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Abstract: Freezing extends the shelf-life of food by slowing down the physical and biochemical
reactions; however, ice crystal formation can result in irreversible damage to the cell’s structure
and texture. Supercooling technology has the potential to preserve the original freshness of food
without freezing damage. In this study, fresh asparagus was preserved in a supercooled state and
its quality changes such as color, weight loss, texture, chlorophyll and anthocyanin content, and
enzymatic activities (superoxide dismutase and catalase) were evaluated. The asparagus samples
were successfully supercooled at −3 ◦C with the combination treatment of pulsed electric field (PEF)
and oscillating magnetic field (OMF), and the supercooled state was maintained for up to 14 days.
Asparagus spears preserved in the supercooled state exhibited lower weight loss and higher levels of
quality factors in comparison to the frozen and refrigerated control samples.

Keywords: asparagus; supercooling; pulsed electric field; oscillating magnet field; preservation

1. Introduction

Asparagus (Asparagus officinalis L.) is one of the most widely consumed vegetables
in the US due to its unique flavor, low calories, and high nutritional values. Moreover,
anthocyanins are one of the largest and most important groups of water-soluble pigments
in most species in the plant kingdom. They are accumulated in cell vacuoles and are
primarily responsible for diverse pigmentation from orange to red, purple, and blue. An-
thocyanins are one of the important groups of phenolic compounds, presenting in fruits
and vegetables. They contribute to the characteristic color and have been linked to antihy-
perglycemic, anticancer, and antimutagenic health benefits [1–4]. Asparagus has a limited
shelf-life of fewer than 5 days at ambient temperatures, mainly due to its high respiratory
rate after harvesting [5]. During storage, asparagus undergoes undesirable physiological
and compositional changes such as moisture loss, chlorophyll degradation, and lignifi-
cation [5,6] that lead to a deterioration of the overall quality of the vegetable. Emerging
technologies such as edible coatings [3,7] and modified atmosphere packaging [4,8] have
shown potential in maintaining the quality of asparagus. By utilizing the pretreatment
technology, quality deterioration and microbial contamination can be minimized; however,
the proper regulation of temperature and humidity needs to be ensured in order to further
increase the microbial safety and enhancing the shelf-life of asparagus [9,10].

Storage temperature is the most significant factor affecting the rate of freshness and
loss of produce. Based on the biological and chemical reaction kinetic approach, a higher
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storage temperature will lead to a quicker loss of quality [11]. For instance, fresh aspara-
gus stored at lower storage temperatures (0 ◦C and 2 ◦C) exhibited higher ascorbic acid
concentrations than those stored at a higher temperature (4 ◦C and 6 ◦C) [12]. Furthermore,
it is required that harvested asparagus should be cooled as quickly as possible to reduce
the post-harvest heat accumulation, which potentially shortens the shelf-life of the veg-
etable [11]. In general, refrigeration below 4 ◦C is recommended for cold storage of fresh
vegetables, while freezing is not because ice crystal formation can cause the depolymer-
ization of the cell wall, rupture of the cell membrane, and change in the osmotic pressure,
which results in excessive deterioration in the texture after thawing [13].

Supercooling refers to the process of maintaining food unfrozen below its freezing
point without ice crystallization. Supercooling has been employed to reduce microbial
growth and deteriorative chemical reactions in food by lowering storage temperatures
without the loss of structural integrity [14]. James et al. (2009) have demonstrated that
unpeeled garlic bulbs could be supercooled at around −6 ◦C for 1 week, and the super-
cooled garlic showed no differences in visual appearance between refrigerated samples
(1 ◦C) while freezing damage was found in the frozen garlic bulbs (−30 ◦C) [15]. How-
ever, maintaining a stable supercooled state within foods for an extended period may
be particularly problematic due to the random nature of ice nucleation [14]. Recently,
electric and magnetic fields have been utilized to control ice nucleation during the freezing
process [16,17]. It was found that external electric and magnetic fields may affect the onset
of ice crystal formation during freezing and supercooling processes because water consists
of dipole molecules and is also diamagnetic. Therefore, water molecules that naturally
present in food tend to realign and re-orientate under electric and magnetic fields, meaning
that they are potentially able to prevent the ice crystallization process and may lead to
a substantial change in the supercooling behavior of food products [18–20]. A variety of
food products such as beef, chicken breast, fish, and pineapple were supercooled for the
extended shelf life with maintained freshness [21–24]. However, there have been no reports
on supercooling for green loose-leaf vegetables using electric and magnetic fields in food
preservation.

