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Safety, Tolerability, and Pharmacokinetics of Single,
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Animal studies suggest that kappa opioid receptor antagonists (KORAn) potentially could treat a wide variety of addictive and depressive

disorders. We assessed the KORAn JDTic for safety, tolerability, and pharmacokinetics in a double-blind, placebo-controlled, randomized

trial evaluating single oral doses in healthy adult males. Predose and postdose safety assessments included orthostatic vital signs; 6-lead

continuous telemetry monitoring (approximately 16 h predose to 24 h postdose); 12-lead electrocardiograms (ECGs); clinical chemistry,

hematology, coagulation, and urinalysis; psychomotor functioning (using the Wayne Saccadic Fixator (WSF)); and adverse events. As a

potential indicator of JDTic effects on affect, the POMS Standard instrument was administered predose and daily postdose Days 1–6. At

1 mg, 2 of the 6 JDTic (and 0/6 placebo) subjects experienced a single, asymptomatic event of multiple beats of nonsustained ventricular

tachycardia (NSVT). Their events were temporally similar with respect to time postdose (and the postdose timing of an NSVT event in a

monkey). These events triggered a study stopping rule. No differences were observed between the placebo and JDTic subjects with

respect to clinical chemistry, hematology, coagulation, urinalysis, orthostatic vital signs, WSF, or 12-lead ECG parameters. Plasma JDTic

levels were below the lower limit of quantitation (0.1 nM) in all subjects. There were no significant differences in POMS scores between

the placebo and JDTic groups. Although the evidence is circumstantial, it suggests that NSVT is a potential JDTic toxicity in humans. Given

the therapeutic potential of KORAn, further investigation is needed to determine whether a significant JDTic human cardiac effect indeed

exists, and if so, whether it is specific to JDTic or represents a KORAn class effect.
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INTRODUCTION

The kappa opioid receptor (KOR) and its endogenous
ligand dynorphin are enriched in brain regions involved in
stress response, and potential clinical utility for KOR
antagonists (KORAn) has been shown in depression and
substance abuse (Carroll and Carlezon, 2013). JDTic is a
potent and selective KORAn (Thomas et al, 2003) that in
preclinical models shows antidepressant and anxiolytic
activity and reduces the signs of nicotine withdrawal, the
stress-induced reinstatement of cocaine-reinforced behav-
ior, and manifestations of alcohol abuse (Carroll and Dolle,
2014). KORAn are a drug class of considerable pharmaceu-
tical interest, and RTI International intended to develop
JDTic for several indications. This article reports the results
of the first-in-human safety study.

Kappa-active compounds also have cardiovascular effects;
however, results are mixed. In most rat studies, kappa

opioid receptor agonists (KORAg) are cardioprotective
(eg, Jaiswal et al, 2010; Zhou et al, 2001), reduce arrhyth-
mias (eg, Jin-Cheng et al, 2008; Lishmanov et al, 2007; Peart
et al, 2004; Xiu et al, 2013), have positive inotropic effects
(eg, Pyle et al., 2001), and are a component of ischemic
preconditioning (Yu et al, 1999; Zatta et al, 2008). Conse-
quently, KORAn could have negative effects. One study
reported that highly selective KORAn activate c-Jun
N-terminal kinase (JNK; Bruchas et al, 2007). In another
study, lipopolysaccharide activation of JNK caused disrup-
tion of fatty acid oxidation by a human ventricular-derived
cardiomyocyte cell line and caused cardiac dysfunction
in C57BL/6 mice (Drosatos et al, 2011). However, in
dogs (Hartlage et al, 2006) and swine (Coles et al, 2003),
KORAn are cardioprotective. Also, negative inotropic
(Ventura et al, 1992) and pro-arrhythmic (Bian et al,
1998) effects of U-50,488H and cardioprotective effects of
nor-BNI (Liu et al, 2005) are described in rats.

