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Historically, many investigations into neurodegenerative diseases have focused on
alterations in specific neuronal populations such as, for example, the loss of midbrain
dopaminergic neurons in Parkinson’s disease (PD) and loss of cholinergic transmission
in Alzheimer’s disease (AD). However, it has become increasingly clear that mammalian
brain activities, from executive and motor functioning to memory and emotional
responses, are strictly regulated by the integrity of multiple interdependent neuronal
circuits. Among subcortical structures, the dopaminergic nigrostriatal and mesolimbic
pathways as well as cholinergic innervation from basal forebrain and brainstem,
play pivotal roles in orchestrating cognitive and non-cognitive symptoms in PD and
AD. Understanding the functional interactions of these circuits and the consequent
neurological changes that occur during degeneration provides new opportunities to
understand the fundamental inter-workings of the human brain as well as develop new
potential treatments for patients with dysfunctional neuronal circuits. Here, excerpted
from a session of the European Behavioral Pharmacology Society meeting (Braga,
Portugal, August 2019), we provide an update on our recent work in behavioral
and cellular neuroscience that primarily focuses on interactions between cholinergic
and dopaminergic systems in PD models, as well as stress in AD. These brief
discussions include descriptions of (1) striatal cholinergic interneurons (CINs) and PD,
(2) dopaminergic and cholinergic modulation of impulse control, and (3) the use of
an implantable cell-based system for drug delivery directly the into brain and (4) the
mechanisms through which day life stress, a risk factor for AD, damage protein and
RNA homeostasis leading to AD neuronal malfunction.

Keywords: acetylcholine, dopamine, Alzheimer’s and Parkinson’s disease, impulse control, encapsulated cell-
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INTRODUCTION

Although research in neurodegenerative disorders have been
focusing for many years on individual neuronal circuits and
neurotransmitter systems [e.g., dopaminergic one in Parkinson’s
disease (PD) and cholinergic in Alzheimer’s disease (AD)], it
is increasingly accepted that different neurotransmitter systems
are interrelated and affected under neurodegenerative conditions
leading to deficits in related brain functions.

For instance, while PD research is commonly focused on
the motor deficits resulting from the loss of nigrostriatal
dopaminergic neurons (Paolone et al., 2015), a majority of PD
patients suffer from non-motor symptoms such as cognitive and
emotional disorders (Chaudhuri et al., 2006). These disturbances
are, at least in part, related to a loss of basal forebrain
cholinergic neurons but also increased cholinergic tone within
the striatum, which temporally coincides with the loss of
midbrain dopaminergic neurons (Bonsi et al., 2011; Yarnall
et al., 2011). Many PD patients also have a tendency to fall and
suffer from a freezing of gait, impairments in posture control
and movement efficacy that are not treatable with L-DOPA.
Relative to controls and non-falling patients, these individuals
have greater reductions of cortical cholinergic activity (Bohnen
et al., 2018). Preclinical studies support these findings with
demonstrations that a concomitant loss of cholinergic and striatal
dopamine afferents disrupts posture control and movement
efficacy (Kucinski et al., 2013).

Similarly, memory impairment is the cardinal feature of AD,
yet the clinical symptoms of this disorder also include a marked
loss of motor function. Moreover, many AD and PD patients
suffer from mood deficits, such as depression, a disease state
where deficits in monoamines (e.g., dopamine), are found.

It is increasingly recognized that brain functions, from the
executive and motor functioning to memory and emotional
responses, are strictly regulated by the integrity of multiple
interdependent neuronal circuits, the above clinical profiles
in PD and AD, neurodegenerative disorders with different
etiology, are likely the result of an intricate interplay of multi-
system degenerations extending beyond the loss of nigrostriatal
dopaminergic neurons in PD and the cholinergic denervation in
AD (Paolone, 2020; Policastro et al., 2020).

