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Abstract: To establish a computer model for evaluating the binding affinity of phenylalkylamines
(PAAs) to T-type Ca2+ channels (TCCs), we created new homology models for both TCCs and a
L-type calcium channel (LCC). We found that PAAs have a high affinity for domains I and IV of
TCCs and a low affinity for domains III and IV of the LCC. Therefore, they should be considered
as favorable candidates for TCC blockers. The new homology models were validated with some
commonly recognized TCC blockers that are well characterized. Additionally, examples of the TCC
blockers created were also evaluated using these models.

Keywords: T-type calcium channel blocker; homology modeling; computer-aid drug design; virtual
drug screening; L-type calcium channel

1. Introduction

As the only type of voltage-gated Ca2+ channels that are activated at or near resting
membrane potentials, T-type Ca2+ channels (TCCs) play an important role in regulat-
ing [Ca2+]i homeostasis in a variety of tissues, including pancreatic β-cells and tumor
cells [1–4]. Therefore, TCC antagonists could be potentially useful for the treatment of
chronic diseases associated with Ca2+ dysregulation [5–7]. For this reason, it is imperative
to develop more selective TCC antagonists for prospective clinical applications. Since
many existing TCC blockers, such as mibefradil, also show inhibitory effects on L-type
calcium channels (LCCs), the most important task in developing new TCC blockers is
to enhance their selectivity to TCCs over LCCs. To achieve this, we established TCC–
phenylalkylamine interaction models based on the specific amino acid sequences in the
P-loop of TCCs, and α1C LCCs for characterizing the drug molecules’ affinities for TCCs
and LCCs, respectively.

TCCs have a close evolutional relationship with LCCs. A recent report from a cryo-
electron microscopy study reveals that the frame of the α1G (Cav3.1) pore domain structure
is similar to that of α1S (Cav1.1) [8]. This similarity allowed us to confidently adopt the
global structure of the calcium channel CavAb model, constructed based upon Arcobacter
butzleri crystallization [9], in the establishment of our TCC model. One of the most
remarkable differences between all types of TCCs and LCCs is a lysine residue located
adjacent to the critical glutamic acid/aspartic acid residue in domain III. The existence
of a positively charged lysine (K3p49) may swing the aspartic acid (D3p50) away from the
center of the calcium filter and change the preferred calcium ion and drug binding sites
from domains III and IV for LCCs to domains I and IV for TCCs. Therefore, we used the
ZMM molecule modeling program [10–12] to create four-domain TCC models, in which
the binding affinities of drugs to TCCs and α1C LCC were determined by scoring their free
energy in binding to the channels [13].

The new TCC models are adopted from a drug–protein interaction framework for
modeling CavAb blocking by phenylalkylamines (PAAs) [9]. This is rational because
many TCC blockers are PAAs or their derivatives, and because PAAs block CavAb [9,14].
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It is proposed that PAAs bind to LCCs in an inverse V-shaped configuration, with the
ammonium group towards the P-helices, and the nitrile group bound to the calcium ion
coordinated by the selectivity filter glutamates in domains III and IV of the LCC [15].
We reason that this is also true for TCC blockers, except that the calcium ion is coordinated
in the cavity between domains I and IV, since the depolarization confirmed that the pore
domains of CaV3.1 and CaV1.1 are superimposed [8]. As a result, the two rings of the
flexible PAA molecule [15] will make hydrogen bonding contacts with the mobile side
chains of relevant amino acids from domains I and IV of TCCs. This strategy allowed
us to create computer models for simulating the interactions between drugs and channel
receptors for LCC and TCCs, respectively.

2. Results
2.1. Homology Modeling of TCCs and α1C LCC

Using the bacterial calcium CavAb open channel 3D structure as the input, ZMM
generated the first template of the calcium channel, which was then modified with S5-P-
loop-S6 segments of α1C, and α1G, α1H, and α1I (Table 1) to create corresponding protein
structures of Cav1.2 LCC and Cav3.1, Cav3.2, and Cav3.3 TCCs, respectively (Figure 1A–D).
For cross-validation of ZMM-generated 3D structure models, we also performed ab initio
modeling of α1C and α1G calcium channels. Since there is a considerable overlap of
PAA inhibition between LCC and TCCs [9], the allosteric structures of LCC and TCCs
are more likely to be similar. Comparing two different homology modeling tools, ZMM
generates more consistent 3D models of the domain III S5-P-loop-S6 segment of α1C and
α1G (Figure 1E,F) than the ab initio method (Figure 1G,H).
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Figure 1. Top views of homology modeling results from ZMM for α1C, α1G, α1H, and α1I. (A–D)
The structures of α1C, α1G, α1H, and α1I, respectively; blue, green, brown, and yellow represent
domains I, II, III, and IV, respectively; the four selectivity-determining amino acids (glutamic acid or
aspartic acid) in the P-loop are colored red and displayed as spheres; ZMM generates more consistent
3D structure than the ab initio modeling method for α1C and α1G; (E) the predicted 3D structure
of the α1C domain III generated by ZMM, the glutamic acid is represented by red spheres; (F) the
predicted 3D structure of the α1G domain III generated by ZMM, the lysine is represented by red
spheres; (G) the most representative structure selected by Calibur clustering analysis [16] of α1C
domain III, the glutamic acid is represented by red spheres; (H) the most representative structure
selected by Calibur clustering analysis of α1G domain III, the lysine is represented by red spheres.

