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Abstract

Pink salmon (Oncorhynchus gorbuscha) adults are the smallest of the five Pacific salmon

native to the western Pacific Ocean. Pink salmon are also the most abundant of these spe-

cies and account for a large proportion of the commercial value of the salmon fishery world-

wide. A two-year life history of pink salmon generates temporally isolated populations that

spawn either in even-years or odd-years. To uncover the influence of this genetic isolation,

reference genome assemblies were generated for each year-class and whole genome re-

sequencing data was collected from salmon of both year-classes. The salmon were sam-

pled from six Canadian rivers and one Japanese river. At multiple centromeres we identified

peaks of Fst between year-classes that were millions of base-pairs long. The largest Fst

peak was also associated with a million base-pair chromosomal polymorphism found in the

odd-year genome near a centromere. These Fst peaks may be the result of a centromere

drive or a combination of reduced recombination and genetic drift, and they could influence

speciation. Other regions of the genome influenced by odd-year and even-year temporal

isolation and tentatively under selection were mostly associated with genes related to

immune function, organ development/maintenance, and behaviour.

Introduction

Pink salmon are an economically important species under heavy exploitation and have been

the subject of intense mitigation efforts to maintain current levels of exploitation. Commercial

catches of pink salmon comprise roughly half of all Pacific salmon catches by weight and a

much greater percentage by count as they are the smallest of the commercially important

Pacific salmon [1, 2]. Since the late 1980s, more than a billion pink salmon are released annu-

ally from hatcheries [1] to maintain the abundance of this fishery.
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The native range of pink salmon encompasses parts of the southern Arctic Ocean between

North America and Asia as well as much of the northern Pacific Ocean [3]. Recently, Arctic

climate warming has opened previously inaccessible Arctic territory to pink salmon as well [4–

6]. Pink salmon have been introduced to the Great Lakes in North America [7] and drainage

basins of the White Sea (reviewed in [8]) near the border of Russia and Finland.

Pink salmon spend a year and a half at sea before returning to rivers to spawn at two-years

of age. This near-universal two-year life history, unique to this species among salmon, has

wide-ranging implications for their evolution, conservation, and possibly for their future as a

species. Gene flow between year-classes/lineages is limited [9] (this phenomenon is known as

allochronic or temporal isolation). There are, although very rare, exceptions that have been

noted to a two-year life-cycle of pink salmon in their native range (i.e., only a few individuals

have ever been reported in the literature [10–12]). Outside their native range, three-year-old

pink salmon have been observed in the Great Lakes following introduction [7, 13]. One

hypothesis to explain the development of one-year-old spawning in pink salmon, based on

experimental rearing in heated sea water, is that temperature may play a role in precocious

development [14].

Within a year-class, population genetic differentiation among rivers tends to be lower than

that of other salmon species, which is a possible consequence of increased straying of pink

salmon from natal streams during spawning [15, 16]. Increased straying itself may be a reper-

cussion of the reduced time that pink salmon spend in their natal streams and the reduced

time they have for imprinting on that stream compared to most other salmon species (chum

salmon–Oncorhynchus keta being an exception, but chum salmon also have lower genetic

diversity [3, 17, 18]). Pink salmon are ready for sea migration as soon as they emerge from

gravel and after yolk-sac absorption [19].

In contrast to the regional reduced heterogeneity observed within year-class populations,

there is a high level of divergence between year-classes as a result of limited gene flow [9, 20–

24]. Genetic differentiation between odd and even lineages from the same river is greater than

within year-class differentiation, a phenomenon observed across the species natural range

[25]. There are also phenotypic differences that have been reported between lineages such as

gill raker counts [21], length/size (with even-year fish tending to be smaller in Canada) [26–

28], and survival/alevin growth in low-temperature environments [29].

The divergence of pink salmon from other Pacific salmon species has been estimated to

have occurred several million years ago [30–34]; this provides a maximal time of odd and even

lineage divergence. Based on mitochondrial nucleotide diversity, divergence times between

odd and even-year lineages have previously been estimated as 23,600 years [35], 150–608 thou-

sand years ago [36], and 0.9–1.1 million years ago [24]. The relatively recent estimates of diver-

gence are inconsistent with complete temporal isolation between odd and even lineages

(potentially for several million years). It has been suggested that low-level gene flow or recolo-

nization of extirpated year-classes by alternate year-classes could account for recent estimates

of divergence, with recolonization being a favoured explanation [35]. Both low-level gene flow

and recolonization (where an even-year population was established from an odd-year popula-

tion) have been observed in introduced pink salmon in the North American Great Lakes [7,

37, 38], revealing that it is possible that environment and temperature (suggested in [38, 39])

can alter the allochronic isolation observed in modern times.