To this aim, this mini-review will briefly discuss the main
topics covered in a symposium from the 18th biennial meeting
of the European Behavioral Pharmacology Society held in Braga,
Portugal in August 2019 that focused on our current state of
knowledge regarding functional interactions and cooperation of
cholinergic and dopaminergic systems in motor and non-motor
behaviors, as well as innovative developments in intracranial
drug delivery in PD models and new insights into the role of
chronic stress in AD models. This mini-review will start with
describing electrophysiological and behavior data demonstrating
the involvement of striatal cholinergic interneurons (CINs) in
murine PD models, followed by a brief discussion on behavioral
data indicating dopaminergic and cholinergic modulation of
impulse control in rats. Subsequently, a novel encapsulated
cell-based system for neurotrophic delivery directly into the
brain will be introduced that demonstrated therapeutic effects in

neurological and degenerative diseases. The mini-review will end
with cellular data highlighting the effects of chronic stress on the
dysregulation of proteostasis and RNA homeostasis in AD.

STRIATAL CHOLINERGIC
INTERNEURONS AND PARKINSON’S
DISEASE

Marianne Amalric provided an update on the role of striatal
CINs in the expression of motor, cognitive and motivational
impairments in neurological disorders (Bonsi et al., 2011). The
degeneration of nigrostriatal dopaminergic (DA) neurons in PD
leads to an imbalance between the dopaminergic neuronal and
CINs activity in the striatum that is thought to be associated
with the emergence of rigidity, tremor and bradykinesia (Obeso
et al., 2000; Aosaki et al., 2010). Anticholinergic drugs were the
first therapeutic treatment for PD suggesting that an increased
cholinergic tone in the striatum could result from striatal DA
denervation (Duvoisin, 1967). Despite comprising less than 2%
of all striatal neurons, they are potent modulators of medium
spiny neuronal (MSNs) excitability, due to their widespread
connections to output neurons. Modulation of MSNs by CINs
may therefore appears as a critical player to reduce the imbalance
between striatal DA and ACh activity (Calabresi et al., 2006;
Pisani et al., 2007).