2.2. Further P-Loop Remodeling of TCCs

After determining the globe structure of TCC 3D models, we focused on the variability
of the P-loop structure, which is the major drug–ligand interaction segment. The Rosetta
P-loop remodeling module [17] was utilized to estimate the variability of P-loop 3D struc-
tures on every domain of TCCs. After inputting a perturbation to the original structure,
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the remodeling process was conducted by sampling the possible locations of a given length
of an amino acid sequence in three-dimensional space. Using the ZMM generated α1G
structure as the reference, the energy-based clustering method [18] was used to determine
the P-loop remodeling results with the lowest root-mean-square-displacement (RMSD)
score. We found that for α1G, domain II had a clear variation between two different homol-
ogy modeling methods in sample sizes 500 and 20,000 (Figure 2). It showed that the central
P-loop helix segment is in the horizontal position rather than the diagonal position found
in other domains. As a result, the selectivity-determining glutamic acids E2p50 may have a
larger vertical distance from other glutamic acids/aspartic acids (E1p50, D3p50, and D4p50) in
α1G TCCs. This may exclude glutamic acid E2p50 as a Ca2+ binding candidate, leaving the
Ca2+ to bind either E1p50 to D4p50 or D3p50 to D4p50 in TCCs. Additionally, to validate the
normality of the remodeling data, we conducted a nonparametric test for the α1G P-loop
remodeling data and confirmed that all the sampling processes (500 and 20,000) came from
the same distribution (see Supplementary Table S2, Supplementary Figure S2 for statistical
results).

Table 1. Comparison of numerical results of P-loop electrostatic potential at the four different
domains with different lengths of amino acid sequences. TCC: T-type calcium channel.

Channel Domain Channel Type AA Sequence
Alignment

PyGBe [19] (Esol,
Ecoul)

α1G I T L E G W V D −11, −407
Domain I α1H I T L E G W V D −110, −408

α1I I T L E G W V E −116, −409
Reduced TCC T L E G W V −87, −323

α1G L T Q E D W N K −217, −631
Domain II α1H L T Q E D W N V −262, −631

α1I L T Q E D W N V −487, −633
Reduced TCC T Q E D W −164, −425

α1G A S K D G W V D −107, −392
Domain III α1H S S K D G W V N −113, −425

α1I A S K D G W V N −105, −394
Reduced TCC S K D G W −101, −303

α1G S T G D N W N G −132, −568
Domain IV α1H S T G D N W N G −164, −574

α1I S T G D N W N G −177, −574
Reduced TCC T G D N W −86, −393

2.3. Local Electrostatic Potentials of the Selective P-Loop of TCC Domains and the Impact of K3p49

A previous study indicated that when a calcium ion enters the selectivity filter region
of a LCC, it binds to the selectivity-determining glutamic acids (E3p50, E4p50) in domains III
and IV [15]. Consequently, the phenylalkylamine molecules will bind to domains III and
IV due to the interaction between the nitrile nitrogen and Ca2+ [15]. In contrast, all TCCs
have a lysine (K3p49) located at the 5′ end adjacent to D3p50 in domain III. It is reported
that the replacement of lysine (K3p49) with Phe or Gly causes the activation curve to shift
to the right [8], which indicates that the lysine in the position adjacent to aspartic acid
(D3p50) plays a significant role in the kinetic/dynamic mechanism of Ca2+ interaction with
the inner environment of the central cavity of TCCs. This positively charged lysine alters
the negative charge field distribution of D3p50 to attract Ca2+ (Supplementary Figure S1).
It is possible that the lysine (K3p49) swings aspartic acid (D3p50) away from the original
Ca2+ binding position, thus causing the Ca2+ to bind glutamic acid or aspartic acid in other
domains, probably to domains I and IV since domain II has a configuration deviation. As a
result, the phenylalkylamine may also switch its binding region from domains III and IV to
domains I and IV.
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Figure 2. Comparison of the P-loop conformation differences before and after Rosetta P-loop remod-
eling. (A) Homology modeling of P-loop structures of α1G domain I (A1), domain II (A2), domain III
(A3), and domain IV (A4) generated by ZMM; (B) Rosetta P-loop remodeling results of α1G domain
I (B1), domain II (B2), domain III (B3), and domain IV (B4) with the sampling size equal to 500;
(C) Rosetta P-loop remodeling results of α1G domain I (C1), domain II (C2), domain III (C3), and
domain IV (C4) with the sampling size equal to 20,000.

To determine the effect of lysine (K3p49) on overall electrostatic potential (E) for given
TCC homology models, we calculated the electrostatic potential (E) for the tailed P-loop
of domain I to IV. Table 1 shows that the combined electrostatic potential (Ecoul) becomes
more negative in each domain as the number of testing amino acids is reduced from seven
to five. In TCCs, Ecoul for domain I is more negative than that for domain IV in the five
amino acid-reduced sequence, indicating a possible switching of the Ca2+ binding site from
domains III and IV to domains I and IV.

