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Abstract: Preterm birth (PTB) refers to the birth of infants before 37 weeks of gestation and is a
challenging issue worldwide. Evidence reveals that PTB is a multifactorial dysregulation mediated by
a complex molecular mechanism. Thus, a better understanding of the complex molecular mechanisms
underlying PTB is a prerequisite to explore effective therapeutic approaches. During early pregnancy,
various physiological and metabolic changes occur as a result of endocrine and immune metabolism.
The microbiota controls the physiological and metabolic mechanism of the host homeostasis, and
dysbiosis of maternal microbial homeostasis dysregulates the mechanistic of fetal developmental
processes and directly affects the birth outcome. Accumulating evidence indicates that metabolic
dysregulation in the maternal or fetal membranes stimulates the inflammatory cytokines, which
may positively progress the PTB. Although labour is regarded as an inflammatory process, it is still
unclear how microbial dysbiosis could regulate the molecular mechanism of PTB. In this review
based on recent research, we focused on both the pathological and therapeutic contribution of
microbiota-generated metabolites to PTB and the possible molecular mechanisms.

Keywords: preterm; microbiota; metabolites; molecular mechanism; probiotics; postbiotics

1. Introduction

Preterm birth (PTB) refers to the birth of infants before 37 weeks of gestation by World
Health Organization [1]. PTB is a challenging issue worldwide with a prevalence of 5% to
18%, which increases the risk of morbidity and mortality or long-term complications to
neonatal life [2,3]. During early pregnancy, various physiological and metabolic changes
occur as a result of endocrine and immune metabolism [4]. Environmental and clinical
factors such as toxicant particulate matter (PM 2.5–10, bisphenol, etc.), consumption of a
high-fat diet, family PTB history, low education, low socioeconomic status, ethnicity (PTB
is higher in non-Hispanic black women), previous PTB history, multiple pregnancies, short
pregnancy interval, early (<16 years) or late (>36 years) pregnancy, tobacco or alcohol con-
sumption, high stress, hypertension, obesity, low body mass index, infection, short cervix,
uterine anomaly, and miscarriage can affect fetal developmental plasticity, gestational age,
or birth outcome [5–9].

Based on clinical observations, PTB is classified as spontaneous PTB (sPTB) and iatro-
genic; sPTB is due to preterm labour (PTL) or preterm premature rupture of the membranes
(P-PROM) [10,11]. Several lines of evidence indicate that sPTB is commonly associated
with intrauterine infection/inflammation [12,13]. Increased inflammatory molecules in
different maternal bio-fluids indicate the onset of PTB [13–15]. It has been noted that
inflammatory molecules (IL1, TNF, and IL6) are associated with the initiation of PTB and
as predictive markers of PTB in symptomatic women [14]. Moreover, polymorphisms or

Int. J. Mol. Sci. 2021, 22, 8145. https://doi.org/10.3390/ijms22158145 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-3153-3008
https://doi.org/10.3390/ijms22158145
https://doi.org/10.3390/ijms22158145
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22158145
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22158145?type=check_update&version=3


Int. J. Mol. Sci. 2021, 22, 8145 2 of 20

hyper-methylation in genes or RNA transcript expression mediates inflammation and are
associated with PTB [16–18].

Accumulating evidence indicates that the host microbiota regulates the maternal and
fetal immune interaction as well as the birth outcome [19–21]. In addition, current lines
of evidence also indicate that the host microbiota-generated metabolites control various
metabolic mechanisms and inflammatory processes including PTB (Figure 1) [22,23]. Al-
though labour is regarded as an inflammatory process, it is still unclear which microbiota
and metabolites control PTB. In this review, we focused on the recent research-based evi-
dence to elucidate the probable molecular basis of the involvement of microbial metabolites
in PTB, emphasizing both pathogenic and therapeutic insights.

Figure 1. Microbiota-metabolites and inflammatory markers in preterm birth. O: Oral; G: Gut; B:
Blood; U: Urine; V: Vagina; C: Cervix; P: Placenta; A: Amniotic fluid. TMA: Trimethylamine, TMAO:
Trimethylamine N-oxide; IL: Interleukin; TNF: Tumor necrosis factor; MMP: Matrix metallopro-
teinase; CCL: C-C motif chemokine ligand; CXCL: C-X-C motif chemokine; PTGDS2: Prostaglandin
D2 synthase; OXTR: Oxytocin receptor; CX: Connexin; NFkB: Nuclear factor-kappa B; COX: Cy-
clooxygenase; PGDH: Prostaglandin dehydrogenase. Dashed lines indicate several steps, ↓ decreased,
↑ increased level. Location followed by color code.
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2. Microbiota Pathological Insight in PTB