While odd-year and even-year pink salmon populations may occupy the same environment

(during different years), these lineages can still have different selective pressures [40]. For

example, the density of pink salmon is known to vary between years [40, 41], and density may

influence the composition of pink salmon predators, prey, and the number of fish on the

spawning grounds [42–44]. In years with a high abundance of pink salmon, some studies have
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reported a decrease in body size of pink salmon at sea (other species of salmon and seabirds

have also been adversely influenced during these high abundance years) [43–47]. These studies

reveal that the intraspecific competition among other pink salmon and interspecific competi-

tion among other species can vary significantly between odd and even-years.

In this study, we present genome assemblies for both odd-year and even-year lineages,

develop a transcriptome to help in the annotation of these assemblies, and analyze polymor-

phisms found between groups. We were able to identify large Fst peaks adjacent to many cen-

tromeres and to verify one major fusion or deletion on LG15_El12.1–15.1 by combining

polymorphism data with long-read sequencing of both year-classes. We also identified regions

of the genome that have diverged between odd and even-year lineages possibly as a response to

selection. These regions of the genome are important aspects of pink salmon biology and pro-

vide greater insight into the evolutionary divergence of the lineages.

Materials and methods

Animal care

Fisheries and Oceans Canada Pacific Region Animal Care Committee (Ex. 7.1) was the autho-

rizing body for animal care carried out in this study. All salmon were reared, collected, or

euthanized in compliance with the Canadian Council on Animal Care Guidelines.

Genome assemblies

Two genome assemblies were produced for this study. The first assembly was generated from

an odd-year male and was followed by a even-year male assembly. The differences in method-

ology between assemblies reflect the availability of resources at the time they were generated.

This is why different genomes were used for synteny and why Hi-C data was only available for

the even-year assembly.

A mature male pink salmon was sampled from the Big Qualicum River Hatchery (NCBI

BioSample: SAMN16688056) on September 19, 2019 (odd-year) by hatchery personnel and

euthanized by concussion as specified in section 5.5 of the Canadian Council on Animal Care

guidelines. A mature male pink salmon was also sampled from the Quinsam River Hatchery

(NCBI BioSample: SAMN18987060) by hatchery personnel in the same manner on July 28,

2020 (even-year). We dissected liver, spleen, kidney, and heart tissues from the carcasses and

flash-froze them on dry ice immediately. These tissues were stored at -80˚C. We used a Nano-

bind Tissue Big DNA Kit (Circulomics) to isolate high-molecular DNA following the manu-

facturer’s protocol from multiple tissues. In addition, Short Read Eliminator Kits

(Circulomics) were used to reduce the fraction of small DNA fragments in the DNA extrac-

tions following the kit protocol for DNA samples to be sequenced on Oxford Nanopore Tech-

nologies (ONT) platforms.

We generated sequencing libraries with the prepared DNA using a Ligation Sequencing Kit

(SQK-LSK109 ONT) following the manufacturer’s protocol. The libraries were sequenced on a

Spot On Flow Cell MK1 R9 with a MinION (ONT, even and odd-year assemblies) or a Pro-

methION (R9.4.1 flow cell, even-year assembly only). Libraries sequenced on the PromethION

were size selected using magnetic beads (0.4:1 ratio). DNase flushes were performed to

increase yield according to the manufacturer’s instructions. We also tried to add 1% DMSO

immediately before sequencing to reduce secondary structures that might block pores and

reduce sequencing efficiency for one flow-cell (with a minor increase in pore occupancy, more

titration will be needed to identify if there are benefits of adding DMSO). FASTQ sequence

files were generated either using the Guppy Basecalling Software (version 3.4.3+f4fc735 for
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sequences from the MinION) with default settings or MinKNOW v3.4.6 (for sequences from

the PromethION).

Short-read sequence data were generated for genome polishing for the even-year genome

assembly (NCBI SRA accession: SRX10913279 –SRX10913282) and the odd-year genome

assembly (NCBI SRA accession: SRX6595859 –SRX6595860). We generated the short-read

data for the even-year genome by shearing 1ug of DNA (pink even-year male described above)

with a COVARIS LE220 (Covaris) using the following configuration in a 96 microTUBE plate

(Covaris): duty 20, pip450, cycles/burst 200, total time 90s, pulse spin in between 45s treat-

ment. The library was then constructed using the MGIEasy PCR-Free DNA Library Set (MGI)

following the manufacturer’s protocol. The library was then sequenced on an MGISEQ-200RS

Sequencer (150 + 175 PE).

We generated the short-read sequence data for polishing the odd-year genome assembly for

a previous assembly that was not published because the contiguity of the assembly was low.

The sequences were from an odd-year haploid female produced at Fisheries and Oceans Can-

ada using source material from the Quinsam River Hatchery (NCBI BioSample:

SAMN12367892). To produce the haploid salmon, we applied UV irradiation (560 uW/cm2

for 176 s) to sperm from a Quinsam River male pink salmon (to destroy parental DNA) imme-

diately before fertilizing eggs from a Quinsam River female pink salmon. Prior to sequencing,

the individual was confirmed to be haploid using a panel of 11 microsatellites. The details of

the library preparations and sequencing technology can be found on the NCBI website (NCBI

SRA accession: SRX6595859 –SRX6595860).

