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Simple Summary: Cellular identity and function depends on the correct and specific expression of
genetic information. Different epigenetic mechanisms including DNA methylation, modifications of
histones, and expression of non-coding RNAs control chromatin structure and DNA accessibility to
the transcriptional machinery. Alterations of these mechanisms are associated with the development
of multiple diseases. The incidence of chronic liver diseases, including hepatocellular carcinoma
(HCC), is increasing worldwide. However, the management of those patients is poor due to the
late diagnosis of the disease and the absence of effective therapies. Here, we review the epigenetic
alterations described in the process of hepatocarcinogenesis, and we discuss the applicability of
epigenetic markers as therapeutic targets and liquid biopsy biomarkers for diagnosis.

Abstract: Research in the last decades has demonstrated the relevance of epigenetics in controlling
gene expression to maintain cell homeostasis, and the important role played by epigenome alterations
in disease development. Moreover, the reversibility of epigenetic marks can be harnessed as a
therapeutic strategy, and epigenetic marks can be used as diagnosis biomarkers. Epigenetic alterations
in DNA methylation, histone post-translational modifications (PTMs), and non-coding RNA (ncRNA)
expression have been associated with the process of hepatocarcinogenesis. Here, we summarize
epigenetic alterations involved in the pathogenesis of chronic liver disease (CLD), particularly
focusing on DNA methylation. We also discuss their utility as epigenetic biomarkers in liquid biopsy
for the diagnosis and prognosis of hepatocellular carcinoma (HCC). Finally, we discuss the potential
of epigenetic therapeutic strategies for HCC treatment.

Keywords: precision medicine; DNA methylation; epidrugs; liquid biopsy; hepatocellular carcinoma;
liver fibrosis

1. Introduction

Although all the cells in a multicellular organism share a common genome, they dis-
play a specific phenotype. This heritable but dynamic cell identity depends on chromatin
states established by epigenetic mechanisms [1]. Cell type–specific epigenomic landscapes
or epigenomes are responsive to genetic, environmental, and metabolic cues and are associ-
ated with specific active and repressive chromatin regions that dictate DNA accessibility to
the transcriptional machinery controlling gene expression and cellular states [2]. Epigenetic
regulation of chromatin includes DNA methylation, nucleosome histone variants, post-
translational histone modifications, and non-coding RNAs (ncRNAs) [1]. This epigenetic
information is maintained through the coordinated activity of a plethora of epigenetic fac-
tors that modulate nucleosome structure and positioning (remodelers), establish epigenetic
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marks in DNA and histones (writers), recognize and interpret the marks (readers), and
remove these marks (erasers) [3–6].

The epigenetic marks include the methylation of cytosine bases within CpG dinu-
cleotides (5mC) in the DNA by DNA methyltransferases (DNMTs). The 5mC mark in
CpG-rich promoter regions is associated with gene repression, and it is acquired in cancer
cells to inhibit the expression of tumor suppressor genes [7]. On the contrary, the 5mC mark
within gene bodies is linked to gene activation [8] and oncogene induction in tumors [9].
The presence of 5-hydroxymethylcytosine (5hmC) in DNA has been known since 1972 [10].
Oxidation of 5mC to 5hmC by the dioxygenase ten-eleven-translocation (TET) family of
enzymes is now considered a stable epigenetic mark with regulatory functions in the
genome that is significantly reduced in cancer [11–14].

DNA is wrapped around eight core histones (two copies of H2A, H2B, H3, and H4)
forming the nucleosome, the basic unit of the chromatin. Histone-modifying enzymes
add or remove covalent post-translational modifications (PTMs) including methylation,
acetylation, phosphorylation, SUMOylation, ubiquitination, or ADP-ribosylation to the
long N-terminal tail of histones, affecting chromatin packaging. For instance, histone
acetylation as a result of positive lysine charge neutralization facilitates the opening of the
chromatin. However, the effect of histone methylation depends on the targeted residues so
that methylated H3K4/36/79 are considered active marks and methylated H3K9/27 and
H4K20 repressive marks [15,16]. In general, chromatin conformation is changed through the
specific binding of protein complexes to these PTMs, allowing the activation or repression
of gene expression [17]. The epigenetic regulation of transcription also involves the activity
of ncRNAs including microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), short-
interfering RNAs (siRNAs), enhancer RNAs, and long non-coding RNAs (lncRNAs) acting
through chromatin and post-transcriptional regulation (miRNAs) [1].