In early pregnancy, various physiological processes change dynamically, including
hormonal and immunity for placentation and implementation [24,25]. During the course
of normal pregnancy, healthy microbiota colonization can be a prerequisite for immune
maturation as well as metabolic and hormonal homeostasis [26–28]. However, during
pregnancy, the microbiota remains relatively stable or fluctuates dramatically in different
trimesters at different regions [29–32]. Concerning healthy pregnancies, the intrauterine
cavity microbiota colonization originates exclusively from ascending route through the
urogenital tract (urinary, cervical, and vaginal) and the hematogenous route through the
placenta after translocation from the digestive tract (oral and gut) [33]. The oral and gut
microbiota stability is affected by extrinsic factors, especially diets, which influence the
cervicovaginal microbiota dynamics [34,35]. The vaginal microbiota fluctuates almost daily
because of its unstable environment in pregnant women [36]. Normally, the dominance of
Lactobacillus spp. in the vaginal tract reflects healthy microbial colonization as members
of this bacterial spp. promote the maintenance of vaginal homeostasis and prohibit the
colonization and growth of adverse microorganisms, including those contributing to
sexually transmitted infections. The protective role of Lactobacillus spp. is exerted through
several mechanisms, such as the creation of an acidic environment by reducing vaginal
pH at around 4.0, the production of bioactive compounds, competition for nutrients and
adhesion sites, and modulation of host immunity [37–40]. Instead of the defensive function
of dominant Lactobacillus spp. and low level of host-derived antimicrobial peptide, immune
modulator β-Defensin 2 in cervicovaginal fluid is associated with increased risk of PTB in
African American women [41].

A previous study analyzing microbial species composition in 396 samples from a
population of asymptomatic North American women representing four ethnic groups
(white, black, Hispanic, and Asian) by pyrosequencing of barcoded 16S rRNA genes re-
vealed the clustering of vaginal microbial taxonomic communities into five groups called
community state types (CST) [42]. Among them, four were dominated by Lactobacillus spp.
as follows: CST I (Lactobacillus crispatus), CST II (Lactobacillus gasseri), CST III (Lactobacillus
iners), and CST V (Lactobacillus jensenii), while CST IV was represented by a lower propor-
tion of Lactobacillus and an array of strict and facultative anaerobes including Prevotella,
Dialister, Atopobium, Gardnerella, Megasphaera, Peptoniphilus, Sneathia, Eggerthella, Aerococcus,
Finegoldia, and Mobiluncus. Additionally, communities in CST I have the lowest median
pH (4.0 ± 0.3), whereas communities belonging to CST IV had the highest median pH
(5.3 ± 0.6) [42,43]. It was found that women with both CST IV and short cervixes are at
a higher risk for sPTB than women with either factor alone [44]. In contrast, in another
study, the association between term birth and PTB with Lactobacillus community composi-
tion classified vaginal microbiota into three categories: normal (>90% Lactobacillus spp.),
intermediate (30–90% Lactobacillus spp.), and dysbiotic (<30% Lactobacillus spp.) [30,45],
Gardnerella vaginalis is commonly isolated from patients with BV, while for characterization
by 16S rRNA gene of V2 region, PCR products are an indicator of BV [46,47].

It has been found that in early pregnancy, higher microbial richness and diversity
in different bio-fluids (blood, urine, cervicovaginal fluid, amniotic fluid) are similar to
non-pregnant women before the second trimester. The microbial dysbiosis occurring
during the very crucial second trimester, along with racial disparity, directly affects the
normal developmental physiology and birth outcome [30,35]. Broadly speaking, dysbiosis
in Gram-negative bacteria acts as an inducer of PTB [48,49]. In early pregnancy, an increase
in pathogenic microbiota (Gardnerella, Ureaplasma, Closteridiam, Provetella, Mycoplasma)
provides permissible colonization and metabolic signatures of bacterial vaginosis (BV),
which double the risk of PTB [50–53]. Additionally, African American women have a higher
rate of BV-related microbiota than Caucasian women [54]. The microbial translocation
is not yet clear, but the ascending and hematogenous route pathways are common, as
mentioned earlier [33]. The abundance of Lactobacillus spp., particularly the Lactobacillus
crispatus-dominated vaginal environment (CST I), maintains gestational health and results
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in term birth. While the Lactobacillus iners dominated vaginal milieu (CST III), and there
was an abundance of Clostridiales, Bacteroidales, and Actinomycetales, which are known to
lead to vaginal dysbiosis associated with PTB [31,43,55,56]. In addition, the relatively lower
abundance of vaginal Lactobacillus crispatus and relatively higher abundance of Anaerococcus
vaginalis and Prevotella timonensis were observed in obese women and are significantly
related to BV and PTB [8,30].