We created a Hi-C library for the even-year genome assembly using the Arima-HiC 2.0 kit

(Arima Genomics–manufacturer’s protocol) with liver tissue from the even-year male (NCBI

SRA accession: SRR14496776). The library was then sequenced on an Illumina HiSeq X

(PE150). A Hi-C library was only successfully generated for the even-year genome assembly.

After sequencing, we produced initial genome assemblies with the Flye genome assembler

(version 2.7-b1587 –odd, 2.8.2-b1695 –even) [48] using ONT sequences (parameters: -g 2.4g,—

asm-coverage 30). Racon (version 1.4.16) [49] was then used to find consensus sequences of the

Flye assemblies (parameters: -u) after aligning the respective ONT reads to the assemblies using

minimap2 [50] (version 2.13, parameters: -x map-ont). We polished the assemblies with Pilon

(version 1.22) [51] using the following methods. Paired-end reads were filtered and trimmed

using Trimmomatic [52] (version 0.38) (parameters for the odd-year reads NCBI BioSample

SAMN12367892: ILLUMINACLIP: TruSeq3-PE-2.fa:2:30:10 LEADING:28 TRAILING:28 SLI-

DINGWINDOW:4:15 MINLEN:200; parameters for the even-year reads NCBI BioSample

SAMN18987060: ILLUMINACLIP:TruSeq3-PE.fa:2:30:10:2:keepBothReads LEADING:3

TRAILING:3 MINLEN:36). The respective reads were aligned to each of the Racon-corrected

assemblies using bwa [53, 54] (version 0.7.17) with the -M parameter and sorted and indexed

using Samtools [55] (version 1.9) prior to polishing with Pilon (default parameters).

After the genome assemblies were polished, we identified the order and orientation of con-

tigs/scaffolds on pseudomolecules/chromosomes for the odd-year genome using a previously

published genetic map [56] and synteny to the coho salmon genome (NCBI:

GCF_002021735.2). Chromonomer [57] (version 1.10) was used to order the contigs/scaffolds

using the genetic map (parameters:—disable_splitting). Ragtag [58] (version 1.0.1) was used to

order the contigs/scaffolds using synteny to the coho salmon genome (default parameters).

We used a custom script [59] to compare the contig order files output by Chromonomer and

Ragtag (.agp files) and manually reviewed the output for discrepancies. The manually curated

order and.fasta files were submitted to the NCBI.

To order and orient contigs and scaffolds on pseudomolecules for the even-year genome,

we mapped Hi-C reads to the polished assembly using scripts from Arima Genomics [60]. The
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output alignment file was then converted to a.bed file using BEDtool bamtobed (version

2.27.1) [61] with default parameters and sorted using the Unix command ‘sort -k 4.’ After the

Hi-C reads were mapped to the genome assembly, Salsa2 [62, 63] was used to further scaffold

the contigs and initial scaffolds (parameters: -e GATCGATC,GANTGATC,GANTANTC,GAT-
CANTC). After scaffolding, we mapped the remaining contigs and scaffolds onto pseudomole-

cules/chromosomes using the same strategy as for the odd-year genome assembly (see above)

except a newer genetic map was used [64] (an odd-year genetic map was the only available)

and the rainbow trout genome assembly (NCBI: GCF_013265735.2, [65]) was chosen for syn-

teny. The proposed order and orientation was then reviewed manually using Juicebox (version

1.11.08) [66] before submission to the NCBI. The.hic and.assembly files used by Juicebox were

produced using the pipeline from Phase Genomics [67]. The nomenclature for the chromo-

somes was based on the linkage group from the genetic maps and from the Northern pike

orthologous chromosomes in an attempt to standardize nomenclature across salmonids [68].

A BUSCO (Benchmarking Universal Single-Copy Orthologs) version 3.0.2 analysis [69]

was used to assess assembly quality. We performed these analyses after polishing assemblies,

but before mapping contigs/scaffolds onto chromosomes. The lineage dataset used in this anal-

ysis was actinopterygii_odb9 (4584 BUSCOs). The parameters used were: -m genome and -sp

zebrafish.

A Circos plot was generated from the odd-year genome assembly using Circos software ver-

sion 0.69–8 [70]. We identified homeologous regions of the genome with SyMap version 5.0.6

[71] using a repeat-masked version of the assembly without unplaced scaffolds or contigs

(default settings). Repeats had previously been identified by NCBI and were masked by us

using Unix commands. The output from SyMap was formatted and summarized using scripts

from Christensen et al. (2018) [72]. A histogram of repetitive sequence was generated using a

python script [73]. The Marey map (genetic map markers aligned to a genome) was generated

using the methods from Christensen et al. (2018) [72]. Centromere positions were taken from

the genetic map after it was converted into a Marey map.

