 group, after the injection of FGF10 solution, 
each rat was also intravenously injected with LY294002 (a PI3K 
inhibitor, 0.3 mg/kg/day) (Chen et al., 2017). The rats in the 
sham and PNI groups were only injected with the same volume 
of saline solution. After 28 days, all rats were sacrificed to harvest 
the sciatic nerve for pathology index analysis.

Von Frey Test and Walking Track Analysis
Rats were habituated to an elevated metal mesh floor for at least 
1 h before their responses to mechanical stimulation were tested 
with von Frey filaments (NC12775; North Coast Medical Inc, 
CA, USA). von Frey filaments with forces ranging from 2–180 g 
were applied in ascending order to the third and fourth toes of 
the plantar surface of the hind paw until they bent. The filaments 
were repeated five times, and the results of paw withdrawal 
were recorded.

The gait of the rats along a 100 × 10 × 15 cm corridor, the 
bottom of which was covered with a 90 × 10 cm piece of white 
paper, was analyzed. Red ink was painted on the hind paws of the 
rats. The sciatic functional index (SFI) was calculated based on the 
colored footprints according to the following formula by Bain et 
al. (1989): SFI = −38. 3 × (EPL- NPL)/NPL + 109.5 × (ETS -NTS)/
NTS + 13.3 × (EIT - NIT)/NIT-8.8, where E is the right hind 
limb; N is the left hind limb; PL is the longitudinal distance of 
the longest footprint; IT is the distance between the second and 
fourth toes; and TS is the distance between the first and fifth toes. 
An index of approximately 0 reflects normal function, whereas 
an index of −100 indicates complete impairment. Two observers 
who were unaware of the experimental procedures performed 
the test from day 1 to day 28 following the surgical procedures.

RSC96 Culture and Treatment
The RSC96 SC line was obtained from ScienCell Research 
Laboratories. The cells were cultured in Dulbecco’s modified 

Eagle medium (DMEM) with 10% fetal bovine serum (FBS, 
Gibco, USA) and 1% penicillin/streptomycin solution (P/S) in a 
humidified incubator (37°C, 5% CO2). After two passages, the 
cells were seeded in 96-well plates (5 × 103 cells/well), and various 
concentrations of FGF10 (0.043, 0.43, 4.3, 43 nm) were added for 
2 h. Then, the medium was supplemented with 100-μm H2O2 for 
another 2 h. To further evaluate the effect of PI3K/Akt activation 
on oxidative injury, cells were pretreated with the PI3K inhibitor 
LY294002 (20 μm) (Wang et al., 2012) for 2 h before the addition 
of FGF10.

To evaluate cell survival, a cell counting kit (CCK-8, 
Beyotime Institute of Biotechnology, China) was used. The test 
was performed according to the manufacturer’s instructions. 
In brief, 10 μl of CCK-8 solution were added to each well, and 
the cells were incubated for 2 h at 37°C. The optical density was 
measured at 450 nm using a microplate reader (Thermo Fisher 
Scientific, Waltham, MA). All experiments were repeated at least 
three times.

Assays of Intracellular ROS Generation
Intracellular ROS generation was measured by an ROS Assay Kit 
(DCFH-DA, S0033, Beyotime, China). SCs were plated in 6-well 
plates at a density of 1×105 cells/ml for 24 h. After treatment 
with H2O2 with/without FGF10 plus LY294002, 10 μm 2′, 7′‐
dichlorodihydrofluorescein diacetate (DCFH-DA) were added to 
the culture medium for 20 min. Subsequently, the fluorescence of 
the cells in five randomly fields for each group was imaged with a 
Nikon ECLIPSE 80i microscope (Nikon, Japan). ImageJ software 
was used for quantitative analysis.

To further analyze the change of ROS, the DCF fluorescence 
was detected by a fluorescence microplate reader (Genios, 
TECAN) at 485-nm excitation and 53-nm emission.

Hematoxylin-Eosin (He) Staining
The sciatic nerve tissues were harvested following the established 
methods and embedded in paraffin (Li et al., 2017b). The 
nerves were fixed in 4% paraformaldehyde in 0.1 M phosphate 
buffer overnight and embedded in paraffin the next day. The 
longitudinal sections were cut into 5-μm thick sections for HE 
staining; the sections were dyed with hematoxylin for 5 min and 
with eosin for 10 min. The images were captured using a Nikon 
ECLIPSE 80i microscope (Nikon, Japan).