The abundance of Bacteroides and Escherichia-Shigella were observed in the blood, while
the dominance of BV-associated Leptotrichia/Sneathia, Mobiluncus spp., and Mycoplasma spp.
was reported in the vagina of PTB women [35,51,57]. A high level of Lactobacillales was
observed in the feces and an abundance of Weissella and Rickettsiales were observed in the
blood of women who reached full term [35,58]. The abundance of Ureaplasma spp. and
the family Veillonellaceae (including Megasphaera spp.) was observed in the urine of PTB
women [59]. The BV strains Sneathia sanguinegens and Fusobacterium nucleatum were identi-
fied in amniotic fluid samples at mid-trimester of women with PTB [60]. The low levels of
Clostridium subcluster (XVIII, XIVa) and Bacteroides and a high level of Lactobacillales were
observed in the feces of the PTB [58]. In pregnancy, the oral microbiota generally exhibits
a relatively stable bacterial population to the vaginal microbiome. However, one study
has revealed that high levels of common periodontal pathogens Porphyromonas gingivalis,
Tannerella forsythia, Prevotella intermedia, and Prevotella nigrescens are associated with an
increased risk of PTB [61]. Lactobacillus crispatus and Lactobacillus iners have a protective role
against pathogenic microbiota such as Gardnerella, Ureaplasma, Closteridiam, and Provetella
through beneficial metabolites to prevent virginal dysbiosis, maintain vaginal pH, and
protect mucus layer integrity [62,63]. Furthermore, subjects with high concentrations
of Lactobacillus crispatus at follow-up had high concentrations of metabolites negatively
associated with BV, which affected their pregnancies (Figure 2, Table 1) [38,52,56,64].

Table 1. Microbial richness in preterm birth.

Specimen * Bacterial Strains References

Oral Porphyromonas gingivalis, Tannerella forsythia,
Prevotella intermedia, and Prevotella nigrescens [61]

Blood Klebsiella pneumonia [65]

Bacteroides, Lactobacillus, Sphingomonas,
Fastidiosipila, Weissella, and Butyricicoccus [35]

Vaginal fluid Bacteroides, Sphingomonas, Delftia, Lactobacillus
crispatus, and Escherichia-Shigella [30]

Prevotella, Lactobacillus, Gardnerella [66]

Urine Ureaplasma spp. Family Veillonellaceae
(including Megasphaera spp.) [59]

Amniotic fluid Sneathia sanguinegens, Fusobacterium nucleatum,
and Leptotrichia amnionii [60,67]

Maternal feces Lactobacillales, Clostridium cluster XVII,
Clostridium subcluster XIVa [58]

* Analyzed in women who gave PTB (1, 2, or 3 trimesters), observed significant differences with term birth.
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3. Microbiota Metabolites Pathological Insight in PTB

Microbiota affects the metabolic process directly or indirectly by their generated
metabolites, also termed as ‘post-biotic metabolites’ (PBM), which produce similar or much
better effects compared to their own live parents [22,68]. In general, bacterial metabolites
may impact human cell function, inflammation, and disease susceptibility. Small molecule
metabolites (the metabolome) represent the enzymatic pathways and complex metabolic
networks that execute microbial transformation of host-derived products. Various external
environmental factors, especially diet containing high carbohydrates, high protein, and
high fat affect the gut microbiota dysbiosis and metabolic dysregulation [69,70]. Disturbed
metabolic dysregulation due to high consumption of carbohydrate and fat diet increases the
chances of obesity and relative abundance of pathogenic microbiota [71,72]. Consumption
of high carbohydrates, high-protein, high-fat, and/or high-vitamin diets influences mater-
nal extra and intrauterine factors by their pathogenic microbiota and metabolites, thereby
increasing the risk of PTB [23,73]. In connection, microbiota dysbiosis directly affects the
production of microbiota-metabolites, and the presence of metabolites at higher or lower
levels impacts metabolic function including PTB [74,75]. These PBM are represented by
several active compounds including short-chain fatty acids, polyamines, polyphosphates,
and peptides, which exert a significant effect on several metabolic activities [76]. Principally,
there are two basic phenomena involved in the generation of microbial PBM: first, the bio-
production of short-chain fatty acids (SCFAs) or alcohol from fermenting sugars or fibers,
and second, the bio-conversion of derivative molecules [77,78]. Microbial metabolites gen-
erated from pathogenic bacteria such as peptidoglycan (PGN), lipopolysaccharides (LPS),



Int. J. Mol. Sci. 2021, 22, 8145 6 of 20

and lipoteichoic acid (LTA) represent pathogen-associated molecular patterns (PAMPs),
while damage-associated molecular patterns (DAMPs) are derived from dietary factors.
These PAMPs and DAMPs are generated in response to infection and inflammation [79].
These two microbe-specific molecular signatures are recognized by the innate immune
system via germline-encoded pattern-recognition receptors (PRRs). In the mammalian
system, among the major members of PRR families, Toll-like receptors (TLRs) were the first
to be identified, and are the best-characterized molecules. Following PAMPs and DAMPs
recognition, TLRs recruit Toll/IL1 receptor (IL1R) domain-containing adaptor proteins such
as MyD88 and TRIF, which induce signal transduction pathways that ultimately lead to the
activation of transcription factors NFκB and IRFs or MAP kinases to regulate the expression
of pro-inflammatory cytokines, chemokines, and type I IFNs. Such events dictate the
outcome of innate immune responses that protect the host from microbial infections [79].