Biopsied human ventricular myocytes contain dynorphin
(Ationu et al, 1993), and surgical specimens of human
atrial tissue (Lendeckel et al, 2005) and pooled human
heart extracts (Peng et al, 2012) contain KOR mRNA.
In human hearts, there are KOR immunoreactive fine
nerve fibers, cardiomyocytes, and cells resembling intrinsic
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cardiac adrenergic cells (Sobanski et al, 2014), consistent
with rabbit cardiomyocyte immunoprecipitation studies
(Surendra et al, 2013). The KORAg U-50,488H has negative
inotropic effects on isolated human right atrial strips not
antagonized by the selective KORAn nor-BNI or the
broader-acting naloxone (Llobell and Laorden, 1995).
Similarly, U-50,488H has effects on transient outward
Kþ and ultrarapid delayed rectifier Kþ currents in human
pediatric atrial myocytes that are not antagonized by
nor-BNI or naloxone (Xiao et al, 2003). However, in
human subjects undergoing angioplasty, the acute ischemic
preconditioning effect of the first of a pair of balloon
occlusions was abolished by naloxone (Tomai et al, 1999).
Ventricular tachycardia is listed under ‘Precautions’ and
‘Adverse Reactions’ in the product insert for naloxone
(Hospira, 2007) and is described in case reports (eg, Hunter,
2005). In the first-in-human study of the KORAn LY2456302
(Lowe et al, 2014, p. 6), ‘a 5-beat ventricular tachycardia
occurring approximately 8 h after receiving a single 25-mg
dose’ was observed in 1 of the 21 subjects (5%) receiving the
drug, which does not activate JNK (Melief et al, 2011).

Nonclinical studies (data on file, RTI International,
Research Triangle Park, NC) identified potential JDTic
electrocardiogram (ECG) toxicities but at a human equiva-
lent dose (HED) of 46000 mg and plasma concentrations
4920 nM. Review of the first 24 h of ECG following a
200 mg/kg intragastric dose of JDTic (HED of 4500 mg)
revealed one of the six cynomolgus monkeys (17%) had
three ventricular premature complexes in a row (by
definition, nonsustained ventricular tachycardia (NSVT)),

at 11 h 51 min postdose (Figure 1a). NSVT in cynomolgus
monkeys can be an incidental finding; 16- to 24-h Holter
monitoring of a colony of 62 monkeys revealed ventricular
tachycardia (VT) in 8 (13%) (Macallum and Houston,
1993). Asymptomatic NSVT can be observed in humans
(cf. Min et al, 2010). NSVT prevalence in normal, healthy
males is described in four publications using qualitatively
different populations (eg, inclusion of females, significantly
higher median age), with estimates in the range of 2–3.2%
(Bjerregaard, 1982; Brodsky et al, 1977; Clarke et al, 1976;
Hinkle et al, 1969).

Following the human trial, a preliminary analysis of JDTic
effects in human iPSC cardiomyocyte cultures (approach
described by Guo et al, 2011) estimated that the concentra-
tion at which 420% of the spontaneous beats were
arrhythmic was between 2 and 20 nM (Supplementary
Figure S1). These concentrations are well below the IC50

values observed for hERG channel, human cardiac sodium
channel, and guinea pig L-type calcium channel (5000 nM)
(data on file, RTI).

SUBJECTS AND METHODS

Study Design

The JDTic-001 study was a single-center, double-blind,
placebo-controlled, randomized clinical trial to evaluate
the safety, tolerability, and pharmacokinetics (PK) of single,
escalating oral doses of JDTic (1, 3, and 10 mg) in healthy
male subjects, in three separate cohorts using a semiadap-

Figure 1 Nonsustained ventricular tachycardia (NSVT) in preclinical and clinical subjects. (a) 3-Beat NSVT in male cynomolgus monkey 11.8 h after
200 mg/kg intragastric JDTic (timescale not available). (b) 9-Beat NSVT in male human subject 13.5 h after 1 mg oral JDTic (the smallest grid boxes represent
0.04 s). (c) 7-Beat NSVT in male human subject 11.5 h after 1 mg oral JDTic (same timescale as in panel (b)).
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tive dosing plan (cohorts 1 and 2 comprised
four subjects and cohort 3 comprised eight subjects, in
each case randomized 3 : 1 JDTic:placebo). Prior to dosing a
subsequent cohort, all safety and PK data were reviewed
by a Safety Review Team (SRT) as guided by a Data and
Safety Monitoring Plan (DSMP). If adverse events (AEs)
considered to be at least possibly related to study medica-
tion occurred during the first two cohorts, an additional
four subjects were dosed at that same dose level, unless
otherwise determined by the SRT. A final amendment put in
place after the initial eight subjects were dosed stipulated
that if AEs requiring study termination occurred during an
eight-subject cohort, an additional four blinded subjects
would be dosed with placebo; consequently, this portion is
single blind.