Immunoblotting
Immunoblotting analysis of sciatic nerves and cell extracts 
were performed as described previously (Zhang et al., 2014; Li 
et al., 2018b). Briefly, cells and sciatic nerves were lysed using 
RIPA with protease (Boster, AR0101/AR0103) and phosphatase 
inhibitors (Applygen, P1260). The lysate was centrifuged at 
12  000  g for 20 min. For PCNA detection, the sciatic nerve 
segments was mechanically homogenized. Then, cytosol and 
nuclear proteins were extracted using the nuclear and cytoplasmic 
protein extraction kit (Beyotime Biotechnology, Wuhan, China) 
and centrifuged at 5000 r.p.m. for 10 min at 4°C to extract the 
nuclear components (Li et al., 2015a). The protein concentration 
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was determined by bicinchoninic acid (BCA) reagents (Thermo 
Fisher Scientific, Rockford, IL, USA). Sixty micrograms of protein 
was separated by 8-12% SDS-PAGE and transferred onto PVDF 
membranes (Bio-Rad, Hercules, CA, USA). After blocking with 
5% nonfat milk, the membranes were incubated with primary 
antibodies overnight at 4°C. The antibodies included p-Akt 
(1:1000), Akt (1:1000), Nrf2 (1:1000), NQO1 (1:1000), HO-1 
(1:1000), SOD2 (1:2000), MPZ (1:1000), S100 (1:200), PCNA 
(1:1000), Bcl-2 (1:1000), Bax (1:1000), Histone H3 (1:1000) and 
GAPDH (1:10000). The next day, the membranes were incubated 
with horseradish peroxidase-conjugated secondary antibodies 
for 1 h. The visualization of signals and band intensity were 
analyzed by chemiluminescence using a gel imaging system 
(Bio-Rad Laboratories, Hercules, CA, USA). Three independent 
samples were analyzed.

Immunofluorescence Staining
For animal tissues, 5-μm thick longitudinal sections were 
washed in PBS three times after being embedded in optimum 
cutting temperature (OCT) compound. For cells, SCs were fixed 
in 4% paraformaldehyde in PBS for 20 min. Then, the tissue or 
cell samples were blocked in 5% bovine serum albumin (BSA) 
containing 0.1% Triton X-100 for 30 min. After incubation with 
primary antibodies overnight at 4°C, the slides were incubated 
with a fluorochrome-labeled secondary antibody for 1 h. The 
primary antibodies included NF200 (1:10000), MBP (1:1000), 

and Nrf2 (1:1000). The nuclei were stained with DAPI for 7 min. 
Image acquisition was performed with a Nikon ECLIPSE Ti 
microscope (Nikon, Tokyo, Japan).

Statistical Analysis
All data are expressed as the mean ± SEM. Analysis of statistical 
significance was performed by one-way ANOVA with Tukey’s 
posttest with GraphPad Prism (GraphPad Software version 6.0, 
La Jolla, CA, USA). P-values less than 0.05 were considered 
statistically significant.

RESULTS

Fgf10 Promotes Functional Recovery
To assess whether the injection of FGF10 increase sensory and 
motor recovery, walking track analysis and paw withdrawal 
thresholds were evaluated every week for 4 weeks following 
surgery. The walking tracks indicated no significant difference 
among the three groups in the first 2 weeks after surgery. However, 
the SFI value of the FGF10-treated group began to increase and 
was significantly greater than that of the PNI group at weeks 3 and 
4 (Figures 1A, B, ***P < 0.001). Nevertheless, compared with the 
group that received FGF10 only, the group that received FGF10 
and LY294002 co-administration exhibited motor functional 
recovery by week 4 (Figures 1A, B, ***P < 0.001).