The SCFAs (formate, acetate, succinate, and lactate) are produced from indigestible
carbohydrates and dietary fibers in the presence of microbiota. Formate is produced by
Lactobacillus pentosus, acetate is produced by Lactobacillus acidophilus CRL 1014, while var-
ious strains of Clostridium spp., Ruminococcus spp. produce butyrate, propionate, and
succinate. Alcoholic metabolites (methanol, ethanol, formate, and isopropanol) are gener-
ated through fermentation-mediated production of methanol and ethylene by ammonia-
oxidizing bacteria such as Nitrosomonas europaea and Nitrosococcus oceani [80,81], while
acetone is produced mostly by Clostridium acetobutylicum, Clostridium beijerinckii, and
Clostridium saccharobutylicum. Ethylene glycol is produced by Corynebacterium glutamicum,
glycolate by Corynebacterium glutamicum, isopropanol by Clostridium acetobutylicum ATCC
824, and Escherichia coli, and ethanol by Lactobacillus fermentum. Several bacterial pathogens
(LPS) depend on polyamines for their survival and virulence within the host, including
Helicobacter pylori, Salmonella enterica subsp. enterica serovar Typhimurium, Shigella spp.,
Staphylococcus aureus, Streptococcus pneumonia, and Vibrio cholera [82]. Finally, the derived
metabolite ‘TMAO’ is a bioconverted derivative of TMA that is generated from choline,
betaine, and carnitine by the action of eight distinct bacterial strains, including Anaerococcus
hydrogenalis, Clostridium asparagiforme, Clostridium hathewayi, Clostridium sporogenes, Edward-
siella tarda, Escherichia fergusonii, Proteus penneri, and Providencia rettgeri [83]. Lactobacillus
iners produces a pore-forming toxin (Inerolysin) similar to the one produced by Gardenella
vaginalis, which is capable of lysing erythrocytes and increase the pH facilitate PTB (<4.5;
Figure 3, Table 2) [84].

Table 2. Metabolites generate by microbiota.

Microbiota Metabolites Chemical Formula Class References

Lactobacillus pentosus Formate CH2O2 SCFA [85]

Prevotella spp., Streptococcus spp. Bacteroides spp.,
Clostridium spp., Ruminococcus spp. Blautia

hydrogentrophica, Bifidobacterium longum SP 07/3,
Bifidobacterium bifidum MF 20/5), Lactobacillus
acidophilus CRL 1014, Akkermansia muciniphilia

Acetate CH3COOH SCFA [86–89]

Ruminococcus spp., Salmonella spp., Veillonella spp.,
Bacteroides spp., Clostridium spp. Dalister

succinatiphilus, Eubacterium halli, Megasphaera elsdenii,
Phascolarctobacterium succinatutens, Roseburia

inulinivorans, Akkermansia muciniphilia, Coprococcus
catus, Phascolarctobacterium succinatutens, Lactobacillus

rhamnosus GG (LGG), Lactobacillus gasseri PA 16/8,
Bifidobacterium longum SP 07/3, Bifidobacterium

bifidum MF 20/5), Lactobacillus salivarius spp. salcinius
JCM 1230, Lactobacillus agilis JCM 1048, Lactobacillus

acidophilus CRL 1014

Propionate CH3CH2COOH SCFA [87,88,90,91]
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Table 2. Cont.

Microbiota Metabolites Chemical Formula Class References

Anaerostipes spp., Clostridium spp., Ruminococcus spp.
Coprococcus catus, Roseburia inulinivorans, Roseburia
intestinalis, Coprococcus comes, Coprococcus eutactus,

Clostridium symbiosum, Eubacterium rectale,
Eubacterium hallii, Faecalibacterium prausnitzii,
Lactobacillus salivarius spp. salcinius JCM 1230,

Lactobacillus agilis JCM 1048, Lactobacillus acidophilus
CRL 1014

Butyrate CH3(CH2)2COOH SCFA [90,92–94]

Bifidobacterium spp., Lactobacillus spp. Bifidobacterium
longum SP 07/3, Bifidobacterium bifidum MF 20/5,

Lactobacillus rhamnosus GG (LGG), Lactobacillus gasseri
PA 16/8, Lactobacillus salivarius spp. salcinius JCM

1230, Lactobacillus agilis JCM 1048, Lactobacillus
acidophilus CRL 1014

Lactate CH3CH(OH)CO2H SCFA [88,95,96]

Prevotella copri, Ruminococcus flavefaciens,
Phascolarctobacterium succinatutens Succinate (CH2)2(CO2H)2 SCFA [97,98]

Nitrosomonas europaea and Nitrosococcus oceani Methanol CH3OH Alcohol [80,81]

Lactobacillus fermentum, Weissella confuse, and
Saccharomyces cerevisiae, Zymomonas mobilis, Ethanol CH3CH2OH Alcohol [99]

Clostridium acetobutylicum ATCC 824, Escherichia coli Isopropanol CH3CHOHCH3 Alcohol [100,101]

Corynebacterium glutamicum Glycolate C2H3O3 Alcohol [102]

Clostridium sp. strain G10 Acetone CH3COCH3 Alcohol [103]

Corynebacterium glutamicum Ethylene glycol (CH2OH)2 Alcohol [102]

Anaerococcus hydrogenalis, Clostridium asparagiforme,
Clostridium hathewayi, Clostridium sporogenes,

Edwardsiella tarda, Escherichia fergusonii, Proteus
penneri and Providencia rettgeri

TMAO (CH3)3NO Protein [104]

Helicobacter pylori, and Salmonella enterica LPS C175H317N5O101P6 Lipid [105]

Lactobacillus iners Inerolysin INY Lipid [84]

Bifidobacterium Folate C19H19N7O6 Vitamin [106]

Note: SCFA = Short chain fatty acid, TMAO = Trimethylamine N-oxide, LPS = Lipopolysaccharide.