Although PD is traditionally classified as a movement
disorder, it is increasingly recognized that non-motor symptoms
frequently appear in the early stages or even during the pre-
motor phase of the disease (Chaudhuri et al., 2006; Aarsland,
2016). A variety of non-motor symptoms, ranging from
neuropsychiatric to cognitive impairments and loss of inhibitory
control, are commonly observed in Parkinsonian patients.
Although reciprocal interaction of acetylcholine and dopamine
may underlie motor symptoms observed in pathophysiological
conditions (Aosaki et al., 2010; Lester et al., 2010; Gittis and
Kreitzer, 2012; Rizzi and Tan, 2017), much less is known
on DA/Ach interactions in non-motor functions in the early
stages of the disease. By combining a series of optogenetics,
electrophysiological and pharmacological studies, Amalric and
colleagues investigated the impact of striatal DA denervation in
rodent models of PD on striatal CINs reactivity and behavioral
outcome. The activity of striatal CINs is mainly driven by
dopaminergic modulatory inputs and excitatory glutamatergic
cortical and thalamic inputs. Nicotinic and muscarinic receptors
are expressed at different levels of the striatal microcircuit
where they modulate striatal afferent and efferent neuronal
systems. In particular, the high level of expression of muscarinic
acetylcholine receptors (mAChRs) in the striatum raised the
question of their role in the regulation of the striatal network.
In vitro studies in animal models of PD reveal that DA
denervation of the striatum increases CINs excitability (Fino
et al., 2007) and ACh release (Duvoisin, 1967; Bonsi et al., 2011)
and contributes to the reorganization of striatal microcircuitry
(Tozzi et al., 2016). The impact of CINs modulation in vivo on
motor and non-motor symptoms in rodent models of PD is less
known, however. Therefore, Amalric and colleagues investigated
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how optogenetic manipulation of CINs may affect the basal
ganglia circuitry in different murine models of PD and how it
translates to behavioral changes. To specifically express the opsins
in striatal CINs, they performed stereotaxic injections of a Cre-
inducible adeno-associated virus (AAV) vector carrying the gene
encoding channelrhodopsin (ChR2) or halorhodopsin (eNpHR)
into the striatum of transgenic mice expressing Cre-recombinase
under the choline acetyltransferase (ChAt) promoter. In vitro
recordings of CINs and MSNs revealed that photoactivation of
ChR2 increased CINs firing activity in a light-locked manner
while photoactivation of the inhibitory eNpHR opsin reduced
firing activity. In vivo electrophysiological results in anesthetized
mice, showed a normalization of the abnormal firing activity
measured in the substantia nigra pars reticulata, the main
output structure of the basal ganglia, in Parkinsonian conditions.
Furthermore, it was found that photoinhibition of CINs activity
primarily affected the transfer of cortico-striatal information by
enhancing the activity of the direct striatonigral pathway, rather
than reducing the activity of the indirect pathway (Maurice et al.,
2015). Behavioral studies confirmed the critical contribution of
striatal CINs in the various rodent models of late PD stage.
In a pharmacological model (neuroleptic-induced catalepsy),
photoinhibition of CINs reduced the akinetic symptoms, while
their photoactivation did not modify the cataleptic behavior.
In the lesional model of late PD (extensive DA lesions), CINs
photoinhibition reversed all the asymmetric motor deficits, while
the same optogenetics manipulation was ineffective in sham-
control animals (Maurice et al., 2015; Ztaou et al., 2016). In
a model of early PD stage, low dosage of the neurotoxin 6-
OHDA induces an average of 30–40% loss of nigral DA neurons
affect short-term memory in object and social recognition
tests (Bonito-Oliva et al., 2014; Ztaou et al., 2016, 2018).
Emotional deficits are also measured in the elevated cross maze
in partially lesioned mice. CINs photoinhibition of transgenic
mice expressing eNpHR in cholinergic neurons with similar
partial 6-OHDA lesions alleviated the social recognition and
cognitive deficits and reduced anxiety level, but did not affected
the behavior of non-lesioned animals. These results suggest that
even with a moderate striatal DA depletion, CINs reactivity may
account for the cognitive and emotional symptoms measured
in lesioned mice. Reducing their activity locally in the striatum
may thus appear to be an alternative therapeutic target to reduce
non-motor symptoms early in the disease in addition to alleviate
motor impairments in the late-stage of PD (Ztaou et al., 2018;
Ztaou and Amalric, 2019).

To decipher the mechanisms of ACh action on striatal
postsynaptic M1 and M4 mAChRs, additional experiments were
performed to pharmacologically block these receptors in normal
and mutant mice lacking M4 receptors specifically in direct
pathway MSN-D1 neurons (M4-D1 knockout mice). Blocking
either M1 or M4 mAChRs in the dorsal striatum with telenzepine
and tropicamide (M1 and M4 mAChR antagonists, respectively)
reproduced the beneficial effect of optogenetics manipulation
of CINs on motor symptoms. Interestingly, tropicamide had
no effect in M4-D1 knockout mice. Postsynaptic M4 receptors
expressed on direct MSNs output pathway may thus be
preferentially involved in tropicamide action (Ztaou et al., 2016).

The occurrence of motor and non-motor symptoms in PD may
thus involve cholinergic activation of M1 and M4 muscarinic
receptors of the striatum.

In summary, optogenetic inhibition of striatal CINs alleviates
motor and non-motor deficits in rodent models of early and late
PD stages. Optogenetic modulation of striatal CINs may thus
provide new tools to treat both motor and cognitive symptoms
of Parkinsonian patients.