FIGURE 1 | Fibroblast growth factor 10 (FGF10) enhances motor and sensory functional recovery after peripheral nerve injury (PNI). (A) Photographs of rat footprints 
4 weeks after sciatic nerve crush. (B) Statistical analysis of the sciatic functional index (SFI) at the indicated times postoperatively. (C) Paw mechanical withdrawal 
thresholds were measured at predetermined time points. FGF10 group vs PNI group: *P < 0.05, ***P < 0.001. FGF10 group vs FGF10+ LY294002 group: ***P < 
0.001. All data represent the mean values ± SEM; n = 8 in each group.
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To evaluate sensory functional recovery to mechanical 
stimuli, all animals from the four groups were subjected to the 
von Frey test. As illustrated in Figure 1C, the sensory recovery of 
all groups was rather poor 1 week after crush injury, but recovery 
in the FGF10 group was better than that in the PNI group (***P < 
0.001). The mechanical thresholds gradually decreased in the 
subsequent weeks. Although the results seemed to show that 
sensory recovery in the FGF10 group was inferior to that in 
the PNI group and FGF10 + LY294002 group, the withdrawal 
threshold in the two latter groups was even lower than that in the 
control group, suggesting that the PNI rats treated with/without 
FGF10+LY294002 exhibited hyperalgesia and that FGF10 
treatment rescued PNI-induced hyperalgesia at a later stage of 
nerve recovery. Taken together, these results suggest that FGF10 
continuously enhances the recovery of locomotor and sensory 
function in acute PNI.

Fgf10 Facilitates Nerve Regeneration
The histological recovery of the injured nerve in each group 
was evaluated by HE staining and coimmunostaining for 
neurofilament 200 (NF-200; represents axonal growth) 
and MBP (a marker of myelination). HE staining revealed 
that the axonal fibers in the PNI group were scarce and 
irregular, while the nerve fibers in the FGF10-treated group 
appeared remarkably regenerated and regular (Figure 2A). 
Double immunofluorescence staining for MBP and NF200 
showed that the density of regenerated axons and myelin in 
the FGF10 group was significantly higher than that in the 
PNI group and that the degree of regeneration was enough 
to induce a morphology similar to that of normal nerves 
(Figures 2B–D). In contrast, the immunoreactivity of NF200 
and MBP was greatly attenuated after the coadministration of 
LY294002 and FGF10.

FIGURE 2 | Fibroblast growth factor 10 (FGF10) promotes axonal regeneration, as determined by histological evaluation. (A) Longitudinal sections of regenerated 
nerves from each group were stained with Hematoxylin-Eosin (HE) 28 days postinjury. Scale bars = 50 μm. (B) Immunofluorescence staining for myelin basic protein 
(MBP) (red) and NF-200 (green) in longitudinal sections. Scale bars = 50 μm. (C, D) Quantitative analysis of the fluorescence intensity of MBP and NF-200 28 days 
following injury. The data are presented as the mean ± SEM, n = 5. Sham group vs PNI group: ***P < 0.001. FGF10 group vs peripheral nerve injury (PNI) group: 
***P < 0.001. FGF10 group vs FGF10+LY294002 group: ***P < 0.001.
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Fgf10 Increases Functional 
Protein Secretion
S100 is a SC marker that regulates cellular metabolism, motility 
and proliferation. Myelin protein zero (MPZ; also called P0) is a 
major extrinsic membrane protein of myelin in the PNS. MPZ 
function includes forming myelin and maintaining compact 
myelin morphology. PCNA is a nucleoprotein that is a marker of 
cell proliferation. The expression of these proteins was quantified 
using western blotting analysis. As shown in Figure 3A, the protein 
expression of S100, MPZ and PCNA in the FGF10 group was 
significantly increased compared with that in the PNI group, while 
this effect was reversed by the injection of LY294002. Quantitative 
analysis also showed the same trend (Figures 3B–D). These data 
reveal that the beneficial effect of FGF10 is able to upregulate 
the functional expression of these proteins and that this effect 
further contributes to SC remyelination and axonal regeneration.

FGF10 Inhibits the Excessive Expression of 
Oxidative Stress- and Apoptosis-Related 
Proteins by Activating PI3k/Akt Signaling
To test whether FGF10 treatment inhibits PNI-induced oxidative 
stress in the sciatic nerve, the expression of oxidative stress-
related proteins, including Nrf2, NQO1, SOD2 and HO-1, was 
detected by western blotting. The levels of these oxidative stress-
associated molecules were slightly increased by PNI. FGF10 
treatment further increased the production of these antioxidant 
proteins to a large degree (Figures 4A–E).