The generation or availability of microbial metabolites is directly influenced by the
dysbiosis of the microbial population, which in turn is affected by environmental factors,
especially diet [36]. During pregnancy, microbiota-generated post-biotic metabolites con-
centration depends upon microbial richness and diversity in different bio-fluids (blood,
urine, cervicovaginal fluid, amniotic fluid), which are associated with PTB (Table 3). It has
been reported that the levels of polyamines that are associated with mothers’ dietary intake
are higher in the preterm women’s breast milk [107]. Alcoholic and acetone microbial
metabolites are harmful to the birth outcome. Exposure to a low level of methanol can
shorten the pregnancy and promote labour complications, while ethylene metabolite, i.e.,
ethylene oxide may increase the risk of spontaneous abortion, PTB, and post-term birth.
It has been found that the consumption of natural highly sugar-sweetened (e.g., fructose)
or artificially sweetened (e.g., aspartame) beverages may be likened to an increased risk
of PTB. Aspartame breaks down into methanol and other substances in the body, which
in turn can be converted into toxic metabolites such as formaldehyde and formate that
adversely affect PTB [23]. LPS is a microbiota endotoxin, which acts on TLRs and induces
PTB [108]. The high protein content of the amniotic fluid observed in the second-trimester
is also considered as one of the contributing factors for PTB [109] since the high level of
protein metabolites TMA/TMAO in the second-trimester are known to be associated with
PTB [23].
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Figure 3. Generation of microbiota metabolites. The blue color refers to carbohydrates, the red color
refers to proteins, the yellow color refers to lipids, and the green color refers to vitamins. Colors
indicate metabolites generated by their specific diatery molecules and microbiota. Colors from dark
to light color shed indicate derivatives of metabolites conversion. VD: Vitamin D; 25D: 25-hydroxy
vitamin D; 1,25(OH)2D3: 1α,25-dihydroxy vitamin D.
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Table 3. Microbiota metabolites generated in preterm birth.

Specimen * Metabolites References

Blood

Vitamin A metabolites (Retinyl palmitate,
At-Retinal, 13-cis-Retinoic acid),

Vitamin D metabolites (25-hydroxy (OH) and
1,25-dihydroxy (OH)2 vit D)

[110,111]

Vaginal fluid Ethanol, Methanol, Ethylene glycol, Ethylene
oxide, Isopropanol, TMAO [23]

Urine Tyrosine, TMA, TMAO, Acetate, Formate,
Phthalate, Choline [112–115]

Amniotic fluid High protein, carbohydrate, and fats [109]

Maternal feces Fatty acids and cholesterol hormone metabolites [116]

Breast milk Polyamines [107]

Fetal feces Acetate and lactate [117]
* Sample analyzed in PTB (1, 2, or 3 trimesters). Note: TMAO = Trimethylamine N-oxide. Significant difference
between term and preterm birth subjects.