In this study, the supercooling technique, combining pulsed electric fields (PEF) and
oscillating magnetic fields (OMF), was applied to test asparagus for quality factor analysis
and quality parameters of preserved asparagus were measured and compared with the
control samples stored under refrigeration and freezing. The quality parameters measured
to determine the asparagus quality included color, texture, drip loss, and diverse chemical
contents.

2. Materials and Methods
2.1. Sample Preparation

Fresh green asparagus spears were purchased at local grocery stores. Fresh asparagus
was cut into a length of 12.5 cm to fit the supercooling chamber. A similar sample weight
(50 g) was used in each experimental trial. Control samples in an approximately equal
shape and weight were placed at the dummy chambers (without OMF electromagnets and
PEF electrodes). All of the asparagus samples were covered with polyethylene (PE) film to
avoid dehydration during experiments. A total of three experiments were conducted with
the asparagus samples at different storage conditions: (1) refrigeration (4 ◦C), (2) freezing
(−18 ◦C), and (3) supercooling (−3 ◦C). Samples were stored for 7 and 14 days. The
combined PEF and OMF supercooling treatment, along with control preservations, were
performed in triplicate.

2.2. PEF and OMF Treatment for Supercooling

In order to maintain the supercooled state for an extended shelf-life period, a custom-
designed module to supply both PEF and OMF was fabricated (Figure 1). A detailed
device setup can also be found in our previous work [21,22]. The PEF was delivered to
the samples via side electrodes made with 0.01 mm thick 99.6% titanium foil (ESPI Metals,
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Ashland, OR, USA) attached to the sidewalls of the acrylic sample holder. The entire device
was placed in a chest freezer (Haier, Qingdao, China). The temperature of the freezer was
controlled using a digital temperature controller. All of the temperatures of the samples
were collected using a data acquisition unit (DAQ, Agilent 39704A, Agilent Technologies,
Inc., Santa Clara, CA, USA). The temperatures of the samples were collected in real-time
using T-type thermocouple wires. The degree of supercooling to which the test sample
was exposed during treatment was controlled using the identical PEF sequence of the duty
cycle of 0.5. The input voltage and frequency of PEF were 20 V and 20 kHz, respectively, in
order to keep the internal temperature of the asparagus samples at approximately −4 ◦C
throughout the entire storage period. The applied voltage and frequency of the OMF were
60 V and 1 Hz, respectively. A simplified block diagram of the whole control unit design is
shown in Figure 2.
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2.3. Weight Loss

The weight loss of asparagus samples after storage was determined with a commonly
used method [3]. After cutting, fresh asparagus was weighed and recorded as the initial
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weight. After each preservation treatment, the samples were weighed again and recorded
as the final weight. For the frozen samples, asparagus was thawed in the refrigerator
(4 ◦C) for 24 h before their final weights were recorded. Weight loss was calculated as the
following equation:

Weight loss (%) = [(Initial weight − Final weight)/Initial weight]× 100 (1)

2.4. Color Analysis

A computer vision system was used to measure the color of asparagus samples [25]. In
brief, images were obtained using a digital camera (Canon EOS Rebel T3i, Canon USA Inc.,
Melville, NY, USA), which was vertically located at a distance of 20 cm from the samples.
A circular light bulb (FC12T9, Phillips, Amsterdam, The Netherlands) was used to achieve
a uniform light intensity over the samples in the system. The taken images were analyzed
using a MATLAB code (MathWorks, Natick, MA, USA) to convert the digital RGB data
into the L*a*b* color components.

For sample comparison, the net color difference was calculated using the given codes.
The color difference (∆E) was calculated using the equation:

∆E =

√
(L1 − L2)

2 + (a1 − a2)
2 + (b1 − b2)

2 (2)

Subscripts 1 and 2 indicate the color components before and after the treatment,
respectively. Measurements were taken at ten different locations on the sample and the
average was calculated.