We used Coulomb’s electric force equation to quantitively analyze the influence of
lysine on the electrical attraction force between Ca2+ and aspartic acid (D3p50). According
to the equation in Section 4.2, lysine (K3p49) has the least effect on the Ca2+-D3p50 attraction
when K3p49 is located on the opposite side of the Ca2+ and when D3p50 is at the center. When
a = 4.3 Å and b = 3.8 Å [8] (calculated in PyMOL.2.3.3 for ZMM results), Coulomb’s force
equation (found in Section 4) yields: F(Ca, D, attraction) = 2.489 × 10−9 N and F(Ca, K, repellent) =
0.702 × 10−9 N; thus, lysine, at a minimum, reduces the attraction force between Ca2+ and
aspartic acid by more than 28%. The attraction force between Ca2+ and D3p50 will reduce
further or reverse into a repellent force as the distance from the Ca2+ to K3p49 decreases;
therefore, the preferred binding position of Ca2+ will likely be switched to domains I and
IV in TCCs. This limits the PAA binding region on TCCs to domains I and IV. We could
use the amino acid structure of domains I and IV to evaluate the affinities of the PAAs (and
their derivatives) for TCCs (using models established for α1G, α1H, and α1I) and use the
amino acid structure of domains III and IV for evaluating their binding affinities to LCC
(using the model of α1C).
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2.4. Model Predictions and Vina Screening Output of Some Current T-Type Ca2+ Channel Blockers

Mibefradil is reported to have an inhibitory effect on both LCC and TCCs [20]. The α1C
model predicts that one hydrogen atom from the nitrogen (N3) on the cyclopentadiene
connects to methionine (M4i27) on domain IV of α1C LCC, as shown in Figure 3A,B. This is
consistent with the prediction of another model in a previous study [9]. In contrast, the
α1C homology model does not predict that hydrogen bonds to NNC 55-0396. NNC 55-0395
inhibits both L- and T-type calcium channels [14]. The α1C homology model predicts that
NNC 55-0395 has one hydrogen bond that connects nitrogen (N3) to the glycine (G3p49)
on P-loop domain IV. For NNC 55-0397, the α1C homology model also predicts that RO
40-5966, a hydrolyzed metabolite of mibefradil [20], has one hydrogen atom from the
hydroxy group of the benzene ring bound to the glycine (G4p49) at domain IV. No hydrogen
bond has been found between the LCC and the TCC blocker SKF-96365.
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Figure 3. Models of ligand–receptor interactions of mibefradil and NNC 55-0396. (A) The predicted
binding sites of mibefradil on α1C. The H-bond formed between the ammonia (N3) on the cyclopen-
tadiene of mibefradil and methionine (M4i27) on domain IV. The relative locations of surrounding
amino acid residues of the α1C L-type calcium channel (LCC) are shown by the arch–dash symbols.
(B) The predicted 3D binding sites of mibefradil on α1C domain IV from a side view. Red spheres
represent the position of glutamic acid E4p50. Mibefradil is represented by the green ring structure.
(C) The predicted binding sites of NNC 55-0396 on α1G domain IV. The H-bond formed between
the central ammonium of NNC 55-0396 and asparagine (N1i20) on domain I. (D) The predicted
3D binding sites of NNC 55-0396 on α1G. NNC 55-0396 is represented by the green ring structure.
Red spheres represent the position of glutamic acid E4p50. For A and C, carbon, nitrogen, oxygen,
and fluorine elements are represented by black, blue, red, and green, respectively; for B and D, the
blue and orange ribbon helices represent S5 and S6, respectively. The ribbon helix structures linking
S5 and S6 are P-loops. The yellow ball represents the position of the calcium ion.

Using TCCs as templates, we have revealed some current TCC blockers of α1G, α1H,
and α1I. The α1G model predicts that the fluorine atom from the compound NNC 55-0395
forms a halogen bond to glycine (G1p51) in domain I. Our α1G model also predicts a binding
site of NNC 55-0396 to asparagine (Nli20) in domain I (Figure 3C,D). For NNC 55-0397, the
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fluorine atom from the compound forms a halogen bond with valine (V1p46) at the P-loop
of domain I. For mibefradil, one oxygen atom from the side chain of the compound forms
hydrogen bonds with asparagine (N1o4) at S5 of domain I. For RO 40-5966, one hydrogen
atom from the nitrogen (N3) on the cyclopentadiene forms a hydrogen bond with alanine
(A1i27) in domain I. For SKF-96365, the center oxygen atom forms a hydrogen bond with
asparagine (N1o4) at S5 of domain I.

Our α1H model predicts that one hydrogen atom from the nitrogen (N3) on the
cyclopentadiene of NNC 55-0395 interacts with valine (V1p46) at the P-loop of domain I to
form a bond. The fluorine atom from NNC 55-0396 forms a halogen bond with isoleucine
(I1i8) from the α1H S6 of domain I. For NNC 55-0397, one hydrogen atom from the nitrogen
(N3) on the cyclopentadiene forms a bond to asparagine (N4p51) at the P-loop of domain
IV. The hydrogen atom from the nitrogen (N3) on the cyclopentadiene of mibefradil finds
asparagine (N1o4) to form a bond at S5 of domain I. For RO 40-5966, the fluorine atom from
the compound forms a halogen bond with histidine (H4i29) at S6 of domain IV. One oxygen
atom from the side chain of SKF-96365 forms a hydrogen bond with asparagine (N1o4) at
S5 of domain I.