DOPAMINERGIC AND CHOLINERGIC
MODULATION OF IMPULSE CONTROL

Tommy Pattij described their efforts to elucidate the roles of DA
and ACh function in impulse control, noting that impulse control
disturbances are important features in psychiatric disorders
such as attention-deficit/hyperactivity disorder and substance
use disorder (Moeller et al., 2001). In particular, he focused on
inhibitory response control as one of the behavioral and cognitive
phenomena of impulse control (Bari and Robbins, 2013). In
view of this mini-review it is important to note that impulse
control disturbances can also develop as non-motor symptoms
in PD, and particularly can arise as a result of dopamine
replacement therapy (Seppi et al., 2019). These impulse control
disorders can develop in up to one out of five PD patients
on dopamine replacement therapy and can manifest themselves
as, for example, compulsive buying, hypersexual behavior and
pathological gambling (Weintraub and Claassen, 2017).

There is an extensive preclinical literature on dopamine
modulation of impulse control, that started decades ago
with the observation that challenges with the psychostimulant
amphetamine impair inhibitory response control (Cole and
Robbins, 1987). Since then, many other studies have further
elaborated on this and earlier work from Pattij and colleagues
demonstrated the critical involvement of DA and, more
specifically, of dopamine D1-like and dopamine D2-like
receptors in inhibitory response control (Van Gaalen et al.,
2006). Subsequent functional neuroanatomical approaches,
including intracranial microinfusions of dopamine ligands and
sophisticated rodent micro-positron emission tomography (PET)
studies with dopamine D2/D3 ligands, have pinpointed the
ventral striatum as a main brain region where dopamine D1-
like and dopamine D2-like receptors modulate impulse control
(e.g., Dalley et al., 2007; Pattij et al., 2007; Pezze et al., 2009;
Besson et al., 2010; Caprioli et al., 2013; Jupp et al., 2013;
Pattij and Vanderschuren, 2020). Importantly, the pre-clinical
data are paralleled by clinical observations. Recent PET work
found that human trait impulsivity correlates with enhanced
amphetamine-evoked DA release in the ventral striatum and
lower dopamine D2/D3 receptor availability in the midbrain
(Buckholtz et al., 2010) and, moreover, with lower dopamine
transporter availability in the ventral striatum (Smith et al., 2019).
Thus, collective preclinical and clinical data have uncovered
a striatal dopamine D2-like receptor mechanism subserving
impulse control.

With regard to cholinergic modulation of impulsivity,
pharmacological challenges with nicotine impair inhibitory
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response control (Hahn et al., 2002; Kolokotroni et al., 2011;
Wiskerke et al., 2012), an effect that appears to depend on DA
receptor activation (Van Gaalen et al., 2006). Thus, a functional
interaction between the ACh and DA neurotransmitter system
explains the effects of nicotine on impulse control. As such,
it is well known that activation of somatodendritic nicotinic
receptors on DA neurons in the ventral tegmental area
evokes DA release in the ventral striatum explaining this
functional interaction (e.g., Imperato et al., 1986; Barik and
Wonnacott, 2009). Interestingly, although different from the
acute pharmacological effects of nicotine on the brain, subchronic
adolescent but not adult nicotine exposure resulted in long-
lasting impairments in inhibitory response control as well
as disturbances in attention in rats (Counotte et al., 2009,
2011). Strikingly, these adolescent nicotine effects on impulse
control were accompanied by increased electrically-evoked DA
release from the prefrontal cortex and not ventral striatum
(Counotte et al., 2009). Further work pinpointed terminals of
glutamatergic synapses in the medial prefrontal cortex as the
brain locus where adolescent nicotine could have impacted
impulse control and attention (Counotte et al., 2011). Recent
optogenetic approaches have provided further insight into the
roles of basal forebrain cholinergic neurons and prefrontal
cortical CINs in inhibitory response control and attention. For
this, the inhibitory opsin archaerhodopsin was expressed in
ChAt-expressing interneurons in either the medial prefrontal
cortex or basal forebrain cholinergic neurons in transgenic rats
expressing Cre-recombinase under the ChAt promoter. As such
this approach in rats is complementary to the murine PD-model
experiments conducted by Amalric and colleagues described
above (Maurice et al., 2015; Ztaou et al., 2016). Optical inhibition
of basal forebrain cholinergic projections to the mPFC as well
as CINs in the prefrontal cortex reduced attentional function,
albeit at different time scales (Obermayer et al., 2019). In the same
study, inhibitory response control was not affected by inhibiting
the activity of either of these two types of ChAT containing
neurons. Taken together, these results highlight the interplay
between the dopaminergic and cholinergic neurotransmitter
systems in modulating impulse control, either by activation of
nicotinic ACh receptors on DA neurons or on terminals of
glutamatergic synapses.