2.5. Texture

The texture measurement was performed by following the method of Kidmose &
Kaack with slight modifications [26]. All of the asparagus spears were kept at room
temperature before the test. Shear force values were measured using a TA-XT2 texture
analyzer equipped with a Warner-Brazler shear force cell with a single blade and a blade
speed of 10 cm/min [27]. A total of 3 spears were measured for each of the two replications,
and each spear was measured 3 times with a 2 cm interval from the butt end. The peak
cutting force was recorded at each 2 cm interval, and the average peak cutting force was
calculated. The shear force values (g/m), which are an expression of toughness, were
calculated as the average peak cutting force: spear divided by the spear butt.

2.6. Chlorophyll

The measuring method of the chlorophyll content in the asparagus was utilized, with
slight modification of Wu & Wang’s method [28]. In brief, 2 g asparagus was ground in
a mortar and extracted in 10 mL of 95% (v/v) ethanol and centrifuged at 6000 rpm for
15 min. Every step was performed at 4 ◦C. The supernatant was used to determine the
chlorophyll content. Chlorophyll quantification was performed spectrophotometrically
using a spectrophotometer at 665 and 649 nm, and the chlorophyll content was expressed as
chlorophyll mass on a fresh weight (FW) basis (mg/kg FW). The calculation of chlorophyll
amount was described by Sumanta et al. (2014) as follows [29]:

Cha = 13.36 × A664 − 5.19 × A649 (3)

Chb = 27.43 × A649 − 8.12 × A664 (4)

Chl = Cha + Chb (5)

A = Absorbance, Cha = Chlorophyll a, Chb = Chlorophyll b.

2.7. Anthocyanin

The anthocyanin content was determined on the asparagus as described by Tzoumaki
et al. (2009), with some modifications [3], which were initially proposed by Flores et al.
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(2005) [30]. Firstly, 2 g of asparagus sample tissue was chopped in a mortar and extracted
with 5 mL of extractant solution which was composed with 99.98% ethanol/0.5 N HCl
(85:15 v/v). Then, the homogenate was incubated for 4 h in darkness. Every step was
carried out at a temperature of 4 ◦C. The homogenate was then centrifuged at 6000 rpm for
30 min, and the supernatant was used to perform the spectrophotometric measurement
at 533 nm using the extraction medium as the blank. The results were expressed as mg
anthocyanins per g FW of asparagus.

2.8. Superoxide Dismutase (SOD) Activity

SOD in asparagus samples was extracted via the method employed by An et al.
(2007) [31]. With 10 mL extraction buffer, 2 g of asparagus samples were ground in a mortar.
The content of extraction buffer was composed with 50 mM phosphate buffer, pH 7.8 con-
taining 0.1 mM EDTA, 0.3% (w/v) TrintonX-100, and 4% (w/v) polyvinylpolypyrrolidone
(PVPP). The mixture was centrifuged at 6000 rpm for 30 min and the supernatant was
used as the crude enzyme extract. Every step was performed at a temperature of 4 ◦C.
Then SOD activity was measured using a slightly modified previous method [32,33]. SOD
activity was measured by measuring its ability to inhibit the nitro blue tetrazolium (NBT)
photochemical reduction. A sum of 50 microliters of enzyme extract were added into 3 mL
of reaction buffer, which contained 50 mM phosphate buffer (pH 7.8), 13 mM methionine,
75 µM NBT, 2 µM riboflavin, and 0.1 mM EDTA. Then, the mixture was placed below a
fluorescent lamp for 20 min. The absorbance of the reaction mixture was measured at
a wavelength of 560 nm. Furthermore, 1 unit of SOD was considered as the amount of
enzyme that inhibited NBT reduction by 50%.