Chromatin stability is required to maintain cellular homeostasis; therefore, alterna-
tive chromatin states and epigenetic reprogramming are associated with a wide range
of common diseases [1,2,18]. As mentioned above, the establishment of the correspond-
ing epigenetic modifications of DNA and chromatin depends on the correct expression
and function of a plethora of epigenetic factors, but their activity also depends on the
availability of multiple metabolites involved in the different enzymatic reactions [19].
Consequently, metabolic alterations can induce global perturbations of the epigenome as
well as alterations of specific loci [1,20]. Moreover, mutations affecting metabolic genes
and the genes encoding remodelers, writers, readers, and erasers will contribute to the
rewiring of the epigenomic landscape [1,20,21]. Reciprocally, mutation rates can be affected
by DNA methylation [22] and nucleosome positioning [23]. Altogether, accumulating data
demonstrate that cellular health requires an equilibrium between environmental, genetic,
and epigenetic factors. Moreover, as epigenetic changes are reversible, reverting epigenetic
and transcriptional reprogramming represents a therapeutic opportunity.

Here, we will review recent discoveries regarding the epigenetic mechanisms involved
in the pathogenesis of chronic liver disease (CLD) and the utility of epigenetic biomarkers
in liquid biopsy for the diagnosis and prognosis of hepatocellular carcinoma (HCC). In
both cases we will focus more specifically on DNA methylation. Finally, we will review the
potential of epigenetic therapeutic strategies for HCC.

2. Epigenetic Reprogramming in Liver Disease: Changes in Epigenetic Marks
and Modifiers

The burden of CLDs represents a major public health problem worldwide [24,25].
Etiological factors are well known and include hepatitis B virus (HBV), hepatitis C virus
(HCV), long-lasting alcohol abuse, and obesity, insulin resistance, or diabetes leading to
non-alcoholic fatty liver disease (NAFLD) [26,27]. The prognosis and management of a
patient with CLD largely depends on the stage at which the disease is diagnosed, i.e.,
simple steatosis, hepatitis, fibrosis, cirrhosis, and cancer, and the progression through these
stages is highly variable among individuals. Importantly, early stages of the disease could
be reversible; however, therapeutic options are limited for cirrhotic patients, in which
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most cases of HCC occur [28]. The prognosis of HCC patients remains poor, and their
survival largely depends on early diagnosis. However, almost half of HCC patients are
diagnosed at an advanced stage [27]. In this scenario it is urgent to identify biomarkers of
CLD progression as well as effective therapeutic targets.

In this sense, great efforts have been made to better understand the molecular and
cellular mechanisms implicated in the progression of CLD. Over the last decade, next-
generation sequencing technologies have been used to identify the most frequent mutations,
DNA copy variations, and changes in gene expression that contribute to hepatocarcinogen-
esis [29–35].

Together with the genetic landscape of mutations, multiple works have linked dif-
ferent changes in gene expression involved in the pathogenesis and progression of CLD
with the rewiring of the epigenomic landscape [5,6,36] (Figure 1). Furthermore, multiple
observations demonstrate the existence of an interplay between genetic and epigenetic
alterations in liver cancer. On one hand, epigenetic alterations are influenced by genetic
changes such as mutations in epigenetic modifiers [37], as we will discuss below. On the
other hand, and reciprocally, there is an uneven distribution of somatic mutations that
depend on the epigenetic context [38]. This would imply that cancer genome architecture
depends on both precancerous and somatic epigenetic features.
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Figure 1. Epigenetic mechanisms control open and closed chromatin states, contributing to regulate 
gene expression. This drawing represents epigenetic changes described in the progression of chronic 
liver disease (see main text) such as DNA hypermethylation of tumor suppressor genes and histone 
acetylation of oncogenes. These changes are associated with the activity of different epigenetic mod-
ifiers, including histone methyltransferases (HMTs), histone demethylases (HDMs), histone acetyl-
transferases (HATs), histone deacetylases (HDACs), DNA methyltransferases (DNMTs), the ten-
eleven-translocation (TETs) family of methyl-DNA dioxygenases, and the readers bromodomain-
containing protein 4 (BRD4) and methyl-CpG-binding protein 2 (MeCP2). These enzymes and pro-
tein adaptors add, remove, or read the epigenetic marks representing new therapeutic targets for a 
variety of inhibitors known as epidrugs. 