Our α1I homology model predicts that NNC 55-0395 forms a halogen bond between
the fluorine atom from the compound and isoleucine (I1i8) at S6 of domain I. The hydrogen
atom from NNC 55-0396 forms a bond to asparagine (N1o4) at S5 of domain I. For NNC
55-0397, one hydrogen atom from the nitrogen (N3) on the cyclopentadiene interacts with
valine (V1p46) at the P-loop of domain I to form a bond. For mibefradil, there is a halogen
bond formed between a fluorine atom from the compound and a hydrogen atom from
asparagine (N4p53) at the P-loop of domain IV. For RO 40-5966, one hydrogen atom from
the ammonia on the cyclopentadiene interacts with asparagine (N1o4) at S5 of domain I
to form a bond. Our model does not predict the hydrogen bond formed when docking
SKF-96365 to α1I.

A comparison of the predicted binding affinity Kd and experimental measurements of
IC50 for given TCC blockers are listed in Supplementary Table S4. Table 2 summarizes the
predicted binding affinity results for all existing TCC blockers.

2.5. Evaluation of New Compounds

The Vina [13] models were employed for evaluating the binding affinity of the testing
compounds. We randomly selected 300,000 compounds from PubChem and used these as
the database to train our recurrent neural networks (RNNs) [21] with the given compound
properties.

After performing virtual screening, we found that the compounds TC 7, TC 4, and TC 2
satisfied our screening criteria for α1G, α1H, and α1I, respectively. Compound TC 7 has the
highest binding affinity, as well as a lower (water–octanol partition coefficient) logP and a
higher Quantitative Estimation of Drug-likeness (QED) than existing TCC blockers. The 3D
binding plots between TC 7 and α1G are shown in Supplementary Figure S3. The predicted
binding affinities between existing TCC blockers and screened compounds on TCCs and
α1C LCC are shown in Figure 4. Our results show that these screened compounds have
smaller logP and Synthetic Accessibility Scores (SAS) but larger QED values than those of
selected TCC blockers (as seen in Table 3). More structures and chemical properties for the
13 identified compounds can be found in Supplementary Figures S5–S17.
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Table 2. Predicted Gibbs free energy ∆G of phenylalkylamines (PAAs) on calcium channels (N/A:
not available).

Receptor Drug ID ∆G (kcal/mol) Binding Domain

α1C

NNC 55-0395 −6.0 IV

NNC 55-0396 N/A N/A

NNC 55-0397 −6.4 IV

Mibefradil −6.4 IV

RO 40-5966 −5.7 IV

SKF-96365 N/A IV

α1G

NNC 55-0395 −6.5 I

NNC 55-0396 −8.1 I

NNC 55-0397 −7.4 I

Mibefradil −6.8 I

RO 40-5966 −7.3 I

SKF-96365 −5.6 I

α1H

NNC 55-0395 −6.6 I

NNC 55-0396 −7.7 I

NNC 55-0397 −7.0 IV

Mibefradil −7.4 I

RO 40-5966 −7.4 IV

SKF-96365 −5.4 I

α1I

NNC 55-0395 −6.6 I

NNC 55-0396 −7.7 I

NNC 55-0397 −7.5 I

Mibefradil −6.5 IV

RO 40-5966 −6.9 I

SKF-96365 N/A N/A
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Table 3. The chemical properties of computer-designed compounds and selected TCC blockers. SAS:
Synthetic Accessibility Scores, QED: Quantitative Estimation of Drug-likeness.

Compound Name logP SAS QED

NNC 55-0365 6.8147 3.678636 0.273518

NNC 55-0396 6.0345 3.716436 0.351695

NNC 55-0397 6.2805 3.718535 0.337773

Mibefradil 5.2709 3.71918 0.367183

TC 1 6.1671 4.433975 0.402836

TC 2 5.3351 5.24865 0.408449

TC 3 4.8963 4.777741 0.474028

TC 4 5.0404 4.731275 0.441386

TC 5 5.5879 4.951457 0.415026

TC 6 4.4585 4.79633 0.469604

TC 7 3.6902 4.806084 0.63381

TC 8 6.2697 4.851381 0.242332

TC 10 4.1891 4.542497 0.312353

TC 11 5.372 3.089346 0.276759

TC 12 4.9472 3.971406 0.248549

TC 13 5.7028 4.449589 0.406663

TC 15 4.73 3.921747 0.368816

3. Discussion

A TCC (Cav3.1) 3D structure has already been modeled with cryo-electron microscopy [8];
however, this structure is constructed based on a splice variant containing a deletion of 133
amino acids within the I-II linker. Electrophysiological characterization of these variants
(Cav3.1-∆8b) shows 1.5-2-fold conductance increases when compared with the full-length form
in human and rat preparations. Both activation and steady-state inactivation curves are shifted
in the human preparation [8]. In addition, the pore diameter estimated from Cav3.1-∆8b is
smaller than the biophysical measurement [8]. These alterations in TCC electrophysiological
properties suggest that the conformation of the cryo-electron microscopy structure is not the
same as the full-length Cav3.1 TCC. Therefore, the 3D structure of Cav3.1-∆8b may not be the
most suitable template for the general modeling of TCCs, especially for PAA binding, which
is highly dependent on the position of Ca2+ interacting with the selectivity filter of TCCs.
In this study, we chose to use CavAb as the model template since this channel is blocked by
PAA and therefore is suitable for establishing a model for evaluating PAAs that inhibit TCCs
selectively over LCCs.