Whole-genome re-sequencing

Samples were previously collected by Fisheries and Oceans Canada personnel from the follow-

ing bodies of water (British Columbia unless otherwise noted): Quinsam River Hatchery (odd-

year = 21, even-year = 6), Atnarko River (odd-year = 6), Kitimat River Salmon Hatchery (odd-

year = 3, even-year = 6), Deena River (even-year = 6), Yakoun River Hatchery (even-year = 6),

Snootli Creek Hatchery (even-year = 6), Kushiro River (Japan, odd-year = 1) (S1 File). Samples

were chosen to encompass odd-year and even-year samples from the same body of water or

from nearby streams (even-year n = 30, odd-year n = 31).

We extracted DNA from tissues stored either in 100% ethanol or RNAlater (ThermoFisher)

using the manufacturer’s protocol [74]. Whole-genome sequencing libraries were produced at

McGill University and Génome Québec Innovation Centre (now the Centre d’expertise et de

services Génome Québec). The libraries were generated using the NxSeq AmpFREE Low

DNA Library Kit and NxSeq Adaptors (Lucigen). They were then sequenced on an Illumina

HiSeq X (PE150).

We identified nucleotide variants using GATK [75–77] (version 3.8). Unfiltered paired-end

reads were aligned to the Racon corrected odd-year genome assembly (as other versions were

unavailable at the time–available at: https://doi.org/10.6084/m9.figshare.14963721.v1) using

bwa mem (parameters: -m) and the sort command from Samtools. Picard’s [78] (version

2.18.9) AddOrReplaceReadGroups was used to change read group information (with strin-

gency set to lenient). Samtools was used to index the resulting alignment files, and the
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MarkDuplicates command from Picard was used to mark possible PCR duplicates (lenient val-

idation stringency). The MarkDuplicates command was also used to merge.bam files if multi-

ple sequencing lanes were used to sequence the sample. Read group information was changed

using the Picard command ReplaceSamHeader for these samples so that the library and sample

ID were the same, but other information was not altered. This was performed so that GATK

would treat the sample appropriately.

HaplotypeCaller (GATK) was then used to generate.gvcf files (parameters:—genotyping_-

mode DISCOVERY,—emitRefConfidence GVCF) for each sample. The GenotypeGVCF com-

mand from GATK was then used to genotype the individuals in 10 Mbp intervals (see [79] for

python script used to split into 10 Mbp intervals). The CatVariants command was used to

merge the intervals afterwards. Variants were then hard-filtered using vcftools [80] (version

0.1.15) with the following parameters: maf 0.05, max-alleles 2, min-alleles 2, max-missing 0.9,

remove-indels, and remove-filtered-all (VCF file available at: https://doi.org/10.6084/m9.

figshare.14963739.v1). Additional filtering was done for some analyses, which are sensitive to

linkage disequilibrium. Variants were filtered if heterozygous allele counts were not evenly

represented—also known as allele balance (minor allele count< 20% of the major allele count,

see [79] for python script). Variants in linkage disequilibrium were thinned/filtered using

BCFtools [81] (parameters: +prune, -w 20kb, -l 0.4, and -n 2; window 20 kbp, max LD 0.4,

allow 2 variants in window). Custom scripts, bwa mem, and Samtools index were used to map

the variants to different genome assemblies [82].

Transcriptome

To better facilitate annotation of the genome assemblies by the NCBI, we collected RNA-seq

data from 19 tissues sampled from a juvenile female pink salmon (NCBI Accessions:

SRX6595821-SRX6595839). Euthanasia of this salmon was performed by placing the salmon

in a bath of 100 mg/L tricaine methanesulfonate buffered with 200 mg/L sodium bicarbonate.

Team dissection was used to quickly remove tissues, and each tissue was stored in RNAlater

Stabilization Solution (ThermoFisher) as recommended by the manufacturer.

We extracted RNA from the tissue stored in RNAlater Stabilization Solution using the Qia-

gen RNeasy kit (QIAGEN). Stranded mRNASeq libraries were generated at McGill University

and Génome Québec Innovation Centre, with NEBNext dual index adapters. Libraries were

then sequenced as a 1/39 fraction of a NovaSeq 6000 S4 PE150 lane at McGill University and

Génome Québec Innovation Centre. These datasets were deposited to NCBI for use in their

gene annotation pipeline (BioProject: PRJNA556728). No other analyses or transcriptome

assemblies were performed on this dataset.

Population structure

As clustering techniques are sensitive to linkage disequilibrium, we used variants that were

hard-filtered (including for allele balance) and filtered for linkage disequilibrium (see Whole-

genome re-sequencing section for filtering details) for all population structure analyses. A

DAPC analysis [83] was used to cluster individuals in R [84] using the following packages: ade-

genet [85], vcfR [86], and ggplot2 [87]. The number of DAPC clusters was determined using

the find.clusters function and choosing the cluster count with the lowest Bayesian information

criterion. Thirty principal components were retained with the dapc function. The variants

used for the DAPC analysis were not yet mapped to chromosomes.