Previous studies have demonstrated that the recovery of 
neurological deficits is closely related to the activation of the 
PI3k/Akt pathway (Wu et al., 2016; Sang et al., 2018). Inspired 
by this fact, we measured the p-Akt and Akt levels using western 
blotting. Here, we found that the levels of Akt phosphorylation 
were slightly increased after PNI, and these levels were further 

FIGURE 3 | Fibroblast growth factor 10 (FGF10) enhances the expression of functional proteins after sciatic nerve injury. (A–D) Representative immunoblotting 
images of myelin basic zero (MPZ), S100, and proliferating cell nuclear antigen (PCNA) expression and the quantification of protein levels in sciatic nerve lesions 28 
days postinjury. The data are presented as the mean ± SEM, n = 3. Sham group vs peripheral nerve injury (PNI) group: **P < 0.01, ***P < 0.001. FGF10 group vs 
PNI group: **P < 0.01, ***P < 0.001. FGF10 group vs FGF10+LY294002 group: *P < 0.05, **P < 0.01, ***P < 0.001.
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upregulated after PNI rats received FGF10 treatment, which 
was also confirmed by the p-Akt/Akt ratio. However, LY294002 
dramatically inhibited this effect on the expression of these 
proteins (Figures 5A, B). Nrf2 and HO-1 showed nearly the 
same trend (Figures 5A, C, D).

We also detected the expression of apoptosis-related proteins 
(including Bax and Bcl-2) to evaluate whether the anti-oxidative 
capability of FGF10 helps to decrease cell apoptosis following PNI. 
Western blotting showed that the level of the pro-apoptotic protein 
Bax was down-regulated and that the level of the anti-apoptotic 
protein Bcl-2 was up-regulated in the FGF10 group when compared 
to the PNI group (Figures 5E–G). However, the administration of 
LY294002 partially abolished the effects of FGF10. These results 
confirm that the antioxidant and anti-apoptotic properties of 
FGF10 may be involved in the activation of PI3k/Akt signaling.

Fgf10 Reduces Sc Apoptosis in Vitro
To further confirm the protective effect of FGF10, SCs were 
exposed to 100-μm H2O2 alone or in combination with various 
concentrations of FGF10. The CCK-8 results showed that 

cell viability increased as the FGF10 concentration increased 
and that 4.3-nm FGF10 was the most effective concentration 
(Figure 6A). Therefore, this concentration of FGF10 was 
chosen for subsequent experiments. Double immunostaining 
for cleaved-caspase-3 and S100 showed that FGF10 
significantly reduced the cleaved-caspase-3 signal intensity, 
and LY294002 partially reversed this effect (Figures 6B, D). 
Consistent with the immunofluorescence, SC apoptosis in all 
four treatment groups was further confirmed via detecting Bax 
and Bcl-2 expression levels by western blotting (Figures 6C, 
E, F). These data suggest that FGF10 maintains SC bioactivity 
under H2O2 exposure.

Fgf10 Alleviates Oxidative Injury Through 
Pi3k/Akt Signaling in Vitro
To investigate the molecular mechanism by which FGF10 
protects SCs against H2O2-induced apoptosis in vitro, we first 
detected the p-Akt and Akt levels using western blotting, the 
change in the p-Akt/Akt ratio was slightly increased in the 
H2O2 group and was further increased in the FGF10-treated 

FIGURE 4 | Fibroblast growth factor 10 (FGF10) suppresses oxidative stress after peripheral nerve injury (PNI). (A-E) western blotting analysis showed the 
expression of Nrf2, NQO1, HO-1, and SOD2 after treatment with FGF10. Data are presented as the mean ± SEM, n = 3. Sham group vs PNI group: *P < 0.05, ***P 
< 0.001. FGF10 group vs PNI group: *P < 0.05, **P < 0.01, ***P < 0.001.
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group. This upregulation was reversed by LY294002 treatment. 
Nrf2 showed nearly the same trend (Figures 7A–C).

The change in ROS levels in each group since ROS represents 
the core component of the biology of oxidative stress. Compared 
with that in the H2O2-treated group, the fluorescence intensity 
was lower in the FGF10 group but was significantly higher in the 
FGF10+LY294002 group (Figures 7D, F). The intracellular ROS 
level was as similar change as the fluorescence intensity (Figure 
7G). However, Nrf2 expression was slightly increased in the H2O2 
group, which further increased in the FGF10-treated group. 
This upregulation was markedly reduced after the addition of 

LY294002 (Figures 7E, H).These results reveal that FGF10 may 
have the potential to enhance antioxidant ability via activating 
PI3K/Akt signaling.