The hepatic DNA methylome has been extensively studied in different cohorts of 
patients with liver disease (Table 1). A marked depletion of 5hmC genomic content has 
been described in HCC being highly correlated with tumor stage [50]. Both genome-wide 
hypomethylation and region-specific hypermethylation are present not only in HCC but 
also in preneoplastic conditions [51–53]. Moreover, CpG methylation signatures have 
been associated with the progression of HVB-related liver disease [54], NAFLD fibrosis 
[55,56] and cirrhosis [57], and the poor survival of HCC patients [58]. DNA methylation 
changes repressing hepatic HNF4A-dependent gene expression have been associated 
with the loss of hepatocellular functions observed in patients with alcoholic hepatitis [59]. 
In agreement with this, together with the epigenetic silencing of tumor suppressor genes 
such as CDKN2A, HCC tissues display specific hypermethylation in genes related to he-
patic differentiation, stem cell maintenance, and targets of the Polycomb repressive com-
plex [29].  

Genome-wide DNA methylation analyses comparing alcohol versus viral (HCV and 
HBV) [52] and NASH versus viral (HCV and HBV) [53] precancerous and HCC tissues 
revealed the existence of common as well as etiology-specific hepatocarcinogenesis 
methylome signatures. These studies demonstrate the impact of environmental factors 
such as viruses and diet in the pathological reshaping of chromatin, and thus in the regu-
lation of gene expression. In this context, a recent study demonstrated the specific effect 
of dietary fructose intake in the modulation of multiple epigenetic mechanisms involved 
in the disruption of metabolic pathways underlying the pathogenesis of NAFLD [60]. Im-
portantly, this epigenetic reprogramming can also occur in utero, and experimental evi-
dence shows that long-term Western-style diet consumption affects offspring susceptibil-
ity to liver disease [61]. Given the reversibility of the epigenetic marks, maternal dietary 

Figure 1. Epigenetic mechanisms control open and closed chromatin states, contributing to regulate
gene expression. This drawing represents epigenetic changes described in the progression of chronic
liver disease (see main text) such as DNA hypermethylation of tumor suppressor genes and histone
acetylation of oncogenes. These changes are associated with the activity of different epigenetic
modifiers, including histone methyltransferases (HMTs), histone demethylases (HDMs), histone
acetyltransferases (HATs), histone deacetylases (HDACs), DNA methyltransferases (DNMTs), the
ten-eleven-translocation (TETs) family of methyl-DNA dioxygenases, and the readers bromodomain-
containing protein 4 (BRD4) and methyl-CpG-binding protein 2 (MeCP2). These enzymes and protein
adaptors add, remove, or read the epigenetic marks representing new therapeutic targets for a variety
of inhibitors known as epidrugs.
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The role of ncRNAs, more specifically miRNAs and lncRNAs, in hepatocarcinogenesis
has been extensively reviewed elsewhere [39–44]. Regarding histone epigenetic marks,
changes have been reported when comparing diseased with normal liver tissue, differ-
ent stages of disease progression, or in correlation with disease aggressiveness [45–48].
For instance, the trimethylation of lysine 27 on histone H3 (H3K27me3), a transcription-
suppressive histone mark incorporated by enhancer of zeste homolog 2 (EZH2), was
detected by immunohistochemistry in HCC tissue samples in correlation with vascular in-
vasion and predicting shorter survival time [45]. Interestingly, H3K27me3-enriched regions
include a set of genes coding for transcription factors crucial for normal liver homeostasis,
including NR1H4, HNF1A, HNF4A, and KLF9 [49]. More recently, increased and decreased
levels of histone 3 at lysine 27 acetylation (H3K27ac), an activation of transcription mark,
have been identified at overexpressed oncogenes and downregulated tumor suppressor
genes, respectively, in livers from both non-alcoholic steatohepatitis (NASH) and HCV
advanced fibrotic patients. Interestingly, these epigenetic and transcriptional changes were
associated with the risk of HCC development [48] (Figure 1) (Table 1).