To complement the DAPC analysis, we also performed an Admixture (version 1.3.0) analy-

sis [88] to identify clusters of individuals and quantify the admixture between the identified

groups. To format the linkage disequilibrium thinned.vcf file, we used a custom Python script
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to rename the chromosomes to numbers [79] and PLINK (version 1.90b6.15) [89, 90] was

used to generate.bed files (parameters:—chr-set 26 no-xy,—double-id). PLINK was also used

to generate a principal components analysis. The admixture software was then used to identify

the optimal cluster number based on the lowest cross-validation error value. The admixture

values from this analysis were plotted in R.

To examine population structure based on the mitochondrion sequence, we generated a

phylogenetic tree based on full mitochondria sequences. The genome assembly included a

mitochondrion sequence, and this region of the genome was subset from the variant file using

vcftools. The resulting file and the SNPRelate [91] package in R were used to generate the phy-

logenetic tree. The snpgdsVCF2GDS and snpgdsOpen functions were used to import the data,

the snpgdsDiss function was used to calculate the individual dissimilarities for pairwise com-

parisons between samples, the snpgdsHCluster function was used to generate a hierarchical

cluster of the dissimilarity matrix, the snpgdsCutTree function was used to determine sub-

groups, and the snpgdsDrawTree function was used to plot the dendrogram.

From the variants with minimal filtering and the variants after all filters had been applied,

the heterozygosity ratio was separately calculated based on the number of heterozygous geno-

types divided by the number of alternative homozygous genotypes [92, 93]. The number of

heterozygous and homozygous genotypes were counted using a python script from Christen-

sen et al. (2020) [79]. Heterozygous genotypes per kilobase pair (kbp) was calculated by divid-

ing the heterozygous genotype counts by the genome size (2,528,518,120 bp) and then

multiplied by 1000. This calculation was used on the variants with minimal filtering not yet

mapped to chromosomes.

The number of shared alleles was calculated as a metric for relatedness using custom scripts

for the variants with minimal filtering and which were mapped to chromosomes [94]. This

value is calculated by counting the number of alleles an individual has in common with

another individual and is similar to previous work [95–97]. The percent shared alleles was cal-

culated in R (number of shared alleles divided by the total allele count multiplied by 100) and

plotted using the reshape2 [98] and pheatmap [99] R packages.

Fst, nucleotide diversity (within populations—pi and between—dxy), and Tajima’s D were

calculated and plotted using the R packages PopGenome [100], dplyr [101], tidyr [102],

stringr, and qqman. In PopGenome, all metrics were calculated using a sliding window of 10

kbp and the data were visualized as a Manhattan plot using qqman. A 10 kbp window was cho-

sen to minimize the influence of individual variants while maintaining fine-scale resolution to

identify regions of the genome that have interesting profiles. We used the populations module

from Stacks version 2.54 [103] to calculate the number of private alleles, percent of polymor-

phic variants, Fis (inbreeding coefficient), and Pi (nucleotide diversity within a population) for

odd and even year class samples grouped as populations. A comparison was also performed to

see how filtering influenced these metrics.

Genomic regions associated with population structure under selection

To identify regions of the genome associated with population structure identified in the DAPC

analysis and potentially under selection, we performed an eigenGWAS analysis [104]. The for-

mat of the hard-filtered variants was converted to the appropriate format in PLINK, and the

GEAR [105] software was used to run the eigenGWAS analysis (this was performed on a

slightly different version of the genome assembly than the one available on the NCBI website,

but only positions on chromosome 9 were minimally affected). Significance was corrected for

using the genomic inflation factor to better identify markers potentially under selection rather

than a result of genetic drift between populations. The genomic inflation factor corrected p-
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values were then plotted in R using the qqman [106] and stringr [107] packages. A Bonferroni

correction was applied as a multiple test correction (alpha = 0.05). Only peaks with at least 5

SNPs within 100 kbp of each other were retained to reduce false-positives (nucleotide variants

under selection are expected to be in linkage disequilibrium with surrounding variants and

significant single variants not in linkage may be a consequence of spurious alignments). Aver-

age linkage disequilibrium declines rapidly after 100 kbp in cultivated coho salmon [108], and

likely after shorter distances in wild populations. Multiple factors such as population dynamics

(e.g., small population size), multiple associations in one region, or selection could explain

linkage over greater genomic distances. At the time of writing, the genome assembly has not

been annotated by NCBI, and synteny was used to identify candidate genes by using BLAST

[109, 110] to align variants with the lowest p-value to other annotated salmon genomes (coho

salmon: GCF_002021735.2, sockeye salmon: GCF_006149115.1, Chinook salmon:

GCF_018296145.1). Nucleotide diversity (pi) and other metrics were calculated using Stacks

for these regions. Tajima’s D values for these regions were generated in PopGenome.

Sex determination and sdY

We utilized a genome-wide association (GWA) of phenotypic sex to identify the region of the

genome associated with sex for all pink salmon (individual year-classes were checked as well).