2.9. Catalase (CAT) Activity

CAT activities in asparagus samples were measured using a slightly modified method
from W. X. Li et al. (2008) [33]. A total of 2 g of asparagus samples were ground in a
mortar in 10 mL extraction buffer and then centrifuged at 6000 rpm for 15 min at 4 ◦C.
The CAT extraction buffer contained 0.2 M phosphate buffer, pH 7.8 containing 1% (w/v)
PVPP. After centrifugation, the supernatant was used as CAT activity measurement. The
CAT activity was analyzed using the method of Aebi (1984), with some modifications [34].
A sum of 200 microliters of enzyme extract were added to the reaction mixture, which
contained 1.5 mL of phosphate buffer (0.2 M, pH 7.8), 1 mL of distilled water, and 0.3 mL
of H2O2 (0.1 M). The CAT activity was determined by measuring the rate of disappearance
of hydrogen peroxide. The decrease in hydrogen peroxide was followed by a decline in
absorbance at 240 nm. One unit of CAT activity was defined as the amount of enzyme,
which caused the absorbance decrease of 0.1 at 240 nm/min at room temperature.

2.10. Statistical Analysis

All of the results are means ± standard deviation, and the data were statistically
evaluated by ANOVA with mean differentiation by Duncan’s multiple range test (α = 0.05).
The statistical software was the SPSS (v. 16.0, IBM, Chicago, IL, USA).

3. Results and Discussion
3.1. Combination PEF and OMF Supercooling Treatments

The cooling curves of the frozen and supercooled asparagus samples are shown in
Figure 3. The equilibrium freezing temperature of the asparagus was found at around
−2.3 ◦C. Supercooling is the phenomenon where the temperature of asparagus is decreased
below its equilibrium freezing temperature without forming ice crystallization because of
an energy barrier. Before the nucleation begins, interfacial tension has to surmount through
the external PEF and OMF [35]. Each negative control sample was frozen below freezing
point, while the supercooled samples had reached a temperature of −3 ◦C without ice
nucleation and maintained supercooling stage under the combined PEF and OMF during
two-week storage.
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3.2. Color

Figure 4a shows the colors of refrigerated, frozen, and supercooled asparagus after
two-week storage. The results of color analysis of asparagus samples during preservation
were shown in Figure 4b,c with ∆E, a*, and b* values. For frozen samples, ∆E exhibited
a significant change in the first week but showed no significant change thereafter. The
color-related ingredients, such as chlorophyll, suffered permanent damage during storage
because the extreme temperature fluctuations from freezing (−20 ◦C) and thawing (4 ◦C)
in frozen asparagus were processed. As for refrigeration samples, the sample showed a
steady worsening condition during preservation. The results showed that supercooling
had an enhanced effect on color preservation. The delta E of supercooling asparagus within
2 weeks was maintained below 5, but the refrigeration value increased up to 15. Moreover,
supercooled asparagus can retain a higher greenish color value than refrigerated and
frozen samples (Figure 4c), while frozen asparagus sample has the highest yellowish value
during storage (Figure 4d). This changing trend of asparagus was closely related to the
decrease in chlorophyll and anthocyanin chemical reactions. Compared with other samples,
supercooling preservation had some positive effects on preventing color changing.
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3.3. Drip Loss and Texture

Figure 5a shows the drip loss from the asparagus over the two-week preservation
period. The drip loss from the frozen samples was significantly higher than the refrigerated
and supercooled samples at each time point of storage. The more significant amount of
drip loss in the frozen samples was a direct result of ice damage to the cellular structure
of the food samples. In one-week storage, the drip loss results show slight differences
between the refrigerated and the supercooled samples.
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Figure 5. Mean values of (a) drip loss and (b) texture changes in asparagus samples at 7 and 14 days
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Figure 5b represents the texture of the asparagus sample stored under different condi-
tions over the two-week preservation period and measured as peak cutting force. In the
first week, there was no significant difference among the refrigerated and the supercooled
asparagus samples. With the frozen samples, the asparagus had a much softer texture after
the freezing and thawing process at −18 ◦C and 4 ◦C, respectively.