4. Molecular Mechanism of Microbiota Metabolites in PTB

Although labour is considered an inflammatory process, accumulating evidence indi-
cates that the molecular mechanisms underlying PTB are multifactorial, involving many
biological pathways [11]. More specifically, the estrogen metabolism pathway, intrauterine
infection, extracellular matrix degradation, fetal stress, and fetal anomalies are the most
reported pathways associated with PTB [118]. However, the most common mechanism of
PTB is found to be linked to the inflammatory signaling pathways [12,118]. Several reports
indicate the activation of inflammatory reactions in the gestational tissues and secretion of
inflammatory cytokines as an immune response to the ascending infection of the genital
tract and pathogenic microbial composition [10,74]. More specifically, microbe-induced
inflammatory signals arising from urinary tract infection, sexually transmitted infections,
including trichomoniasis, or BV are the major factors contributing to PTB [119,120]. The
abundance of certain Lactobacilli in the vagina has been shown to trigger a distinct inflam-
matory cascade that largely contributes to CST-specific response. It was revealed that
the vaginal presence of Lactobacillus iners in CST III and CST IV were associated with a
higher baseline in pro-inflammatory factors including macrophage migration inhibitory
factor (MIF), IL1α, IL18, and TNF, which are known to induce the activation of inflamma-
tory responses [43,121]. In agreement, a previous clinical study performing longitudinal
analyses of 16S rRNA, metagenomic, metatranscriptomic, and nine cytokine profiles from
forty-five preterm and ninety term birth controls demonstrated higher vaginal levels of
eotaxin, IL1β, IL6, and macrophage inflammatory protein (MIP)1β in PTB compared to
TB samples [122]. The study also found a strong negative correlation between Lactobacillus
crispatus and several taxa associated with dysbiosis and PTB (for instance, Gardnerella. vagi-
nalis, Prevotella cluster 2, S. amnii, and, to a lesser extent, TM7-H1), as well as with vaginal
cytokines, further supporting the benefits of Lactobacillus crispatus on vaginal health [121].
Additionally, the examined cytokines, which were largely pro-inflammatory, showed a
loose correlation both with each other and with taxa associated with dysbiosis and PTB.
While the proinflammatory chemokine IP10/CXCL10 was positively correlated with Lacto-
bacillus iners. In contrast, in women with PTB, the proinflammatory cytokines and dysbiotic
taxa (for instance, Atopobium vaginae, Gardnerella vaginalis, and Megasphaera type 1) exhibited
a tighter cluster, signifying a stronger positive correlation [122]. Using 16S rRNA and
GC-MS/LC–MS a correlation between microbiota (Gardnerella vaginalis), and metabolites
(2-hydroxyisovalerate and γ-hydroxybutyrate) was observed and identified the biomarkers
for clinical BV [123]. Additionally, shortgun sequencing of vaginal microbiota is a powerful
molecular technique that reveals the community profiles, as well as functional potential
regarding PTB [124].
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In recent years, evidence on maternal interactions with microbial metabolites and
associated immune responses contributing to the adverse pregnancy outcomes, including
PTB, has emerged [125–127]. It has been found that dysbiosis of the vaginal, gut, or
placental microbiota and subsequent alterations to secondary metabolite biosynthesis
are vital for the onset and progression of infection, inflammation, and pathogenesis of
PTL [74,125,127,128]. A previous clinical study revealed significant alterations in lipid
metabolism in BV as reflected by the higher levels of 12-hydroxyeicosatetraenoic acid
(12-HETE), a signaling eicosanoid mediating inflammatory response pathways, and lower
levels of its precursor arachidonate, suggesting bioconversion of arachidonate to 12-HETE
by BV-associated microbes [52]. Chorioamnionitis, an inflammatory condition of the
fetal membranes (amnion and chorion) usually caused by bacterial infection, is known to
contribute to PTB. It has been found that chorioamnionitis membranes are often positive for
vaginal organisms, particularly those involved in BV [129]. Alterations in the biosynthesis
of secondary metabolites (e.g., phenylpropanoid, stilbenoid, diarylheptanoid, and gingerol)
and lipid (glycerolipid, glycerophospholipid, arachidonic acid, and unsaturated fatty acids)
metabolism accompanied by a higher abundance of oral commensal bacteria-Streptococcus
thermophilus and Fusobacterium sp. are seen in women with chorioamnionitis [130].

Microbial metabolites functionally play an important role in the proliferation, differ-
entiation, and development of epithelial cells, as well as in the maintenance of homeostasis
of the immune system [131]. Reports of untargeted metabolites of microbiota generated
in the vaginal fluid (formate, methanol, acetone, and TMAO), blood (retinyl palmitate,
At-Retinal, 13-cis-Retinoic acid), and targeted metabolites (folate) in the blood reveal a
significant association with inflammation, which facilitate PTB cascades [23,73,132]. PTB
has also been found to be associated with T-cell activation, which is involved in adaptive
immune response [133]. It has been found that glucose and glucose-derived metabolites
regulate T-cell activation and signaling through the modulation of particular pathways. For
instance, succinate and fumarate, two important metabolites in both the host and microbial
processes, are the potent allosteric inhibitors of the 2OG-dependent dioxygenases, which
are the members of histone demethylases [134]. Accumulating evidence indicates that epi-
genetic events, such as histone modifications including methylations are often associated
with T-cell activation, differentiation, and commitment [135]. Therefore, it is conceivable
that the production and consumption of these metabolites and their transport from the
mitochondria to the cytosol facilitating histone methylation dynamics in the nucleus may
contribute to the PTB [134].