The hepatic DNA methylome has been extensively studied in different cohorts of
patients with liver disease (Table 1). A marked depletion of 5hmC genomic content has
been described in HCC being highly correlated with tumor stage [50]. Both genome-wide
hypomethylation and region-specific hypermethylation are present not only in HCC but
also in preneoplastic conditions [51–53]. Moreover, CpG methylation signatures have been
associated with the progression of HVB-related liver disease [54], NAFLD fibrosis [55,56]
and cirrhosis [57], and the poor survival of HCC patients [58]. DNA methylation changes
repressing hepatic HNF4A-dependent gene expression have been associated with the loss
of hepatocellular functions observed in patients with alcoholic hepatitis [59]. In agree-
ment with this, together with the epigenetic silencing of tumor suppressor genes such
as CDKN2A, HCC tissues display specific hypermethylation in genes related to hepatic
differentiation, stem cell maintenance, and targets of the Polycomb repressive complex [29].

Genome-wide DNA methylation analyses comparing alcohol versus viral (HCV and
HBV) [52] and NASH versus viral (HCV and HBV) [53] precancerous and HCC tissues
revealed the existence of common as well as etiology-specific hepatocarcinogenesis methy-
lome signatures. These studies demonstrate the impact of environmental factors such as
viruses and diet in the pathological reshaping of chromatin, and thus in the regulation of
gene expression. In this context, a recent study demonstrated the specific effect of dietary
fructose intake in the modulation of multiple epigenetic mechanisms involved in the dis-
ruption of metabolic pathways underlying the pathogenesis of NAFLD [60]. Importantly,
this epigenetic reprogramming can also occur in utero, and experimental evidence shows
that long-term Western-style diet consumption affects offspring susceptibility to liver dis-
ease [61]. Given the reversibility of the epigenetic marks, maternal dietary interventions
before pregnancy could represent an important preventive strategy to reduce obesity and
NAFLD development in children [62]. However, it should be noted that diet-induced
methylation changes in the liver can affect the expression of genes implicated in de novo
and maintenance DNA methylation, such as DNMTs and TETs, and that these changes
persist even after reverting to a normal chow diet [63]. Animal studies have also suggested
the existence of transgenerational epigenetic inheritance in the development of liver dis-
ease, more specifically of liver fibrosis [64,65], where DNA methylation, histone PTMs, and
ncRNA are major determinants [36]. At any rate, these aspects need validation in humans.

Overall, the accessibility of DNA to the transcriptional machinery to activate or re-
press gene expression depends on the correct combination of all the epigenetic marks
previously mentioned. Moreover, an important crosstalk between all the different epige-
netic mechanisms exists [66–68]. For instance, the dysregulated expression of lncRNAs
and miRNAs has been associated with changes in DNA methylation both in HCC and
liver fibrosis, and on the contrary DNA methylation and histone PTMs depend on the
activity of lncRNAs and miRNAs [39,69]. In fact, many of the altered epigenetic footprints
identified in the damaged liver and described above are associated with changes in the
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expression of the corresponding epigenetic modifiers [70]. This has been demonstrated
for key epigenetic writers and erasers such as EZH2 [71], DNMT1 and DNMT3 [72,73],
the euchromatic histone-lysine methyltransferase 2 (EHMT2 or G9a) [73], TETs [13], and
histone deacetylases (HDACs) [74]. Likewise, changes in the expression of epigenetic read-
ers, such as the bromodomain-containing protein 4 (BRD4) [75] and methyl-CpG–binding
protein 2 (MeCP2) [76], can potentiate the effect of the corresponding altered epigenetic
marks. Again, and as an evidence of the genetic–epigenetic interplay, many of the changes
in the expression or activity of the epigenetic modifiers observed in HCC can be associated
with the presence of genetic mutations in those genes [37,77–79]. In fact, mutations in
the mixed lineage leukemia (MLL) histone methyltransferase family and the adenosine
triphosphate (ATP)—dependent nucleosome remodeling enzymes (ARID) are among the
most frequently described in HCC [80,81]. Moreover, aberrant epigenomes can also appear
in the absence of epigenetic mutations by oncogenic mutations affecting upstream signaling
pathways [82].