Increasing evidence indicates the pathological role of TCCs in the progression of
different diseases [6]. It is crucial to develop selective TCC blockers to establish new
treatments for these diseases. Unfortunately, lacking the TCC X-ray crystallization structure
hampers the progress of creating new TCC blockers. In practice, it is very difficult to find
or design a compound that selectively blocks TCCs but not LCCs, since most current TCC
blockers exhibit a certain level of inhibitory effects on LCCs. For example, mibefradil, the
first launched TCC inhibitor, was quickly recognized to cross inhibit LCC [20]. Here, we
provide a new strategy by which the specificity of candidate compounds for binding TCCs
but not LCCs can be pre-screened with new computer-based models. This is desirable for
designing and developing compounds that more selectively block TCCs than LCCs.

We chose to build models for the interaction between TCCs and PAAs since the
binding mechanism of these compounds to LCCs has been studied extensively [9,15,22–26].
Based upon the critical single amino acid lysine (K3p49) difference between LCCs and TCCs,
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we have created a strategy that can distinguish the affinity of PAAs to TCCs and LCCs,
respectively. The models have been validated by measuring the affinities of existing TCC
blockers to LCCs and TCCs. We also used these models for evaluating the specificities of
novel PAAs and phenylalkylamine derivatives in terms of their binding affinities to TCCs
and LCCs.

Using ZMM, we simultaneously created α1G, α1H, and α1I TCC and a1C LCC struc-
tures with four domains, each containing three segments: segment 5, a P-loop, and segment
6. In contrast, the ab initio modeling method failed to produce a suitable calcium channel
structure compared to ZMM.

The selectivity of the calcium channel is dependent on the critical glutamate residues
located in the selectivity filter of the P-loop of the α1 subunit in each domain. In this region,
there are two negatively charged glutamic acid residues likely to attract one Ca2+ in the
space close to domains III and IV [15]. When a phenylalkylamine molecule approaches
a calcium channel from the cytoplasmic side, its nucleophilic nitrile nitrogen reaches the
Ca2+, while the other parts of the molecule form affiliated interactions with the amino
acids in the P-loop and segments 5 and 6 in domains III and IV of the calcium channel.
This causes a physical blockage of ion flow through the channel. In the case of TCCs, there
is a lysine (K3p49) located adjacent to D3p50 in domain III, and the ionized electric potential
distribution of the aspartic acid is altered by lysine, which attenuates the electric attraction
of aspartic acid (K3p49) to Ca2+ at the minimum binding distance (4.3 angstroms) and may
swing K3p49 away from the selectivity filter. Based on this analysis, we suggest that Ca2+

will not bind to domain III but to domain I of TCCs. This prediction is consistent with the
Cav3.1 structure estimated with cryo-electron microscopy [8], which showed the electron
density of the top Ca2+ ion is closest to Glu354 of Cav3.1 (E1p50, Table 4). Additionally,
Rosetta P-loop remodeling shows that the P-loop of domain II is in a more horizontal
confirmation than that of other domains, rendering the glutamic acid (E2p50) further away
from the Ca2+ binding site. Since the movements of PAAs will follow the location of
Ca2+ docking, our models are built for evaluating the affinity of candidate compounds
binding to domains I and IV. The compounds that are predicted to have a higher affinity
to bind domains I and IV of TCCs but not domains III–IV of LCC (α1C) are considered
to be ideal selective TCC blocker candidates. This strategy screens out the compounds
that are unlikely to bind LCC and TCCs as well as the compounds that are likely to bind
both LCC and TCCs. To test whether Ca2+ docking is consistent on domains I and II
across different TCCs, a molecular dynamics study should be conducted with modified
membrane conditions and simulation environments [27].
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Table 4. Amino acid sequences of α1G used for searching the homology modeling template.

Channel Domain/Segment Residue
Label Prefix a Selected Key Amino Acid Sequence b

1 11 21
α1C 1S5 1o PLLHIALLVL FVIIIYAIIG LELFMGK
α1G 1S5 1o MLGNVLLLCF FVFFIFGIVG VQLWAGL
α1C 2S5 2o SIASLLLLLF LFIIIFSLLG MQLFGGK
α1G 2S5 2o NVATFCMLLM LFIFIFSILG MHLFGCK
α1C 3S5 3o TIGNIVIVTT LLQFMFACIG VALFKGK
α1G 3S5 3o PIGNIVVICC AFFIIFGILG VQLFKGK
α1C 4S5 4o ALPYVALLIV MLFFIYAVII GMQVFGK
α1G 4S5 4o QVGNLGLLFM LLFFIFAALG VELFGDL

33 43 53
α1C 1p 1p FDNFAFAMLT VFQCITMEGW TDVLY
α1G 1p 1p FDNIGYAWIA IFQVITLEGW VDIMY
α1C 2p 2p FDNFPQSLLT VFQILTGEDW NSVMY
α1G 2p 2p FDSLLWAIVT VFQILTQEDW NKVLY
α1C 3p 3p FDNVLAAMMA LFTVSTFEGW PELLY
α1G 3p 3p FDNLGQALMS LFVLASKDGW VDIMY
α1C 4p 4p FQTFPQAVLL LFRCATGEAW QDIML
α1G 4p 4p FRNFGMAFLT LFRVSTGDNW NGIMK