As aforementioned, several lines of evidence indicate that BV is associated with
PTB [136]. BV is manifested by an alteration in the proportion of a particular bacterial
population affecting the profile of metabolites in vaginal fluid accompanied by increased
cell-shedding from the cervicovaginal epithelium [137]. More specifically, BV is represented
by a shift in the vaginal microbial population from the normally Lactobacillus-dominated
to a highly complex polymicrobial community characterized by the presence of anaerobic
bacteria, such as Gardnerella vaginalis, Atopobium spp., Prevotella spp., and high levels of
several biogenic amines (putrescine, cadaverine, and trimethylamine), short-chain fatty
acids (especially acetate and succinate), and low concentrations of certain amino acids
(tyrosine and glutamate) [138–140]. These findings are also in agreement with a previous
clinical study that used mass spectrometry to link specific metabolites with particular
bacteria detected in the human vagina by broad-range PCR [52]. The report demonstrated
dramatic differences in metabolite compositions and concentrations associated with BV
by addressing a global metabolomics approach. More specifically, a total of 279 named
biochemicals were detected; among them, the levels of 62% of metabolites in women
with BV were significantly different from those in women without BV. BV was particu-
larly associated with strong metabolic signatures across multiple pathways influencing
amino acid, carbohydrate, and lipid metabolism. Furthermore, unsupervised clustering of
metabolites separated subjects with BV from participants without BV. More specifically,
women with BV had metabolite profiles characterized by lower concentrations of amino
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acids and dipeptides, accompanied by higher levels of amino acid catabolites. Such events
indicate augmented utilization of amino acids and increased catabolism in BV, supporting
the notion that BV-associated bacteria may use amino acids as a source of carbon and
nitrogen. This is in contrast to lactobacilli, which are known to metabolize sugars, such as
glycogen. Furthermore, in agreement with previous reports described above, this study
also detected well-known amines putrescine, cadaverine, and tyramine in women with BV.
N-acetylputrescine (a degradation product of putrescine), cadaverine, and tyramine were
associated with elevated pH. Such BV-specific signatures were found to be associated with
the presence and concentrations of particular vaginal bacteria. The study also revealed that
BV-associated bacterial levels were positively correlated with succinate, while lactobacilli
were negatively associated [52].

In early pregnancy, permissible colonization by BV-associated pathogens induces
secretion of pro-inflammatory cytokines in vaginal epithelial cells, and BV doubles the
risk of PTB [51]. Studies have revealed that microbial compositions of the cervicovaginal
fluid (CVF) are associated with metabolic profiles in healthy pregnancy [30,38] Reduce
lactate is associated with BV, while succinate acts as an immunomodulatory molecule [141].
Lactobacillus abundance has a strong positive association with lactate and, to a lesser extent,
with levels of several amino acids, such as isoleucine, leucine, tryptophan, phenylalanine,
and aspartate [142]. Lactic acid generated by Lactobacillus species, L. crispatus in particular,
acidifies the vaginal environment and thereby strongly prevents the growth of potentially
harmful microorganisms [143]. In addition, vitamins play a significant role in the composi-
tion of various microbiota, including vitamin A metabolite (retinoic acid) as a key player
in embryogenesis, and vitamin D shows an immunomodulatory through TLRs pathway
and effect pregnancy [144,145]. Deficiency or efficiency of vitamins (A, or D, etc.), signifi-
cantly reflect the microbiota dysbiosis, which might directly affect the production of their
metabolites and immunomodulation [146,147]. During pregnancy, deficiency of vitamin
D (25-hydroxy (OH) and 1, 25-dihydroxy (OH) 2), associated with PTB, while increased
concentrations of vitamin A metabolites (retinyl palmitate, At-Retinal, 13-cis-Retinoic acid),
also contribute to PTB [75,111].

As mentioned before, TLRs (TLR2, TLR3, TLR4, TLR5, TLR6) play an important role
in the inflammatory activation processes by binding to the PAMPs or DAMPs [79]. These
molecules serve as upstream mediators of the synthesis of inflammatory cytokines and
chemokines in infections/inflammation-induced PTB [148]. The metabolites that belong to
PAMPs (endotoxins and exotoxins) activate PRRs such as TLRs and nod-like receptors that
are expressed by amnion epithelial cells, intermediate trophoblasts in the chorion, decidual
cells, macrophages, and neutrophils. LPS, an endotoxin and an essential component of the
outer membrane of Gram-negative bacteria, acts on TLRs, manifesting a strong response
to immune systems and an induction of PTB [108,149]. The PRRs induce the pleiotropic
NFκB signal transduction pathway which regulates the expression of proinflammatory
chemokines (e.g., IL8 and C-C motif ligand 2 (CCL2)), cytokines (e.g., IL1β, IL6, TNFα,
IFNγ), prostaglandins, and proteases, leading to activation of the common pathway of
parturition [118,125] (Figure 4).
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Figure 4. Molecular mechanism of microbiota-metabolites in preterm birth. Signaling of PAMPs and DAMPs derived from
gut microbiota and dietary molecules have activated TLRs in PTB. The blue and gray colors refer to carbohydrates, the
red color refers to proteins, the yellow color refers to lipids, and the green color refers to vitamins. From dark color to
light color indicate metabolites forms and their generated inflammatory markers. PAMPs: Ppathogen-associated molecular
patterns, DAMPs: Damage-associated molecular patterns; VD: Vitamin D; 25D: 25-hydroxy vitamin D; 1,25(OH)2D3:
1α,25-dihydroxy vitamin D. TMA: Trimethylamine, TMAO: Trimethylamine N-oxide; IL: Interleukin; TNF: Tumor necrosis
factor; MMP: Matrix metalloproteinase; PGs: Prostaglandins. TLRs: Toll like receptors. Dashed lines indicate several steps,
↓ decreased, ↑ increased level.