ENCAPSULATED CELL THERAPY:
TARGETING DOPAMINERGIC AND
CHOLINERGIC STRUCTURAL
ALTERATIONS WITH NEUROTROPHIC
FACTORS AS A NEW STRATEGY IN THE
PATHOPHYSIOLOGY OF
NEURODEGENERATIVE DISORDERS

Giovanna Paolone has exploited an encapsulated cell technology
that, following to implantation into the brain, provides a
targeted, continuous, de novo synthesized source of proteins
that can be distributed directly to the desired brain region
(Lindvall and Wahlberg, 2008; Emerich et al., 2019; Paolone

et al., 2019). These studies were based on the use of human
ARPE-19 cells that had been genetically modified to produce
trophic molecules including glial cell line-derived neurotrophic
factor (GDNF), brain-derived neurotrophic factor (BDNF), and
nerve growth factor (NGF). Prior to implantation, the cells
were “encapsulated” within semipermeable, immunoisolatory
hollow fiber membranes to facilitate their implantation, allow
their retrieval for confirmation of function, and minimize
immunological rejection. Initial studies evaluated the potential of
GDNF in pre-clinical models of epilepsy. GDNF is a particularly
interesting candidate for epilepsy as it is physiologically found
within the temporal lobe, is upregulated in response to seizure
activity, and local delivery can reduce seizures in animal models
(Kanter-Schlifke et al., 2007). Extensive in vivo studies were
conducted in a pilocarpine rat model of epilepsy. Animals
with established seizures received bilateral implants of GDNF-
secreting devices into the hippocampus and were tested on
a battery of neurological tests over several months. Results
included:

(1) Controlled, stable, and long-term (at least 6 months)
delivery of GDNF to the hippocampus in a well-
tolerated manner.

(2) GDNF significantly reduced (>90%) pilocarpine-induced
seizures while also normalizing changes in anxiety-
like and cognition over several months. In addition to
reducing behavioral seizures, it was also found that GDNF
significantly reduced seizures as measured by EEG.

(3) The benefits of GDNF were both symptomatic and disease-
modifying as the reductions in seizures persisted even
when the devices were retrieved.

(4) The functional benefits were associated with protection of
the hippocampus against the pathological changes brain
anatomy that accompany epilepsy, including hippocampal
atrophy, cell degeneration, loss of parvalbumin-positive
interneurons, and abnormal neurogenesis. The neuronal
protection was associated with GDNF receptor activation
(Paolone et al., 2019).

The versatility of this system was confirmed when similar
benefits were observed when delivering BDNF to the temporal
lobe of pilocarpine-treated rats. In these studies, the frequency of
spontaneous seizures was reduced by more than 80%, cognitive
performance was improved, and the neurological benefits of
BDNF were associated with reductions in degenerating cells
and normalization of hippocampal volume and neurogenesis
(Falcicchia et al., 2018).