This analysis was also used to identify where the contig from the genome assembly with the

sdY gene should be placed. This was confirmed with synteny from the rainbow trout Y-chro-

mosome (NC_048593.1) and manual inspection of the Hi-C data (it was placed in the even-

year genome assembly). The GWA analyses were performed using PLINK (parameters:—

logistic—perm). Synteny was identified from alignments to the rainbow trout genome assem-

bly (GCF_013265735.2, [65]) using CHROMEISTER [111] (default settings).

When manually genotyping the presence/absence of the sdY gene by visualizing alignments

in IGV [112], we noticed some males had increased coverage of the sdY gene, and two haplo-

types were identified (4 variants in non-coding DNA). The haplotypes were manually geno-

typed (either as the CGGA or TTAC haplotype). To estimate the copy number of the sdY

gene, we first used a python script to determine the average coverage of all hard-filtered vari-

ants [113]. The average coverage of the four variants in the sdY gene was then divided by the

average coverage of all variants.

Results

Genome assemblies

The odd-year assembly (GCA_017355495.1) had a combined length of ~2.5 Gbp, with 20,664

contigs and a contig N50 of ~1.8 Mbp. The even-year assembly had similar metrics, with a

contig N50 of ~1.5 Mbp, 24,235 contigs, and a length of ~2.7 Gbp. We used a BUSCO analysis

of known conserved genes to determine the completeness and quality of the genome assembly.

Of the 4584 BUSCOs, 95.3% were found to be complete in the odd-year genome assembly

(54.9% single-copy and 40.4% duplicated), 1.4% were fragmented, and 3.3% were missing. The

even-year assembly also had 95.3% complete BUSCOs (51.5% single-copy and 43.8% dupli-

cated), but more fragmented (1.6%) and fewer missing BUSCOs (3.1%).

The odd-year and even-year assemblies had 26 linkage groups and extensive homeologous

regions between chromosomes (Fig 1, the even-year assembly is very similar to the odd-year

assembly S1 Fig). The odd-year genome assembly contained similar levels of repetitive DNA

and duplicated regions compared to other salmonids (Fig 1, [72, 79, 114]). Like other salmon

species, increased sequence similarity was also observed at telomeres between duplicated
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chromosomal arms (Fig 1). Peaks of increased Fst between odd and even-year lineages were

commonly found at putative centromere locations (Fig 1, Table 1).

Population structure

A shared allele analysis (Fig 2) and both admixture and DAPC analyses (Fig 3) revealed a clear

delineation between odd and even-year lineages. Parent-progeny and sibling relationships

(relationships known during sampling) are highlighted by increased levels of shared alleles,

but the majority of clustering appears to be related to geographical distance (Fig 2, S1 File).

Fig 1. Circos plot of pink salmon genome assembly. Positions are all based on the odd-year genome assembly. Chromosomes/

linkage groups are noted with blue boxes representing the centromere identified in Tarpey et al. (2017) [64]. Links between

chromosomes are homeologous regions identified using SyMap. A) Fst values between all odd-year and even-year salmon greater

than 0.25. Values greater than 0.5 are highlighted red. B) The fraction of repetitive DNA as identified by NCBI (odd-year). Values

greater than 0.65 are highlighted red. C) The percent identity between homeologous regions identified by SyMap (scale 75–100%).

Values greater than 90% are highlighted red. D) A Marey map with markers from the genetic map (y-axis, 0–1, with 1 being the

marker with the greatest cM value) placed onto the genome (x-axis, odd-year).

https://doi.org/10.1371/journal.pone.0255752.g001
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No apparent admixture was observed in the even-year class (Fig 3B). In the odd-year line-

age, estimated ancestry from the even-year group varied from zero to over forty percent (Fig

3B). Odd-year ancestry ranged from 0.75–0.77 in Kitimat, 0.76–0.78 in Atnarko, and 0.92–1 in

Quinsam salmon (Fig 3B).

A separate analysis of mitochondrial DNA was performed to further investigate the rela-

tionships between the odd and even-year lineages. Odd-year pink salmon had longer branch

lengths in mitochondria dendrograms and haplotype networks with more uniform distribu-

tions of haplotypes (Fig 4A and 4B). The even-year salmon had two major haplotypes (Fig 4B).

Mitochondrial sequence analyses revealed 21 unique mitochondria haplotypes among the 61

individuals with 1–19 steps between haplotypes (Fig 4). Based on the length of the sequence

analyzed (16,822 bp) this represents a mutation frequency between 0.006% to 0.1%. One hap-

lotype was shared between lineages and the closest haplotype that was not shared had 5 steps

between year-classes (Fig 4). The mitochondrial analyses illustrate divergence between the odd

and even-year lineages, but also raises questions regarding possible recent admixture based on

a shared haplotype and an odd-year haplotype most closely related to an even-year haplotype.