Liver homeostasis, and consequently disease development, depends on the interac-
tion between multiple cell types. Recent genomic and transcriptomic studies performed
at the single-cell resolution level have provided relevant discoveries in the hepatology
field [83]. Bearing in mind that the epigenome is a cell-specific characteristic, the analysis
of epigenetic changes at the single-cell level, including cancer, stromal, and immune cells,
will significantly contribute to a better understanding of the hepatocarcinogenesis process,
the development of more effective therapies, and the improved management of patients
with liver disease.
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Table 1. Summary of epigenetic biomarkers found in tissue and liquid biopsies for liver disease diagnosis and prognosis.

Epigenetic Biomarkers in Tissue Biopsy

Epigenetic Alteration Potential Use Liver Disease Affected Gene/Region Reference

DNA methylation

Diagnosis HCC

Global 5hmC levels [50]

Differentially methylated CpGs [51–53,58]

Prognosis

HCC

Global 5hmC levels [50]

Differentially methylated CpG
sigantures [51,58]

Fibrosis/Cirrhosis

Mix etiology Differentially methylated CpG
sigantures [52–54,57]

NAFLD/NASH Differentially methylated CpG
sigantures [53,55,56]

HBV/HCV Differentially methylated CpG
sigantures [54,84]

Alcohol Differentially methylated CpG
sigantures [56,59]

Histone modifications Prognosis
HCC H3K27me3 at transcription factors

crucial for liver homeostasis [45]

Fibrosis (mix
etiology) H3K27ac at specific oncogenes and TS [48]

Epigenetic Biomarkers in Liquid Biopsy

Epigenetic Alteration Potential Use Liver Disease Affected Gene/Region Reference

DNA methylation

Diagnosis HCC

CDKN2A (P16) [85]

RASSF1A [86,87]

VIM [88]

FBLN1 [88]

RGS10, ST8SIA6, RUNX2 and VIM [89]

cg04645914, cg06215569, cg23663760,
cg13781744, and cg07610777 [90]

HOXA1, EMX1, AK055957, ECE1,
PFKP and CLEC11A [91]

GSTP1 and RASSF1A [92]

32-gene based 5hmC marker [93]

SEPT9 [94,95]

BMPR1A, PSD, ARHGAP25, KLF3,
PLAC8, ATXN1, Chr 6:170, Chr 6:3,

ATAD2, Chr 8:20
[96]

Prognosis HCC

SEPT9 [95]

SH3PXD2A, C11orf9, PPFIA1, Chr
17:78, SERPINB5, NOTCH3, GRHL2,

TMEM8B
[96]

Global 5hmC levels [97]

TFPI2 [98]

Prognosis Liver fibrosis PPARγ [99]
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3. Epigenetic Biomarkers in Liquid Biopsy: Methylated ctDNA for Liver Disease
Diagnosis and Prognosis

Liquid biopsy refers to the analysis in the bloodstream or other body fluids of material
derived from the tumor, or in some cases the damaged tissues, including cell-free DNA
(cfDNA) and RNA, proteins, circulating tumor cells (CTCs), metabolites, and extracellular
vesicles [100–102] (Figure 2). Circulating cfDNA and CTCs are the cornerstone analytes
of liquid biopsy, providing the genetic and epigenetic profiles of the cells of origin, and
importantly recapitulating the complex and heterogeneous molecular pathogenesis of
tumors such as HCC [103–105]. Significant advances have been made in the technology
and protocols used to isolate and evaluate the analytes. However, the identification
of specific and sensitive biomarkers for patient diagnosis, prognosis, monitoring, and
therapy guidance remains a challenge [101]. In the context of liver diseases, where a large
proportion of tumors develops on a background of liver cirrhosis, the identification of
reliable biomarkers [33] and the use of liquid biopsy represents a promising tool for the
screening and early detection of HCC. Moreover, liquid biopsy could overcome the intra-
and inter-tumor genetic and epigenetic heterogeneity of HCCs, helping with the therapeutic
management of HCC patients.
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Figure 2. The epigenetically marked DNA and chromatin are released from the damaged liver to the
bloodstream. Therefore, the identification of disease-specific epigenetic biomarkers in the plasma or
liquid biopsy represents a non-invasive tool for the early detection of fibrosis or diagnosis of HCC
and the prognosis and therapeutic guidance of patients.