Dr. Paolone further described studies using GDNF as a
potential treatment for PD. While GDNF has a relatively long
and promising pre-clinical history as a potent neuroprotective
agent in models of PD (Choi-Lundberg et al., 1997; Kordower
et al., 2000; Kirkeby and Barker, 2019; Whone et al., 2019) its
clinical utility has been difficult to test. To be effective, GDNF
needs to be delivered selectively in a long-term and stable manner
while covering the nigrostriatal system. Implants of encapsulated
GDNF cells one week prior to intrastriatal 6-OHDA injections
in rats protected DA neurons in the substantia nigra, preserved
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DA fibers in the striatum and protected against declines in
motor performance. To quantify behavioral extent of the lesion
as well as the benefits of GDNF implants, rats behavior was
assessed prior to device implant, prior to 6-OHDA lesion and
again two and four weeks post lesion using the cylinder, placing
and stepping test. When cell-based delivery of GDNF occurred
four weeks post 6-OHDA lesions (i.e., a neurorestorative model),
improvement in the forelimb use was observed as early as
four weeks post GDNF treatment and continued to grow for over
one year (62 weeks). Similarly, impressive distribution of GDNF
and positive effects on DA function were observed when larger,
clinical-sized devices were implanted for three months into the
putamen of minipigs. Implantation of two devices, separated by
5 mm, resulted in distribution of GDNF throughout the putamen
and caudate that robustly upregulated the expression of tyrosine
hydroxylase staining in the regions covered by GDNF diffusion
(Wahlberg et al., 2020).

Although the mechanisms are not completely understood,
proper function of cholinergic neurons located in the basal
forebrain, relies on the supply of NGF retrogradely transported
from the cortex and hippocampus (Salehi et al., 2004). Neurons
in the medial septal nucleus, the nucleus of the diagonal
band of Broca, the nucleus basalis of Meynert, and the
substantia innominata, including their cortical and hippocampal
projections are severely lost in AD contributing to memory and
attention deficits. In rats, NGF cells survive long-term (1 year)
and protect cholinergic cells in lesioned and aged animals (Winn
et al., 1994). Similarly, in non-human primate, NGF protects
septal neurons in lesioned and aged monkey (Emerich et al.,
1994; Kordower et al., 1994, 1996). The safety and tolerability of
this technology as well as the biological effects, have also been
explored in patients with mild to moderate AD to deliver NGF
directly to the basal forebrain to restore cholinergic function
(Wahlberg et al., 2012; Ferreira et al., 2015; Karami et al., 2015).

In rats, performance of a Sustained Attention Task
(SAT) induces a performance-associated increase in cortical
cholinergic neurotransmission depending on the integrity of
the cholinergic inputs to the prefrontal or posterior parietal
cortex. Furthermore, attentional performance is enhanced by
the stimulation of the mesolimbic circuitry, particularly the
shell of the nucleus accumbens (NAc) through the activation of
basal forebrain corticoperal projections (St Peters et al., 2011;
Paolone et al., 2012, 2013).

Given that these results support the potential use of
encapsulated trophic factor-secreting cells in human diseases
such as PD, AD and epilepsy, future studies might focus on the
simultaneous delivery of multiple factors to more fully treat the
pathology mosaicism that occurs in multisystem disorders such
as neurological diseases.

THE INTERPLAY OF CHOLINERGIC
INNERVATION AND CHRONIC STRESS
IN AD NEUROPATHOLOGY

Investigation in PD provided a model for the pursuit of the
selective neuronal vulnerability in the AD brain which was