Several metrics were calculated to quantify genetic divergence between and within year-

classes: heterozygosity ratios, heterozygous genotype per kbp, polymorphic sites, private

alleles, and nucleotide diversity. Heterozygosity ratios in odd-year fish ranged from 1.5–4.56,

with an average of 2.54 (excluding haploid individuals generated for a previous project) (S1

File). Even-year class individuals ranged from 1.09–1.78, with an average of 1.44 (S1 File). The

average heterozygous genotype per kbp (excluding haploids) was 0.71 for odd-year salmon

(range: 0.55–0.85) and 0.58 for even-year (range: 0.45–0.69) pink salmon. The Pearson correla-

tion between heterozygosity ratio and heterozygosity per kb was 0.91 (excluding haploids).

Salmon from odd-years had on average higher levels of polymorphic sites, increased private

alleles, and increased nucleotide diversity (Table 2). These values varied based on parameters

used for filtering nucleotide variants (Table 2). The average percent of shared alleles among

odd-year fish was 76.13%, 74.42% among even-year individuals, and 71.04% between year-

classes (S1 File). Most analyses revealed increased genetic diversity among odd-year pink

salmon than among even-year pink salmon and fewer shared alleles between odd and even-

year populations than within year-class.

Table 1. Largest Fst peaks between odd and even-year lineages.

Linkage group/ chromosome Region (Mbp) Size of peak (Mbp) Frequency Odd (p�) Frequency Even (p�) HWE Potential cause

LG04_El13.1–02.1 50–53 ~3 0.98 0.43 Both Centromere

LG10_El12.1–15.1 46.5–50 ~3.5 0.69 0.22 Both Centromere

LG14_El18.2–23.2 49–55 ~6 0.77 0.12 Both Centromere

LG15_El08.2–20.1 50–54 ~4 Centromere

~1.26 Deletion

0.5�� 0�� Both Centromere/

Deletion-Fusion

LG18_El09.2–17.1 45.5–46.5 ~1 1 0 Both Selection

LG21_El24.2–22.1 31–34.5 ~3.5 0.63 0 Both Centromere

LG25_El23.1–24.1 17.5–19 ~1.5 0.65 0.15 Both Centromere

LG26_El09.1–11.1 11.3–18 ~3.5 Centromere

~7.3 Misassembly

0.89 0.67 Both Centromere/

Misassembly

The odd and even allele frequencies (p) were based on the most clearly defined sub-region rather than the entire region. It is unclear which individuals have the deletion

or fusion on LG15_El08.2–20.1.

�reference genome allele frequency.

��alternative (to reference) allele frequency.

https://doi.org/10.1371/journal.pone.0255752.t001
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Genomic regions associated with odd and even-year lineages

We identified regions of the genome with divergence between odd and even-year lineages

using an eigenGWAS and Fst analysis (see Fig 1 and Table 1 for Fst analysis). Seventeen signif-

icant regions of the genome were discovered with the eigenGWAS analysis that contribute to

the divergence between odd and even-year lineages (Fig 5, Table 3, S1 Table). These regions

are putatively under selection as genetic drift is partially accounted for through the genomic

inflation factor. Multiple candidate genes under selection were identified in these regions

(Table 3, S1 Table). Nucleotide diversity, observed heterozygosity, and Tajima’s D values for

these regions are given in S1 Table.

In addition to identifying divergent regions of the genome possibly under selection, we also

identified Fst peaks between lineages. Seven of the eight largest Fst peaks between year-classes

were located in the vicinity of a centromere (Fig 1, Table 1). More detail is presented on one of

the largest Fst peaks. This peak is also associated with a large deletion or fusion. The Fst peak

Fig 2. Percent of shared alleles among pink salmon. A heatmap of shared alleles between salmon is shown with clustering and a dendrogram. Each square represents the

percent shared alleles after minor filtering of variants (bi-allelic SNPs). In addition to the legend displaying the colour representation of percent shared alleles, the sex,

year-class, and river system sample information is colour-coded and shown on both rows and columns.

https://doi.org/10.1371/journal.pone.0255752.g002
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on LG15_El12.1–15.1 (Fig 6A, Table 4) is in Hardy-Weinberg equilibrium in the odd-year

lineage (p = 0.984 with a chi-square test), but fixed in the even-year lineage (Fig 6B and 6C).

When Oxford Nanopore reads from the two year-classes were aligned to the genome assembly,

a heterozygous deletion or fusion from 51,670,144–52,926,328 was found in this region of the

odd-year salmon sequences (S2 Fig). The ~1.2 Mbp deletion/fusion may explain why the

LG15_El12.1–15.1 Fst peak was one of the largest and widest (Fig 1, S2 Fig).

Sex determination and sdY

The sex-determination gene in salmonids, sdY [116], was located on a ~110 kbp contig in the

pink salmon odd-year genome assembly (NCBI accession: JADWMN010014055.1) and on a

contig ~367 kbp that was placed onto a chromosome in the even-year genome assembly. The

sdY gene can be placed at one of the ends of LG20_El14.2 by using genome-wide association

with sex as the trait of interest, Hi-C contact data (even-year genome), and synteny with the

rainbow trout Y-chromosome or chromosome 29 (an autosome) of the coho salmon (Fig 7A,

S3 and S4 Figs). LG20_El14.2, has the reverse orientation in the odd-year assembly compared

to the genetic map (Fig 1), but was corrected to have the same orientation in the even-year

assembly (S1 Fig).