Many efforts have been made to identify biomarkers from the mutational profiling
of ctDNA [106]. However, although the proof-of-concept has been made, the paucity of
hotspot mutations in HCC and the presence in the circulating DNA of mutations originated
from clonal hematopoiesis rather than from tumor cells giving rise to false-positive cases,
among others, have limited the applicability in the clinic of liquid biopsy tests based on
mutation biomarkers [101,104,105,107].

Multiple studies have shown that the screening of specific epigenetic modifications, in
particular the methylation profiling of ctDNA, has great potential across different clinical
scenarios in the management of HCC [104,105] (Figure 2). As mentioned above, DNA
methylation patterns are cell-type-specific, are highly stable as covalent modifications, and
are aberrantly and specifically altered in cancer cells [2,108]. Moreover, it has been known
for some time that DNA methylation changes in HCCs, such as the hypermethylation
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of CpG-rich promoter sequences of tumor suppressor genes, are consistently detected in
the ctDNA of HCC patients [109], even several years before the clinical diagnosis of the
tumor [86].

In fact, hypermethylation of the CDKN2A gene encoding for the cell cycle regulator
tumor suppressor gene p16 has been assayed as a single methylated ctDNA biomarker for
the detection of HCC, although with very variable results [85]. Other single methylated
ctDNA biomarkers tested in case–control studies include genes encoding for Ras association
domain family 1A (RASSF1A) [86,87], vimentin (VIM) [88], fibulin 1 (FBLN1) [88], and
tissue factor pathway inhibitor-2 (TFPI2) [98]. More recently, methylated septin 9 (SEPT9)
gene, the biomarker used in the first blood-based test commercialized for the early detection
of colorectal carcinoma, has demonstrated high accuracy (area under the receiver operating
curve, AURC, of 0.94) to diagnose HCC in two independent cohorts [94] and to predict
long-term survival of HCC patients [95]. SEPT9 is a key regulator of cell division implicated
in liver carcinogenesis [110], which is silenced by promoter hypermethylation not only in
HCC [58] and colorectal cancer, but also in other tumors such as head and neck squamous
cell carcinoma and breast cancer [111,112]. This lack of tumor specificity could limit its
applicability, and further developments are needed to allow the identification of hepatocyte-
specific methylation patterns. To trace the origin of ctDNA, new strategies could include,
for instance, the identification of liver-associated cell-free DNA-end signatures [113], liver-
specific nucleosome footprints [114], or HCC-specific cell-free 5hmC signatures [97].

Test performance could be improved by implementing panels of ctDNA-methylated
markers. As summarized in Table 1, using different approaches multiple groups have iden-
tified the high sensitivity and specificity of four [89], five [90], six [91], or ten [96] plasma
ctDNA-methylated markers for HCC diagnosis or eight [96] plasma ctDNA-methylated
markers for HCC prognosis prediction. HCC recurrence following tumor resection was also
detected up to 9 months before MRI diagnosis by monitoring GSTP1 and RASSF1A ctDNA
methylation in the urine of patients [92]. All these studies highlight the great potential of
ctDNA methylation profiling for the management of HCC; however, the diversity of the
panels described suggests that validation studies are required. Those studies should also
include samples from patients with early-stage HCCs and from longitudinal follow-up of
cirrhotic patients.

Interestingly, 5hmC signatures can be also monitored in circulating HCC-specific
cfDNA, which could also be applied to track tumor stage [97]. Accordingly, a recent non-
invasive 32-gene based 5hmC marker panel has been developed and tested for the early
detection of HCC [93,115].