DISCUSSION

Nerve recovery in the PNS is a complex process that triggers 
a sequence of events, including axonal regeneration, SC 
proliferation and migration, macrophage infiltration, and 
angiopoiesis, within the lesion area. During this process, the FGF 
family is particularly important for directing cellular activity 
and tissue remodeling. FGFs participate in SC dedifferentiation, 
proliferation, and remyelination during axonal regrowth (Chen 
et al., 2007; Jessen et al., 2015). FGF secretion is essential for 
maintaining neuronal survival after PNI. Furthermore, numerous 
studies have reported that FGFs, such as basic FGF (bFGF) and 
nerve growth factor (NGF), are essential for supporting neurite 
outgrowth and functional recovery during nerve regeneration 
(Grothe et al., 2006; Sun et al., 2009; Chen et al., 2010; Takagi 
et al., 2012; Li et al., 2017a). However, there is no knowledge of 
whether FGF10 promotes nerve regeneration after PNI.

In this article, we reported a new role for FGF10 in improving 
sensory and motor functional recovery, enhancing axonal 
regrowth and remyelination, and increasing the expression of 
functional proteins after traumatic PNI. Moreover, FGF10-
induced neuroprotection and neuranagenesis is associated with 
attenuating the acute activation of oxidative stress and apoptosis 
in SCs, which is likely regulated by the activation of PI3K/Akt 
signaling. These findings indicate that FGF10 may be regarded as 
a potential therapeutic agent for peripheral nerve reconstruction 
after injury.

FGF10, a typical paracrine growth factor, is also essential 
for tissue development and regenerative medicine through 
specifically binding to the epithelial receptor FGFR2b (Zhang 
et al., 2006). The exogenous supplementation of FGF10 has been 
shown to prevent the formation and development of numerous 
diseases, including wound healing deficits, cardiovascular 
diseases, metabolism syndrome, and acute kidney injury 
(Konishi et al., 2006; Rochais et al., 2014; Li et al., 2017c; Tan 
et al., 2018). Previous studies have shown that FGF10 protects 
neurons against inflammation-induced apoptosis during SCI 
through the activation of FGFR2/PI3K/Akt signaling (Chen 
et al., 2017). However, the effect of FGF10 in acute PNI in vivo 
is unknown. In the present study, we reported that FGF10 is 
sufficient to continuously enhance motor and sensor recovery, 
improve nerve morphological recovery and reconstruction, and 
reduce SC apoptosis. These advantages suggest that FGF10 may 
be a potential therapeutic agent for peripheral nerve repair.

Oxidative stress is a redox-reactive imbalance in which the 
generation of oxygen-free radicals and ROS is far greater than the 
formation of antioxidative entities. During PNI, excessive oxidative 
stress activation is closely linked to SC apoptosis and axonal 
atrophy, which is unfavorable for nerve repair (Mirzakhani et al., 
2018; Ullah et al., 2018; Lu et al., 2019). Numerous lines of evidence 
have implicated PI3K/Akt signaling in modifying oxidative stress 
(Pan et al., 2017; Liu et al., 2018; Li et al., 2018a; Gong et al., 2018). 

FIGURE 5 | The antioxidative and antiapoptotic functions of fibroblast growth 
factor 10 (FGF10) are mediated by the activation of the PI3K/Akt pathway in 
vivo. (A–D) Representative western blots and the quantification of p-Akt, Akt, 
Nrf2, and HO-1 expression in each group. (E–G) Western blotting and the 
quantification of Bcl-2 and Bax expression 28 days after injury. The data are 
presented as the mean ± SEM, n = 3. Sham group vs peripheral nerve injury 
(PNI) group: *P < 0.05, ***P < 0.001. FGF10 group vs PNI group: ***P < 0.001. 
FGF10 group vs FGF10+LY294002 group: *P < 0.05, **P < 0.01.
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Hyperglycemia-induced oxidative stress can be negatively regulated 
by PI3K/Akt signaling (Pan et al., 2017). Furthermore, previous 
research has shown that the neuroprotective effect of fibroblast 
growth factor 21 (FGF21) in promoting neuronal survival and 
neurofunctional recovery after brain injury is mediated by the 

activation of PI3K/Akt signaling (Lu et al., 2019). In addition, 
the PI3K/Akt signaling pathway also participates in neuronal 
differentiation, survival and synaptic function (Li et al., 2006; 
Ketschek and Gallo, 2010; Fu et al., 2014). Given the important 
role of PI3K/Akt signaling in promoting cell survival and resisting 