DSMP stopping rules included typical criteria for serious
adverse events (SAEs) and adverse events of specific interest
(AESI) (eg, terminating the study if X25% of a dosing
cohort experienced a possibly or definitely drug-related
AESI, such as NSVT), as well as limitations on JDTic plasma
maximum concentration (Cmax) and area under the curve
from zero to infinity (AUC0–N). The starting dose in the
trial, 1 mg, was predicted to result in a maximum plasma
concentration of 0.04 nM (below the lower level of quanti-
tation, 0.1 nM); this was reduced from a proposed 3 mg
starting dose, in response to a Food and Drug Administra-
tion clinical hold. Also in response, protocol ECG exclusion
criteria were made even more restrictive than normal
(eg, PR interval 4180 ms, QTcB interval 4420 ms), and
telemetry was expanded to begin the night before dosing
and to continue for 24 h postdose.

Potential subjects presented to the clinic within 14 days of
their intended dose date to undergo a battery of screening
assessments. Eligible subjects came to the clinic the day
before dosing for eligibility reconfirmation. Subjects
remained in the clinic that night and for 6 days postdose
for safety assessments and timed blood and urine collec-
tions. If there were no ongoing safety issues on Day 6,
subjects were sent home from the clinic and they returned
14 days later for a follow-up safety assessment. Subjects
were then discharged from the study.

This study was approved by the clinical site’s Institutional
Review Board and conducted in accordance with the
International Conference on Harmonisation E6 Consoli-
dated Guidance for Good Clinical Practice (1996), the US
Code of Federal Regulations 21 parts 50 and 56, and the
ethical principles of the Declaration of Helsinki (as
amended in 1996). It was performed at Celerion in Tempe,
AZ, and is reported at ClinicalTrials.gov (NCT01431586).

Participants

Inclusion criteria. Subjects were healthy males, 18–50 years,
X50 kg in weight, body mass index (BMI) 18–30 kg/m2,
with normal vital signs (heart rate, systolic and diastolic
blood pressure, respiratory rate, oral temperature), a negative
prestudy drug screen (alcohol, cannabinoids, amphetamines,
benzodiazepines, cocaine, opioids, phencyclidine, barbiturates,
cotinine), no history of use of illicit drugs or other substances
of abuse within 12 months of the screening visit, no tobacco
use for X90 days prior to screening, and no history of
cardiovascular disease. Routine 12-lead ECG at screening

(a 10-s single-lead rhythm strip and approximately 2.5-s
samples of each lead) had to be without clinically significant
abnormalities, as did laboratory analyses of hematology
(hemoglobin, hematocrit, reticulocyte count, red blood cells,
red blood cell indices, white blood cells, white blood cell
differential), chemistry (aspartate aminotransferase, alanine
aminotransferase, gamma glutamyl transferase, serum tropo-
nin I, blood urea nitrogen, creatinine, total bilirubin, alkaline
phosphatase, creatine kinase, lactate dehydrogenase, uric acid,
total protein, globulin, cholesterol, triglycerides, sodium,
potassium, calcium, chloride, phosphorus), coagulation
(prothrombin time, activated partial thromboplastin time),
urinalysis (specific gravity, pH, bilirubin, nitrite, urobilinogen,
glucose, protein, blood, leukocytes, ketones, microscopic
examination), and serology (HIV, hepatitis B surface antigen,
hepatitis C antibodies).