originally focused on cholinergic neurons. In 1970’s, the first
evidence suggested a selective reduction of the activity of the
acetylcholine synthetic enzyme choline acetyltransferase (ChAT)
as well as the acetylcholinesterase (AChE) in the brain area
of hippocampus, a region known to participate in memory
functions, as well as in cortex and amygdala (Davies and Maloney,
1976) while other studies described a relationship between ChAT
activity and mental ability in demented subjects (Perry et al.,
1978). Today, it is widely accepted that cortical cholinergic
denervation in the AD brain represents one of the earliest
and most severe transmitter changes while drugs that boosting
cholinergic system (e.g., by AChE inhibition) are widely used for
mild/moderate AD patients. Overall, the cholinergic hypothesis
has been implicated in the AD etiology and it is based on the
degeneration of cholinergic neurons of basal forebrain which can
cause memory deficits. Interestingly, the cholinergic system is
also involved to the response to stress and the regulation to stress-
related hypothalamic-pituitary-adrenal (HPA) axis (Saswati et al.,
2015) while loss of cholinergic input to the hippocampus is
suggested to induce AD hippocampal vulnerability aggravating
memory deficits caused by stress (Craig et al., 2011). Thus, the
work described by Dr. Ioannis Sotiropoulos in the EBPS 2019
meeting focused on the recent evidence about the interplay of
chronic stress and AD on novel neurodegenerative mechanisms
in hippocampus with particular attention on Tau protein which
seems to be the converging protein between chronic stress and
AD brain pathologies. For instance, exposure to chronic stress or
high levels of major stress hormones including glucocorticoids
(GC) increases the levels of aberrantly hyperphosphorylated Tau
together with neuronal atrophy, synaptic malfunction, reduced
neurogenesis, and memory deficits (Sotiropoulos et al., 2011;
Lopes et al., 2016; Dioli et al., 2017; Pedrazzoli et al., 2019).
Importantly, the hyperphosphorylation occurred at certain Tau
epitopes that are strongly implicated in cytoskeletal dysfunction
and synaptic loss (e.g., pSer262) (Callahan et al., 2002) and
hippocampal atrophy (e.g., pThr231) (Hampel et al., 2005) in AD
patients. Related to synaptic malfunction and loss, chronic stress
causes the missorting of hyperphosphorylated Tau to synapses
which subsequently become dysfunctional (Lopes et al., 2016;
Pinheiro et al., 2016). The missorting of Tau to synapses is
now acknowledged as an early event in AD, preceding the
manifestation of detectable neurodegenerative processes related
to excitotoxic synaptic signaling and malfunction (Ittner et al.,
2010). Intriguingly, Tau deletion prevents the aforementioned
stress-induced signaling as well as neurostructural and behavioral
deficits (Lopes et al., 2016), suggesting that Tau is the “final
executor” of stress/GC induced neurotoxicity, similar to the
reported role for Tau as a mediator of Aβ-driven neurotoxicity
in AD (Ittner et al., 2010).

In vitro and in vivo studies suggest that stress and GC reduce
the degradation of Tau in hippocampus, thereby increasing
its accumulation (Sotiropoulos et al., 2008) via dysregulation
of molecular chaperones (responsible for Tau proteostasis)
(Sotiropoulos et al., 2015). More recent efforts have focused
on the impact of chronic stress and high GC on two
essential degradative mechanisms of Tau, the endolysosomal
pathway (Vaz-Silva et al., 2018) and autophagy (Silva et al.,
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2018). The endolysosomal pathway has been implicated in
neurodegenerative diseases such as AD and PD in which Tau
accumulation is a pathological feature (Kett and Dauer, 2016;
Small et al., 2017). Current work by Sotiropoulos and colleagues
has identified Tau as a substrate of the endolysosomal degradation
pathway (Vaz-Silva et al., 2018) while it demonstrated that
in vitro or in vivo exposure to high GC levels blocks this
pathway, accompanied by the accumulation of Tau. Further,
they showed that the involvement of the small GTPase, Rab35,
and the endosomal sorting complexes required for transport
(ESCRT) machinery that delivers Tau to lysosomes via early
endosomes and multivesicular bodies (MVBs). Importantly, high
GC suppress Rab35 transcription resulting in Tau accumulation
due to its impaired degradation while overexpression of Rab35
reverses GC-induced Tau accumulation and related neuronal
atrophy in the hippocampus (Vaz-Silva et al., 2018). Based on
the suggested signaling interplay between cholinergic and GC
receptors, future studies should monitor whether cholinergic
signaling participates in this GC action on the endolysosomal
degradation pathway.