Epigenetic aberrations contribute to the pathogenesis and progression of chronic
liver disease [5,65], and changes in DNA methylation have been described at different
stages, including hepatitis, fibrosis, and cirrhosis [56,57,59]. Importantly, the identification
of stage-specific changes in ctDNA would facilitate the monitoring of disease progression
and the early diagnosis of tumors. In this sense, the detection in ctDNA of two CpG sites
differentially methylated at the promoter of the peroxisome proliferator-activated receptor
γ gene (PPARγ) has been proposed to stratify liver fibrosis in patients with NAFLD [99].

Overall, the proof-of-concept confirming the power of liquid biopsies as non-invasive
tools for the management of patients with CLDs has been made. However, the results
also suggest that the reliability and utility of liquid biopsy tests most likely rely on the
use of multi-marker analyses. Further studies are needed to evaluate the performance
of combination of methylated cfDNA biomarkers with ctDNA mutations and/or protein
biomarkers in nucleosomes [116], extracellular vesicles [117], or CTCs [118], together
with markers of tissue of origin [113,114]. Moreover, the combination of these emerging
epigenetic biomarkers with currently used serological markers can be envisioned to be used
to improve HCC diagnosis, patient stratification, and evaluation of treatment response.
In this regard, several studies have shown increased sensitivity when their identified
epigenetic liquid biopsy biomarkers are combined with AFP determination [93,95,98]. The
presence and levels of naïve viral RNA and DNA [119], its integration in cellular DNA,
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or even epigenetic modifications of viral sequences [84] along the hepatocarcinogenesis
process could also be combined. Furthermore, large clinical trials as well as standard
protocols for the isolation of analytes and the identification of biomarkers are needed.

4. Harnessing Epigenetic Alterations for Therapy

As reviewed above, multiple findings demonstrate that epigenetic dysregulation plays
a role in the pathogenesis and progression of NAFLD, fibrosis, cirrhosis, and hepatocellular
carcinoma. Given the plasticity and reversibility of the epigenetic modifications, they
represent promising therapeutic targets. Indeed, over the last years DNA hypomethy-
lating agents and histone deacetylase inhibitors (HDACi) have been approved or are
being tested for the treatment of hematologic malignancies and solid tumors [4,70,120,121].
Moreover, recent results have demonstrated that the targeting of epigenetic writers (DN-
MTs and histone methyltransferases, HMTs), readers (BRDs), and erasers (HDACs and
lysine demethylases, KDMs) can synergize with immunotherapy, increasing the immune
recognition of tumor cells [5,122–124].

We have recently reviewed the current advances in the epigenetic treatment of HCC [5].
Multiple studies have explored different first-generation DNMT inhibitors (DNMTi), and
among them decitabine showed beneficial clinical response and favorable toxicity profiles in
patients with advanced HCC in a phase I/II clinical trial [125]. A second-generation DNMTi
is guadecitabine (SGI-110), in which decitabine is linked to deoxyguanosine to confer addi-
tional stability and a longer half-life due to protection from deamination. Guadecitabine has
demonstrated very promising anti-tumoral results in preclinical studies [126,127]. Mecha-
nistically, SGI-110 re-induced the expression of tumor suppressor genes and demethylated
gene body regions in pro-tumorigenic genes, including the HMT EZH2, downregulating
their expression. Importantly, SGI-110 robustly reactivated the expression of epigenetically
silenced endogenous retroviruses, enhancing tumor immunogenicity that can be harnessed
to improve immune checkpoint inhibitor sensitivity in vivo [128]. Accordingly, two clinical
trials are testing the activity of SGI-110 in patients with advanced HCC when adminis-
tered alone or in combination with the immunotherapeutic agent durvalumab (anti-PDL1).
Peer-reviewed publication of the results is awaited.