Exclusion criteria. Subjects were excluded for a history or
evidence of hepatic, gastrointestinal, renal, respiratory,
ophthalmic, cardiovascular, hematological, endocrine/
metabolic, neurological, immunological, oncological, or
psychiatric illness or significant abnormalities, or any other
conditions or surgical interventions known to interfere with
the absorption, distribution, metabolism, or excretion of
drugs. Subjects were excluded for any active infection.
Consumption of alcohol within 48 h of screening or clinic
admission; of caffeine-containing beverages within 72 h of
clinic admission; or of grapefruit or grapefruit-, poppy
seed-, or quinine-containing substances within 14 days of
clinic admission were exclusionary. Subjects were excluded
for any clinically significant ECG finding prior to dosing
(including bundle branch blocks, second- or third-degree
heart block, arrhythmia other than respiratory sinus
arrhythmia, or multiple premature atrial contractions or
premature ventricular contractions but with the exception
of nonclinically significant unifocal premature ventricular
contractions), presence or history of early cardiac repolar-
ization, or a history or family history of QT prolongation or
arrhythmia. ECG parameters outside the following ranges
were also exclusionary: heart rate 55–100, PR interval
120–180 ms, QRS duration 70–100 ms, QTcB interval p420 ms.

Safety and Tolerability End Points

Observational. Orthostatic vital signs were obtained
predose and at 1, 2, 4, 6, 8, 12, 24, 48, 72, 96, and 120 h
postdose, as well as at 14 days postdose follow-up. Body
weight was measured on admission to the clinic, at 48 and
120 h postdose, and at 14 days postdose follow-up. Physical
examinations of all major organ systems (including neuro-
logical examination) were performed at admission, at 120 h
postdose, and at 14 days postdose follow-up. AEs were
monitored from dosing until 14 days postdose or resolution,
whichever was longer. Psychomotor function was evaluated
with the Wayne Saccadic Fixator (WSF; Wayne Engineering,
Skokie, IL) on admission and at 120 h postdose.

Electrocardiogram. 6-Lead ECG telemetry was monitored
from admission (approximately 16 h predose) until 24 h
postdose. Supine, standard 12-lead ECGs (a 10-s single-lead
rhythm strip and approximately 2.5-s tracings of each lead)
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were obtained predose; at 1, 2, 4, 6, 8, 12, 24, 48, 72, 96, and
120 h postdose; and at 14 days postdose follow-up.

Clinical laboratory. Urine for urinalysis and fasted blood
samples for chemistry, hematology, and coagulation were
obtained on admission, at 48 and 120 h postdose, and at
14 days postdose follow-up.

Pharmacokinetics

Blood samples were obtained at 0.25, 0.5, 1, 1.5, 2, 4, 6, 8, 12,
16, 24, 30, 36, 48, 60, 72, 96, and 120 h postdose. Cumulative
urine specimens were collected over the intervals 0–6, 6–12,
12–24, 24–36, 36–48, 48–72, 72–96, and 96–120 h postdose.

Potential Surrogate Marker of Activity

As a potential indicator of JDTic effects on subject affect,
the Profile of Mood States Standard instrument (POMS;
Multi-Health Systems, North Tonawanda, NY) was admin-
istered (in the ‘Right Now’ recall period) on admission to
the clinic and on Days 1–6 postdose.

RESULTS

Study Population

The first subject enrolled on 8 August 2011, and the final
subject completed the trial on 12 December 2011. The
demographic profile of the study population is summarized
in Table 1. All subjects in the study were male. Six (50%) of
the study subjects were of Hispanic ethnicity. The majority
(9 of the 12 subjects) were white, 2 were black/African
American, and 1 was Asian. Mean age was 31 years (range
19–44 years) and mean BMI was 25 kg/m2 (range 22–28 kg/m2).

The demographic profiles of those subjects who received
JDTic 1 mg and those subjects who received placebo were
similar, with the exception of race. All 6 subjects who
received placebo were white vs 3 (50%) of the 6 subjects who
received JDTic 1 mg.

Safety and Tolerability

There were no deaths and no SAEs reported during the
study, and no AE led to an individual subject discontinuing
the study prematurely.