Texture is one of the common parameters for asparagus quality analysis. Fresh aspara-
gus has a pleasant crispy texture. The texture of asparagus is highly related to fibrousness
and the process of hardening that occurs after harvesting; the latter is accompanied by the
lignification of the fibers [36]. Besides, changes in texture may also reflect losses in tissue
water and increases in other phenolic compounds, apart from lignin. In asparagus spears,
the unaltered shoot differentiation also includes thickening and lignification of cell walls
in the sclerenchyma ring and in vascular bundles. These processes rapidly result in the
undesired toughening of spears [37]. In addition, spear stiffness declined during the entire
storage period, i.e., spears became more elastic irrespective of the treatments. Since the
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fibrousness of asparagus is a key factor determining edible quality, any change in the fiber
content due to storage conditions would impact the freshness of asparagus [38]. The large
weight loss from spears stored for 14 days is observed due to moisture loss and loss in
reducing substances. Maintaining higher humidity in the store can minimize the weight
loss to some extent but would be impractical for long-term storage before exporting or
retail display.

3.4. Chlorophyll

Figure 6a shows the chlorophyll content of the asparagus over the two-week preserva-
tion period. In this study, a significant loss in the chlorophyll content was observed during
the storage period in all of the asparagus samples. As a result, supercooling and freezing
storage had an outstanding result in maintaining chlorophyll contents in asparagus sam-
ples. However, refrigeration storage appeared to be less likely to maintain the chlorophyll
content. Supercooling preservation retarded the loss in chlorophyll content and slowed
down the oxidative reaction that is responsible for the breakdown of the pigment. Ac-
cording to Sumanta et al. (2014) [29], chlorophyll includes Chlorophyll a and Chlorophyll
b. Chlorophyll b differs from Chlorophyll a only in one functional group bonded to the
porphyrin ring; moreover, it is more soluble than Chlorophyll a in polar solvents because
of its carbonyl group. It was reported that changes in the color of asparagus during the
cold storage period were consistent with the contents of Chlorophyll a.
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3.5. Anthocyanin

Figure 6b shows the anthocyanin content of the asparagus over the two-week preser-
vation period. In this study, a significant increase in anthocyanin was found during the
preservation of storage for two weeks. With refrigeration, the amount of anthocyanin was
higher than other storage methods, freezing and supercooling, after 14 days of storage. Any
significant difference between fresh and supercooled samples during 14 days of storage
was not observed.

3.6. SOD and CAT Activities

Figure 6c,d show the result of SOD and CAT activities change in asparagus samples
in two-week storage. Trends in all of the SOD and CAT activities were decreased during all
storage methods. After 14 days of storage, SOD activities of supercooled and frozen samples
were significantly higher than refrigerated samples. As for catalase activity, no significant
difference was observed. Since it was observed that supercooling samples had a higher SOD
activity after 2-week preservation, the supercooling technique process could significantly
increase the activities of SOD, lower the accumulation rate of malondialdehyde (MDA)
and inhibit the increase in the relative conductivity. In general, free radical production
and elimination are always in a dynamic equilibrium state and the free radical level is too
low to injure organism call. However, when asparagus undergo a senescence process, the
balance of production and elimination could be broken. In a study carried out by W. X. Li
et al. (2008) [33], it was found that that SOD and CAT activities of asparagus increased in
the beginning and then declined with the extension of storage time under all conditions.
Under the hypobaric condition, two indices reached the highest value on the 20th day and
then began to slowly decrease [33]. In this study, the SOD and CAT activity was reduced
from the first week, which might be because the samples were already displayed at the
supermarket for the time being before being purchased.

4. Conclusions

A supercooling technique combined with PEF and OMF was applied on subzero
temperature storage of asparagus (Asparagus officinalis L.) for quality factor analysis. The
asparagus was selected because it is popular and considered highly perishable. Asparagus
has one-week shelf life when stored under refrigeration, in general. The developed technol-
ogy was able to extend the shelf life of asparagus for up to 2 weeks whilst fully maintaining
the color and texture of fresh asparagus. In addition, supercooled samples showed lower
chlorophyll and minimum changes in anthocyanin concentrations, compared with the
control refrigeration groups. Supercooling preservation could also significantly increase the
activities of superoxide dismutase and decrease the accumulation rate of malondialdehyde.
There was a relatively higher drip loss in supercooled asparagus than refrigerated samples;
however, the difference was not statistically significant at all. Therefore, the supercooling
technology implemented with PEF and OMF functions assured key quality parameters
in fresh asparagus while extending its shelf life. It is expected that this technology could
offer a radically new food preservation method for consumers and the commercial food
vegetable industry.
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