FIGURE 6 | Fibroblast growth factor 10 (FGF10) inhibits Schwann cell (SC) apoptosis in vitro. (A) H2O2-induced cell survival was evaluated by the CCK-8 assay. 
(B) Immunofluorescence staining results of cleaved-caspase-3 (green) and S100 (red) in each group. Scale bar = 50 μm. (C) The protein levels of Bax and Bcl-2 
were detected by western blotting. (D) Statistical analysis of the cleaved-caspase-3 intensity in each group. (E, F) The quantification of Bax and Bcl-2 expression 
was assessed via a gel imaging system. All of these data represent the means ± SEM, n = 3. Control group vs H2O2 group: **P < 0.01, ***P < 0.001. FGF10 group 
vs H2O2 group: *P < 0.05, **P < 0.01, ***P < 0.001. FGF10 group vs H2O2+LY294002 group: ***P < 0.001.
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FIGURE 7 | Fibroblast growth factor 10 (FGF10) has antioxidant effects through the activation of the PI3K/Akt pathway in vitro. (A–C) Then, quantification of p-Akt, 
Akt, and Nrf2 expression was determined by western blotting in Schwann cells (SCs). (D) Immunofluorescence staining of reactive oxygen species (ROS) labeled 
by dichlorodihydrofluorescein diacetate (DCFH-DA) in SCs. (E) Double immunofluorescence of Nrf2 (green) and S100 (red) in each group. Scale bar = 50 μm. (F–H) 
Statistical analysis of the ROS and Nrf2 levels in each group. These data represent the means ± SEM, n = 3. Control group vs H2O2 group: *P < 0.05, **P < 0.01, 
***P < 0.001. FGF10 group vs H2O2 group: *P < 0.05, **P < 0.01. FGF10 group vs H2O2+LY294002 group: ***P < 0.001.
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cellular stress, we hypothesize that PI3K/Akt signaling may act as an 
important antioxidant mechanism for regulating FGF10-induced 
neuroprotection and neuranagenesis following PNI.

Here, we found that the levels of stress-related proteins, 
including Nrf2, NQO1, SOD2, and HO-1, and the ratio of p-Akt/
Akt increased markedly; meanwhile, ROS generation and the level 
of apoptosis were significantly decreased after the administration 
of FGF10. Suppressing Akt phosphorylation with LY294002 
partially reversed these therapeutic effects. This result might be 
explained that the nerve tissue had the capable of synthetizing 
and secreting certain amounts of antioxidant enzymes to resist 
PNI-induced oxidative damage, although this capability was 
not satisfied the demand of cellular antioxidant defense (Ornitz 
and Itoh, 2015; Yu et al., 2017). After administration of FGF10 
to the PNI rats, the interaction between FGF10-FGFR pairs 
activated the downstream of signal transduction pathways, 
such as PI3K/Akt, to dramatically stimulate the expression of 
antioxidant proteins which further enhanced antioxidative 
capability and, therefore, promoting SCs proliferation and nerve 
regeneration. Consequently, FGF10-induced nerve regeneration 
and functional recovery may occur through PI3K/Akt signaling-
mediated antioxidant enhancement.

Previous studies reported that oxidative-induced SCs 
apoptosis is a critical mechanism of neurodegenerative diseases 
(Purves et al., 2001). In mammalian cells, Bax and Bcl-2 are 
involved in the regulation of apoptosis. Among them, Bax 
belongs to proapoptotic gene, whereas Bcl-2 is antiapoptotic 
gene. Abnormal oxidative stress activity triggers a decreased 
expression of Bcl-2 and an increased expression of Bax, which 
severely influences cell survival and induce cell apoptosis (Jezek 
and Plecitá-Hlavatá, 2009). Moreover, the excessive ROS-induced 
apoptosis after PNI is closely associated with the ratio of activity 
of Bax/Bcl-2 (Zhang et al., 2016). In our study, we observed that 
the downregulation of Bcl-2 and the upregulation of Bax after 
PNI were reversed after treatment of FGF10, while this effect was 
partially abolished when combination of FGF10 and LY294002 
together. This result indicates that ROS-induced apoptosis after 
PNI is probably regulated by PI3K/Akt signaling.

In conclusion, our data indicate that the administration of 
FGF10 can be effective in facilitating SC proliferation, axonal 
regeneration, and functional recovery after sciatic nerve injury. In 
addition, the neuroprotective effect of FGF10 treatment is likely 
associated with suppressing excessive oxidative stress-induced 

cell apoptosis via activating PI3K/Akt signaling. Thus, our 
research may provide an alternative therapeutic strategy for 
utilizing FGF10 for treating acute traumatic PNI.
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