1 11 21
α1C 1S6 1i ELPWVYFVSL VIFGSFFVLN LVLGVLSGEF
α1G 1S6 1i FYNFIYFILL IIVGSFFMIN LCLVVIATQF
α1C 2S6 2i MLVCIYFIIL FICGNYILLN VFLAIAYDNL
α1G 2S6 2i SWAALYFIAL MTFGNYVLFN LLVAILVEGF
α1C 3S6 3i VEISIFFIIY IIIIAFFMMN IFVGFVIVTF
α1G 3S6 3i PWMLLYFISF LLIVAFFVLN MFVGVVVENF
α1C 4S6 4i SFAVFYFISF YMLCAFLIIN LFVAVIMDNF
α1G 4S6 4i VISPIYFVSF VLTAQFVLVN VVIAVLMKHL

Notes: The difference in amino acid sequences among α1G, α1H, and α1I are underlined. H: L3o7, Y4o16, R4o29, V2p54, S3p47, N3p54, V2i8, S3i15, A4i1, L4i2, V4i5, T4i9, V4i13, V4i23. I: I1o19, V1p42, E1p54, V2p54, P2i1, S2i4,
V2i8, L3o7, N3p54, S3i15, Y4o16, K4o29, Q4p45, F4i1, V4i2, I4i19, V4i23. a,b Residue sequences are labeled according to the alignment of the outer helix, the P-loop, and the inner helix of the KcsA structure [15].
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Previous studies suggest that the nitrile and isopropyl groups in devapamil and
some other PAAs serve to guide the drug to the position of Ca2+; this function persists if
the nitrile is replaced with other elements with high electronegative potentials, such as
oxygen or sulfur [15]. In many molecules discussed here, including mibefradil, the nitrile is
replaced with a methoxy acetyl side chain or a similar side chain with a high electronegative
potential. These molecules behave presumably like those of molecules with nitrile in their
alkaline chain. Some of the molecules, such as RO 40-5966 and SKF-96365, do not share
the binding mechanism described by our model, and therefore their inhibitory effects on
Ca2+ channels may not be explained by our new models. For example, by using the input
template SKF-96365, we obtained 14 unique structures (as seen in Supplementary Table S3,
Figure S4), which had negative binding affinities to our TCC models.

Although our models are designed to select compounds that are likely to bind domains
I and IV of TCCs, this does not exclude the possibility that PAAs or their derivatives might
inhibit TCCs via binding to domains I and II, domains II and III, or even domains III and
IV. The goal of our models was to increase the likelihood of success in screening selective
TCC blockers based on their chemical structures.

Our α1C model has a similar channel pore size (selectivity filter region) as CavAb [9];
however, α1G, α1H, and α1I may have smaller diameters than CavAb, since the unitary
conductance of TCC currents is smaller than that of LCC. Further statistical analyses of
P-loop remodeling data show that a minimal structural difference exists in the P-loop
region remodeling data (see Supplementary Materials for details of the statistical analysis).

The Vina screening results of α1C identify no binding location for NNC 55-0396 or
SKF-96365. The predicted α1C binding amino acid for NNC 55-0397, as well as mibefradil,
matches the experimental results, which show the inhibitory effect of NNC 55-0397 and
mibefradil on LCCs. Although RO 40-5966 has a lower ∆G than mibefradil when binding
to α1C, the predicted binding location is closer to the center of the channel filter region
than mibefradil, which indicates a stronger blocking effect on the rate of Ca2+ influx than
mibefradil.

Although the Kd values predicted by Vina have some gaps compared to the experi-
ment data, they do follow the same order of magnitude (Supplementary Table S4). To obtain
a more accurate Gibbs free energy for PAAs binding to TCCs, at least two consecutive
steps must be conducted: first, the flexible docking process [28]; second, the free energy
calculation between ligand and receptor [29]. These two steps require an extensive com-
putational cost and the final Kd value is very sensitive to the initial input of the receptor
structures. Recently deposited human α1G structures offer a good template for developing
TCC blockers [8]; however, they have some uncommon regions missing, which could
affect PAA binding. Therefore, we argue that it is less likely that the Gibbs free energy
of mibefradil/NNC 55-00396 between the prediction and the experiment is matched by
choosing different docking programs or conducting a molecular dynamics simulation to
find the free energy.

Our work only focuses on the first step of the drug development process in silico,
providing a strategy for predicting the comparative potency of candidate compounds to
TCCs versus LCCs. Neither are used for evaluating the pharmacological effects of these
compounds on other types of cation channels. Since the strength of the pharmacological
effects of PAAs and their derivatives on blocking calcium channels are increased by the
appearance of a calcium cation in the channel pore [15], it is unlikely that these PAAs and
their derivatives will exhibit a strong inhibitory effect on other cation channels.