Though its ability to degrade long-lived and misfolded
proteins such as Tau, autophagy and its interruption is causally
related to the accumulation of Tau protein aggregates in the
AD brain. Recent studies presented by Dr. Sotiropoulos at EBPS
meeting demonstrated for the first time, that both, chronic stress
and high GC levels inhibit the autophagic process via activation
of mTOR signaling providing another mechanism through which
these conditions contribute to the accumulation and aggregation
of Tau and downstream neurodegeneration (Silva et al., 2018).
These findings are in line with previous reports that chronic
stress stimulates mTOR activity (Polman et al., 2012), an event
associated with increased total Tau levels in the brains of AD
subjects (Pei and Hugon, 2008). Furthermore, inhibition of
mTOR signaling is shown to ameliorate Tau pathology (Jiang
et al., 2014) while our studies show that inhibition of mTOR
blocked the GC-driven Tau accumulation and aggregation (Silva
et al., 2018). Interestingly, autophagy is related to the degradation
of stress granules (SG) that are conserved cytoplasmic aggregates
of ribonucleoprotein complexes (RNPs) implicated in the
regulation of RNA translation, storage, and decay (Wolozin
and Ivanov, 2019). While the formation of SGs is considered
a protective mechanism against cellular stress (e.g., oxidative
stress), prolonged SG induction can become pathological and
neurotoxic. For instance, in AD neurodegeneration, SG promote
the accumulation of Tau aggregates in a vicious cycle wherein Tau
stimulates SG formation, with the RNA binding protein TIA1
playing a lead role in Tau misfolding and aggregation (Wolozin
and Ivanov, 2019). Dr. Sotiropoulos showed that chronic stress
and high GC increase the protein levels of various RBP and
SG markers in soluble and insoluble fractions in both cellular
and animal models of Tau pathology. Specifically, chronic stress
increased cytoplasmic (soluble and insoluble) levels of several
RBPs and SG-associated markers (e.g., TIA-1, PABP, G3BP,
FUS, DDX5) that contributed to the formation of insoluble
Tau inclusions and Tau accumulation (Small et al., 2017). As
noted above, TIA-1 plays a prominent role in Tau aggregation
(Vanderweyde et al., 2016; Apicco et al., 2018). Under stressful

conditions, TIA-1 is trafficked from the nucleus to the cytospasm
where it interacts directly with Tau (and other RBPs) to stimulate
its aggregation and accumulation (Pei and Hugon, 2008). Tau
missorting and accumulation in the dendritic compartment,
such as is found in AD pathology, is also triggered by chronic
stress/GC exposure (Lopes et al., 2016; Pinheiro et al., 2016).
Thus, the above findings highlight the important role of chronic
stress and GC signaling in the hippocampal neurodegeneration
in AD brain adding to the suggested complexity between
different factors/parameters that contribute to precipitates of AD
brain pathology.

CONCLUDING REMARKS

This mini-review briefly describes recent developments in
behavioral and cellular neuroscience as part of a symposium
outcome and indicates that neurodegenerative diseases such as
PD and AD have complex, multi-system changes in neuronal
circuits that underlie the disease’s characteristic neurobehavioral
changes. Our understanding of the molecular, neurochemical,
intraneuronal, and circuitry pathology underlying these
diseases has advanced considerably with developments in
analytical techniques and convergences in disciplines including
model development, molecular biology, engineering, and
pharmacology. Highlighted in this mini-review is the importance
of continued refinements in behavioral pharmacology
where understanding the functional consequences of disease
manifestation will lead to more rapid developments in medical
advancements. In particular, the presented optogenetic data from
transgenic mice and rats expressing Cre-recombinase under the
ChAt promoter indicate (1) the interplay between the CINs and
dopaminergic system in the striatum in motor and non-motor
behavior in murine 6-OHDA-PD models, as well as (2) new
insights into cholinergic modulation of attention in the prefrontal
cortex by directly comparing basal forebrain cholinergic inputs
and CINs in this cognitive function. Novel intracranial drug
delivery methods have revealed neuroprotective effects of GDNF
and NGF on dopamine and achetylcholine degeneration.

The novel and powerful tools of regulation of cholinergic and
dopaminergic innervation would offer novel and solid evidence
about their individual contribution in neuronal pathology and
behavioral impairment in different brain areas and circuits of the
neurodegenerative brain in different stages of the disease.
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