Overall, there were 13 reported AEs: 9 AEs in the subjects
who received JDTic 1 mg and 4 AEs in the subjects who
received placebo. Four unique subjects exposed to 1 mg
JDTic (67%) and 4 unique subjects who received placebo
(67%) experienced at least one AE (Table 2). Six AEs were
considered to be possibly related to the study medication,
and four AEs were in three subjects who received JDTic:
VT (9 beats, 13.5 h postdose; Figure 1b), bradycardia and
VT (7 beats, 11.5 h postdose; Figure 1c), and postural
dizziness. The arrhythmias were asymptomatic and were
detected the following mornings via review of the entire
telemetry tracings by a cardiologist.

As specified in the JDTic-001 protocol and DSMP, the two
instances of NSVT in two subjects after administration of
JDTic (a 33% incidence in subjects receiving JDTic)
triggered a study termination rule. Both of these subjects
subsequently underwent cardiac evaluations (21–41 days
postdose), including echocardiograms, exercise myocardial
perfusion studies, and treadmill stress tests. They remained
asymptomatic, and no abnormalities were revealed. Proto-
col Amendment 3 (which allowed for the dosing of four
additional subjects with placebo) was drafted to provide
additional control subjects to better ascertain a relationship
between the occurrence of NSVT and JDTic administration.
None of the four additional subjects dosed under Amend-
ment 3 experienced NSVT during the study.

Other safety results were unremarkable: clinical chem-
istry, hematology, coagulation, urinalysis, orthostatic vital
signs, 12-lead ECGs (including heart rate (Figure 2a), PR
interval, QRS duration, and QTcB interval (Figure 2b)), and
psychomotor functioning. As these figures show, the mean
HR and QTcB duration were consistently slower and shorter
for JDTic than placebo subjects at all predose and postdose
time points, although the differences were not statistically
significant (p40.05).

Pharmacokinetics

JDTic was not detected in the plasma of any subject (lower
limit of quantitation 0.1 nM).

Potential Surrogate Marker of Activity

There were no significant differences in POMS scores
between the placebo and JDTic groups (Supplementary
Table S1).

DISCUSSION

In this first-in-human clinical trial of the KORAn JDTic, six
subjects received the starting oral dose of 1 mg and six

Table 1 Summary of Subject Demographics

Subject demographics Placebo
(n¼ 6)

1 mg JDTic
(n¼ 6)

Overall
(n¼ 12)

Race, n (%)

Asian 0 1 (17%) 1 (8%)

Black or African American 0 2 (33%) 2 (17%)

White 6 (100%) 3 (50%) 9 (75%)

Ethnicity, n (%)

Hispanic or Latino 4 (67%) 2 (33%) 6 (50%)

Not Hispanic or Latino 2 (33%) 4 (67%) 6 (50%)

Age in years, mean (SD) 27 (6) 35 (7) 31 (8)

Range 19–34 22–44 19–44

Height in cm, mean (SD) 167 (3) 174 (5) 170 (6)

Range 161–171 169–184 161–184

Weight in kg, mean (SD) 71 (8) 76 (9) 74 (9)

Range 62–83 61–89 61–89

BMI in kg/m2, mean (SD) 26 (2) 25 (2) 25 (2)

Range 23–28 22–27 22–28

Abbreviation: BMI, body mass index.
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subjects received placebo. JDTic was undetectable in their
plasma (LLOQ 0.1 nM). There were no deaths and no SAEs.
Subjective AEs possibly related to study drug in placebo

subjects were postural dizziness (one instance) and
somnolence (one instance). In JDTic subjects, AEs com-
prised postural dizziness (one instance). There were no
significant differences in clinical laboratory parameters
(chemistry, hematology, coagulation, urinalysis), 12-lead
ECG parameters, or WSF measures of psychomotor func-
tion. POMS scores did not differ between placebo and JDTic
subjects. However, two JDTic subjects (33%) had asympto-
matic single instances of NSVT on telemetry, triggering a
study stopping rule.

We were surprised by the surfacing of a potential NSVT
safety signal at the initial 1 mg dose. Applying the published
2–3.2% prevalence range of NSVT to the study population,
the project statistician calculated the probability range of
having exactly two otherwise healthy people with NSVT in a
random sample of six people to be 0.006–0.013. In terms of
study site experience with NSVT prevalence during the
previous 9 years, it is estimated that approximately one in
3000 subjects showed an episode of NSVT. This is based on
numerous studies which had cardiac rhythm monitoring
either as a function of safety telemetry or as a function of
thorough QT analysis. However, the full ECG/telemetry/
Holter record was not reviewed by a cardiologist in all of
these studies. Nevertheless, these site-specific data imply a
very low prevalence.