4. Materials and Methods
4.1. Homology Modeling of the α1 Subunit

Three classes of calcium channel families have been discovered: CaV1.X, CaV2.X, and
CaV3.X. The X represents the subdivisions of the sequence homology of the α1 subunit in
each class. The models of drug–channel interactions built upon the structural differences in
the relevant S5, P-loop, and S6 regions of α1G, α1H, α1I TCCs, and α1C LCC, respectively.
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The protein templates were obtained from BAM [30] using truncated inputs of human α1G,
α1H, α1I, and α1C (UniProt id: O43497) amino acid sequences (see Table 4 for details).
The crystallization structure (PDB id: 5kmh) for the depolarization status of the calcium
channel protein, originally extracted from Arcobacter butzleri [9], was employed as the
structure template of our model. The multi-domain protein structures of human α1G, α1H,
α1I, and α1C were built using the ZMM molecular modeling software. The forcefield of
specific amino acids was simulated by using the Assisted Model Building with Energy
Refinement (AMBER) program. The final structure of the target peptides was optimized by
using the Monte Carlo minimization protocol. The maximum iteration time for finding
the global minimum was set to 5000. During the energy optimization, structural similarity
between target and template was maintained by a flat-bottom parabolic energy penalty
function that allows for penalty-free deviations of alpha-carbons up to 1 atom distance
from their respective positions in the template, and a penalty was imposed with a force
constant of 10 kcal mol-1A-2 for larger deviations [15]. The homology models for human
α1H (UniProt id: O95180), α1I (UniProt id: Q9P0X4), and α1C (UniProt id: Q13936) were
also built with this method.

4.2. Local Electrostatic Potential Calculation

To calculate the electric double layer-related local electrostatic potential while a chan-
nel protein interacted with a surrounding water molecule, we generated the corresponding
meshes using MSMS (v2.6.1) [31] and set the probe radius to 1.4 and the density to 3.0
for quality control. For truncated amino acid sequences, the local electrostatic poten-
tial/binding energy is derived from the summation of the solvation energy and Coulomb
energy, i.e., Gcomplex = Gsolution + GCoulomb. The GCoulomb for LCC and TCCs in the P-loop
region was calculated by using PyGBe with pre-defined parameters (Supplementary Table
S1). To compare the influence provided by a single lysine, we used Coulomb’s law to
calculate the electric attracting force between Ca2+ and aspartic acid:

F(Ca,D) = ke
qCaqD

a2 ,

where ke is Coulomb’s constant 8.99 × 109 N·m2·C−2; a is the distance between Ca2+ and
aspartic acid; q is the point charge for Ca2+, aspartic acid (D), and lysine (K), respectively.
The effect of the repellent force on Ca2+ by lysine in the direction of the Ca2+ and the
aspartic acid attracting force is defined by

F(Ca,K) = ke
qCaqK

r2 · cos θ,

where θ is the angle between the lines from Ca2+ to aspartic acid and from Ca2+ to lysine; r
is the distance between Ca2+ and lysine, which is calculated by

r = a· cos θ±
√

b2 − (a· sin θ)2 ,

where b is the distance from aspartic acid to lysine. When the angle between Ca2+ and as-

partic acid, and lysine and aspartic acid (φ) is less than 90◦, r = a· cos θ +
√

b2 − (a· sin θ)2 ;

when φ is equal to 90◦, r = a· cos θ; when φ is larger than 90◦, r = a· cos θ –
√

b2 − (a· sin θ)2 .
Therefore, the electric force between Ca2+ and aspartic acid is

F(Ca, D, K) = F(Ca,D) − F(Ca,K) = ke
qCaqD

a2 − ke
qCaqK

r2 · cos θ.

4.3. Ab Initio Modeling

The ab initio modeling modules from Rosetta were employed to find the three-
dimensional structure of target fragmental peptides by sampling and assembling a large
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candidate pool containing 22,000–27,000 decoy structures for every inputted amino acid
sequence [32]. The output results of ab initio modeling were analyzed using the Calibur
and energy-based clustering methods.

4.4. P-Loop Remodeling

The P-loop region of α1G was remodeled using a Rosetta loop modeling module
combined with the FastRelax protocol. Twenty-seven amino acids in the P-loop were
selected from domains I, II, III, and IV of the TCCs. The modeling used phenylalanine as
the starting amino acid and tyrosine, tryptophan, proline, and isoleucine as the ending
amino acids. The effective sample size used for subsequent statistical analysis was validated
by two groups of data for every remodeled domain. The first group contained 500 output
structures, and the second group had 20,000 output structures. The results were analyzed
using the Calibur and energy-based clustering methods.

4.5. Compound Generation

We used the de novo drug generation package “chemical vae” developed by Gomez-
Bombarelli et al. [21] to create a data-driven RNN for new compound production. The dataset
we used to train the RNN was prepared by randomly sampling approximately 250,000
compounds from PubChem. The maximum length of encoding for the SMILES-based
compounds was set to 120 characters. To analyze the compounds using the RNN, one
fully connected layer of width 200 was used. To convert a predicted compound back to
the original data type, three layers of gated recurrent units with a hidden dimension of 500
were used. The variational loss of the RNN was annealed according to a sigmoid schedule
after 35 epochs, running for 130 epochs while property prediction training the RNN, such
that the RNN trained on the PubChem data set with objective properties including: logP,
SAS [33], and QED [34]. We kept the other hyperparameters to train the RNN unchanged
from the reference [21]. To transfer the predicted compound back to SMILES-based data, we
set the Gaussian noise value to 5 and the iteration time to 1000. Once the 2D structure had
been obtained, we converted it into a 3D structure via the online program Frog 2.1 [35,36].
The program OpenBabel 2.4.1 [37] was used to add the hydrogen atom and set the pH equal
to 7.35 for select compounds.