Regarding HDACi, the pan-HDACi belinostat (PXD-101) showed tumor stabilization
and was generally well-tolerated in a phase I trial in patients with unresectable HCC [129].
More recently, its combination with immune checkpoint inhibitors increased their efficacy
in an animal model of HCC [130]. The SHELTER phase I/II clinical trial demonstrated
positive results of the combination of the HDACi resminostat with sorafenib as second-
line therapy in patients with advanced HCC [131]. HMTi, in particular EZH2 inhibitors,
have been tested in preclinical studies. GSK126 enhances natural killer cell–mediated
eradication of HCC cells [132]; however, in another study the combination of GSK126 with
decitabine promoted hepatoma progression in an orthotopic HCC model in mice, due
to an impaired antitumorigenic T cell response [133]. Two other EZH2 inhibitors have
demonstrated activity in preneoplastic models. 3-Deazaneplanocin A (DZNep) [134] and
GSK503 [135] attenuate liver fibrosis in the murine model of carbon tetrachloride (CCl4),
and GSK503 is also effective in the bile duct ligation (BDL) model, inhibiting the activation
of hepatic stellate cells.

Benefits of combined therapies, using separate molecules or multitargeted molecules
with two biologically active units, include synergistic effects and prevention of drug
resistance. As a multitarget epigenetic therapeutic strategy, our group has developed the
inhibitor CM-272 combining inhibitory activities for the HMT G9a and DNMT1, both
enzymes being coordinatively dysregulated during the progression of liver disease [73].
The dual inhibitor CM-272 was able to restore the differentiated phenotype of HCC cells and
to inhibit tumor growth in vivo even in the presence of fibrogenic stroma [73]. Moreover,
CM-272 counteracts the pro-fibrogenic metabolic reprogramming of HSC and inhibits
CCl4-induced fibrogenesis in vivo [136]. The efficacy of CM-272 has also been recently
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demonstrated in cholangiocarcinoma, a type of hepatobiliary tumor for which no effective
systemic therapies exist [137].

As mentioned above, in patients with NASH and HCV-related advanced fibrosis,
HCC risk is associated with increased levels of H3K27ac in hepatic chromatin [48]. Ac-
cordingly, the inhibition of the H3K27ac reader, the bromodomain-containing protein 4
(BRD4), with the small-molecule JQ1 reverted the bad prognosis-associated transcriptional
program in HCC cells, and significantly reduced tumor burden in a mouse model of NASH-
induced hepatocarcinogenesis [48]. Moreover, JQ1 prevented HSC activation and fibrosis
development in the CCl4 mouse model of liver fibrosis [138].

Altogether, these results highlight the potential of epidrugs not only as anti-tumoral
therapies, but also as agents able to boost antitumor immune responses [124] and to halt or
reverse liver fibrogenesis, which is a key contributor to HCC development.

5. Conclusions

Evidence has demonstrated that epigenetic alterations, in response to environmental
cues or genetic changes, play a critical role in the pathogenesis of CLD. In fact, specific
epigenetic marks could be used as biomarkers to diagnose or predict CLD progression,
and their identification in liquid biopsy represents a very promising strategy to aid in
the management of CLD patients. Moreover, as epigenetic marks are dynamically and
reversibly established, epigenome-targeted therapies are increasing the drug portfolio
also for solid malignancies. Different epidrugs have been developed to modulate the
activity of the pleiad of epigenetic writers, erasers, and readers. In particular, HDACi and
DNMTi have been tested alone or in combination with immunotherapy to treat patients
with different types of cancer, including HCC patients. Moreover, available data suggest
that these strategies could be envisioned to prevent the progression of CLD. However,
several aspects may challenge the success of epigenetic modulation. One important issue
would be the lack of selectivity. These inhibitors are highly nonspecific, and upon systemic
administration they can affect any cell type, as well as any gene in the cell under such
epigenetic control regardless of its pathological role. Moreover, many of the targeted
epigenetic modifiers have functions outside the chromatin. For instance, interference with
the acetylation of other non-histone proteins such as the tumor suppressor gene P53 may
have unexpected effects. Furthermore, given the crosstalk between different epigenetic
mechanisms, targeting a specific mark could affect other modifications, and so far, this
“network” effect is difficult to predict.

Altogether, further basic research is needed to improve our mechanistic understanding
of the epigenetic processes and their interactions, their dysregulation in disease, and the
cellular response to epigenetic therapies. This effort, together with well-designed clinical
trials, will help to boost epigenetic-based personalized medicine.
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