Although the evidence is circumstantial, based on the
temporal similarity of the 2 individual occurrences of
NSVT out of 6 subjects (33%) who received JDTic, the
statistical unlikelihood that the 2 observed occurrences of
NSVT were preexisting conditions in the affected subjects,
the temporal similarity to the episode of NSVT observed in
1 of the 6 (17%) monitored monkeys dosed with JDTic,
and the existence of a possible causal mechanism, NSVT
could be a JDTic toxicity in humans. Certainly, there is no
longer any commercial interest in the clinical development
of JDTic.

Given the preclinical and clinical data presented in the
Introduction, it is plausible that JDTic could have a direct
cardiac interaction in human beings, although perhaps not
through the classic KOR, which itself has myriad potential

Table 2 Adverse Events

Subject Adverse event Clinical principal investigator’s assessment of causality Treatment

11102 Ventricular tachycardia (9 beats) Possibly related 1 mg JDTic

Presyncope (unrelated to ventricular tachycardia) Definitely not related

11103 Dizziness postural Possibly related Placebo

12101 Bradycardia Possibly related 1 mg JDTic

Ventricular tachycardia (7 beats) Possibly related

12103 Somnolence Possibly related Placebo

12104 Vessel puncture site pain Definitely not related 1 mg JDTic

Vessel puncture site pain Definitely not related

Dizziness postural Possibly related

Dermatitis contact Definitely not related

12105 Excoriation Definitely not related 1 mg JDTic

13101 Dermatitis contact Definitely not related Placebo

13103 Headache Definitely not related Placebo

Figure 2 Subject electrocardiogram (ECG) heart rate and QTcB interval
over time. (a) ECG heart rate. (b) QTcB interval.
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cellular interactions (Bruchas and Chavkin, 2010). Although
plasma JDTic levels were unquantifiable (o0.1 nM) in this
human study, there is preclinical data to suggest that 1 mg
could be an efficacious human dose for KOR antagonism.
The intragastric JDTic AD50 for inhibition of the effects of
exogenous enadoline-induced behaviors (15 min postdose)
in cynomolgus monkeys was 0.025 mg/kg, which would
equate to an HED of 0.5 mg (with a predicted human Cmax of
0.02 nM) (data on file, RTI). Once again, these concentra-
tions are much less than the lowest observed to cause
prolongation of QTc in cynomolgus monkeys (4920 nM).

JDTic activates JNK, which can in turn cause disruption
of fatty acid oxidation in a human ventricular-derived
cardiomyocyte cell line and cardiac dysfunction in mice, a
potential mechanism through which JDTic could cause
cardiac dysfunction in humans. However, LY2456302 does
not activate JNK (Melief et al, 2011); nevertheless, a single
episode of NSVT was observed among 21 subjects (5%) who
received at least one dose of LY2456302 in the first-in-
human study (Lowe et al, 2014). The ‘5-beat ventricular
tachycardia (occurred) approximately 8 h after a single 25-
mg dose’ in one of the eight subjects receiving that dose, but
NSVT was not observed in any of the seven subjects
receiving a 60-mg dose. The numbers are few, but here
NSVT is not dose-related, so again the single episode might
be unrelated to the KORAn activity of LY2456302. Still,
given its occurrence and the NSVT that have been
associated with naloxone, there remains the possibility that
a human cardiac response to these agents could be
associated more directly with the KOR itself and be a class
effect of KORAn rather than specific toxicities associated
with the molecules. It simply is impossible to know from the
currently available data.

Given the therapeutic potential of the KORAn agents, it is
imperative that further preclinical studies using human
materials (eg, in vitro experiments with human cardiomyo-
cytes) be conducted to clarify whether there is in fact a
human cardiac effect of JDTic or its metabolites; and, if so,
the mechanism by which it occurs (ie, class effect or specific
JDTic-related toxicity). Depending on these in vitro data,
further human trials of JDTic might be considered.
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