5. Microbiota Metabolites Therapeutic Insight in PTB

Specifically, a wide variety of drugs designed to inhibit the contraction of myometrial
smooth muscle cells are commonly used to prevent PTB. However, therapies are largely
ineffective in delaying the delivery and reducing neonatal mortality substantially [12]. As
an alternative, many studies have evaluated the potential of probiotics to restrain PTB
as they are known to displace and kill pathogens and modulate the immune response
by interfering with the inflammatory cascade that leads to PTL and PTB [150]. Although
live lactic acid bacteria (LAB) are commonly used as probiotics to treat a wide range of
diseases, they are shown to potentiate PTB [151]. However, novel trends in probiotics
supplementation are oriented towards the replacement of live microbes with non-viable
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microbial extracts and metabolic by-products, the PBM [76]. This new approach reduces
health risks associated with the consumption of live bacteria, especially concerning their
high immune-stimulating potential [22]. Recent data showed that Lactobacillus postbiotic
metabolites can modulate inflammatory pathways and have potential cytoprotective effects
against hepatotoxicity [152]. Healthy microbiota is associated with maintaining a low pH
(4–4.5) of vaginal fluid by lactate-produced Lactobacilli and maternal physiological factors.
Lactobacillus crispatus was shown to dominate, and they have been shown to inhibit the
growth of Escherichia coli and biofilm formation by Gardnerella vaginalis [56]. Antimicrobial
and immune-modulatory effects of lactic acid and SCFAs produced by vaginal microbiota
associated with microbiota eubiosis and BV [153]. LPS increases fetal membrane expression
of GPR43, which was significantly higher in women delivering preterm. GPR43-SCFA
interactions may represent novel pathways that regulate inflammatory processes involved
in labour. In addition, Lactobacilli produce hydrogen peroxide and secrete various factors
such as bacteriocins and anti-adhesive molecules that suppress the growth of Gardnerella
vaginalis and compete for anaerobic species [63]. Lactobacillus GR-1 and RC-14 with
metronidazole vaginal gel have been used to treat symptomatic BV [154]. It has been found
that the lactic acid generated by Lactobacillus species, Lactobacillus crispatus in particular,
acidifies the vaginal environment and thereby strongly prevents the growth of potentially
harmful microorganisms [155]

A healthy dietary pattern containing fibrous food consumption during pregnancy
decreases the risk of PTB by increasing beneficial SCFA metabolites and lowering pH, com-
pared with a diet consisting of the consumption of Western-style junk foods [156,157]. Pre-
biotic and probiotics consumption created a barrier effect and protected against pathogens
and metabolites production during the gestational period and birth control [158,159]. In
early-life exposure to SCFAs during a critical window, protection against pathogenic micro-
biota through immunopathologies was revealed [160]. SCFA consists of anti-inflammatory
role labour, though modulating inflammatory pathways in fetal membranes through GPR43
and GPR41 RAR-related orphan receptor gamma t–positive (RORγt +) [160]. Suppression
of inflammatory pathways by SCFA may be therapeutically beneficial for pregnant women
at risk of pathogen-induced PTB [161]. Ritodrine is a phenethylamine (amine) derivative
by certain bacteria (Lactobacillus, Clostridium, Pseudomonas, and the family Enterobacteri-
aceae) and acts as a potent antimicrobial against certain pathogenic strains of Escherichia
coli [162]. Phenethylamine derivatives isolated from the strain of Arenibacter nanhaiticus sp.
nov. NH36AT consist of antimicrobial activity against Staphylococcus aureus and Bacillus
subtilis, Escherichia coli [163]. Lactobacillus iners also produce a moderate level of lactic acid
and prevent BV [164]. These microbiota metabolites consist of therapeutic effects on PTB.
Consumption of controlled carbohydrate and protein-rich diets decreases the production of
toxic microbial metabolites and reduces the risk of PTB. Identification of microbiota metabo-
lites of pathogenic bacteria could be used as a non-invasive, quick, and cost-effective proxy
marker for the characterization of the prevailing microbial community and the attendant in-
flammatory mechanisms of inflammation-induced PTB, as well as uncover potential novel
therapies. More specifically, the replacement of live microbes with beneficial post-biotic
metabolites might account for a promising therapeutic option to reduce the risks of PTB.
Additionally, adequate amounts of vitamins (A, D) supplements reduced the chances of
their pathogenic metabolites production and risk of PTB [75,111,165].

6. Conclusions

The interaction of microbial metabolites in the gestational stage is involved in both
maternal and neonatal health, and pathogenic metabolites increase the risk of PTB. To
understand the molecular mechanisms underlying such events, there is a need to elucidate
the role of the microbiota and their metabolites in pregnant women. Comparative analyses
of omics markers in maternal and fetal bio-fluid (plasma, cervicovaginal, and amniotic
fluid) at different trimesters in a well-defined population could reveal the accurate cellular
and molecular mechanisms, predictive biomarkers, and biotics-mediated therapeutic ap-
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proaches for PTB. The advancement in omics research opens a new horizon to elucidate
the precise cellular and molecular events in the mechanistic pathway of PTB.
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