The 2D structure of mibefradil was employed as a redesigned template for new
compounds. Based on its structure, we recreated 129 PAAs and their derivatives. Their cor-
responding 3D structures (involving up to 800 isomers) were created by Frog 2.1. We used
the same program to find the 3D structures for NNC 55-0395, NNC 55-0396, and NNC
55-0397, and combined them with SKF96365 and RO 40-5966, whose 3D structures were
downloaded from PubChem, for use as reference compounds for testing and validating
the faithfulness of our TCC models.

Some of the candidates of screening compounds may contain oxygen, which replaces
the role of nitrile; this structural formula has been reported in certain PAAs such as
falipamil, BRL-32872, and tiapamil [15].

4.6. Virtual Drug Screening

Virtual drug screening was conducted by using AutoDock Vina [13] with user-defined
configuration scripts on the Tulane supercomputer Cypress. The search box was placed in
the center of the protein model. The number of mesh elements in the X, Y, and Z directions
was set to 60, 124, and 102 for α1C and 58, 48, and 50 for α1G, α1H, and α1I, respectively,
when simulating the ligand–receptor interaction for existing TCC blockers. The number of
mesh elements in the X, Y, and Z directions was increased to 126 when conducting virtual
screening for newly designed compounds. To achieve repeatable docking results using
Vina, the seed number was fixed at –1460306363. As the grid number for every direction
was set to the maximum, Vina had to search a very large three-dimensional space. To find
the local minimum, the exhaustiveness was set to 2000 for new compound screening cases
and 8 for existing TCC blocker screening cases. The number of predictable binding models
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expressed as the output was limited to 3 for new compound screening cases and 20 for
existing TCC cases.

The Vina output results were checked using PyMOL to ensure the binding locations
for existing and newly designed compounds. The predicted binding affinity for the testing
compound was calculated as:

Kd = exp

(
−∆G ·kcal ·mol−1

0.001986 ·kcal ·mol−1·K−1·310 K

)
,

where ∆G is the Gibbs free energy predicted by Vina.
The 2D ligand–receptor interaction plot was created using LigPlot+ [38].

4.7. Data Analysis

The Anderson–Darling normality test and the Kruskal–Wallis one-way ANOVA test
(Supplementary Table S2) were conducted on the generated homology modeling data from
Rosetta ab initio modeling and P-loop remodeling in Anaconda Spyder (3.2.8) using a
Python 3.6 environment.

5. Patents

All the new identified compounds in this study are patented by the Office of Tech-
nology Transfer and Intellectual Property Development at Tulane University (Patent ID:
US62/859,519).

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-824
7/14/2/141/s1. Figure S1. The negatively charged lysine affects the electric potential distribution
of aspartic acid in the x-y plane. (A) The Dist. of ED (0,0) without K; (B) the Dist. of ED (0,0) after
adding the lysine EK (3.8, 0), Figure S2. The predicted versus theoretical RMSD plots for group
sampling size 500 and 20,000. (A,B,C,D) Domains I to IV for 500 sampling size group; (E,F,G,H)
Domains I to IV for 20,000 sampling size group Figure S3. The predicted 3D binding plots between
TC 7 and α1G. An alkyl bond (4.31 angstroms) has been formed between TC 7 (green) and the
sidechain of V1i24 (red) at domain I. The sidechain of E1p50 is colored as blue and one Ca2+ is colored
as yellow; Figure S4. Based on the 2D structure of SKF-96365, 10 structures have been found using the
Deep-Learning based de novo drug design approach, Figure S5. 2D structure and chemical properties
of the redesigned phenylalkylamine analog, TC 1, Figure S6. 2D structure and chemical properties of
the redesigned phenylalkylamine analog, TC 2, Figure S7. 2D structure and chemical properties of
the redesigned phenylalkylamine analog, TC 3, Figure S8. 2D structure and chemical properties of
the redesigned phenylalkylamine analog, TC 4, Figure S9. 2D structure and chemical properties of
the redesigned phenylalkylamine analog, TC 5, Figure S10. 2D structure and chemical properties of
the redesigned phenylalkylamine analog, TC 6, Figure S11. 2D structure and chemical properties of
the redesigned phenylalkylamine analog, TC 7, Figure S12. 2D structure and chemical properties of
the redesigned phenylalkylamine analog, TC 8, Figure S13. 2D structure and chemical properties of
redesigned phenylalkylamine analog, TC 10, Figure S14. 2D structure and chemical properties of the
redesigned phenylalkylamine analog, TC 11, Figure S15. 2D structure and chemical properties of the
redesigned phenylalkylamine analog, TC 12, Figure S16. 2D structure and chemical properties of the
redesigned phenylalkylamine analog, TC 13, Figure S17. 2D structure and chemical properties of the
redesigned phenylalkylamine analog, TC 15. Table S1. Numerical parameter settings for running
PyGbe, Table S2. Normality test for P-loop remodeling data (α1G) from two groups with different
sampling sizes, Table S3. The structures and properties of computer-designed compounds using
Deep-Learning (D: distance; C: count; F: frequency). Table S4. Predicted binding affinity (Kd) by Vina
versus experimental measurement of IC50 of given TCC blockers (unit: micromolar).
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