In both genome assemblies there is only one copy of the sdY gene, confirmed with a BLAST

alignment of a sdY gene available in the NCBI database (KU556848.1) to the respective assem-

blies. From a self-alignment of the sdY-containing contig, the majority of this contig is highly

repetitive, > 90 kbp out of ~110 kbp. From the alignment of the sdY-containing region in pink

salmon to the coho salmon chromosome 29, only a small portion of the Y-chromosome

appears to be unique to the Y-chromosome (S4 Fig). Genotypes were called for the majority of

this region for males and females, and the main difference related to sex was that all females

had large runs of homozygosity while many males had large runs of heterozygosity (S5 Fig,

S1 File).

Fig 3. Population structure of pink salmon. A) Sampling locations for odd and even-year pink salmon. Map was generated in R with the maps package [115]. B) An

admixture analysis based on an optimal group number of two. Sampling site is specified on the left (y-axis) by colour and fraction of alleles inherited from a lineage is

shown on the x-axis (orange–even-year, blue–odd-year). On the right, DAPC groups are shown (see S1 File for group and coordinate positions). The DAPC groups

matched year-class/lineage designations.

https://doi.org/10.1371/journal.pone.0255752.g003
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Fig 4. Whole mitochondrial genome comparisons between lineages. A) A dendrogram based on full mitochondrial sequences. The

y-axes show dissimilarity scores on the left and coancestry values on the right, which were used to cluster individuals. Year-class/

lineage is specified below the dendrogram. B) A full mitochondrial genome haplotype network is shown for the 21 unique haplotypes

identified. River names are shown for the haplotype shared between lineages.

https://doi.org/10.1371/journal.pone.0255752.g004

Table 2. Population metrics of the two lineages.

Odd Even

Number of variants 3,817,721 (101,594)

% polymorphic 93.23 (97.91) 90.66 (87.86)

Private alleles 356,634 (12,333) 258,335 (2,124)

Pi 0.276 (0.337) 0.269 (0.283)

Fis 0.075 (0.143) 0.122 (0.195)

Variants with minimal filtering are shown first and variants after all filters are shown in parentheses.

https://doi.org/10.1371/journal.pone.0255752.t002
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From previous research [117, 118], a pseudo growth hormone 2 gene was shown to be

tightly linked to sex-determination in pink salmon. Four tandem duplicates of this gene

(NCBI: DQ460711.1) were identified on the same contig in the even-year genome assembly,

Fig 5. Genome-wide divergence between odd and even-year pink salmon lineages. A Manhattan plot of eigenGWAS results, with

chromosome positions on the x-axis and p-values (corrected for genetic drift using the genomic inflation factor) on the y-axis to identify

regions of the genome potentially under selection. The red horizontal line represents a Bonferroni correction at α = 0.01 and the blue line at

α = 0.05. All positions are from the odd-year genome assembly.

https://doi.org/10.1371/journal.pone.0255752.g005

Table 3. Top eigenGWAS peaks identified between lineages.

Chromosome BP range SNP position with lowest p-value Candidate gene closest to the SNP with the lowest p-value Gene symbol

LG01_El19.1–16.1 51653225–51738345 51716026 protein tyrosine phosphatase receptor type J PTPRJ †

LG02_El19.2–07.2 18075760–18095551 18075760 AT-rich interactive domain-containing protein 3A arid3a †

LG02_El19.2–07.2 46961740–47008290 46969254 protein-methionine sulfoxide oxidase mical2b mical2b
LG02_El19.2–07.2 110392052–110493632 110449484 multidrug and toxin extrusion protein 2-like SLC47A2 †

LG08_El03.2–06.2 60715584–60782108 60767399 polh polymerase (DNA directed), eta POLH
LG14_El18.2–23.2 29365137–29414547 29411435 uncharacterized gene

LG14_El18.2–23.2 50053735–50217619 50217619 Unknown

LG15_El08.2–20.1 42753852–42762230 42758791 cystathionine gamma-lyase CTH +
LG15_El08.2–20.1 51106314–52224901 51106314 multiple candidates�

LG18_El09.2–17.1 45516859–45534019 45524530 cell division control protein 42 homolog� CDC42
LG18_El09.2–17.1 46342891–46450909 46347678 H-2 class II histocompatibility antigen, A-U alpha chain� H2-Aa +
LG19_El20.2–01.2 22831059–22843129 22836628 B-cell receptor CD22 CD22 †

LG21_El24.2–22.1 9281799–9398462 9391795 histidine N-acetyltransferase hisat
LG22_El03.1 10576168–10595358 10595038 purine nucleoside phosphorylase PNP
LG22_El03.1 15334053–15411821 15405819 multiple candidates

LG24_El10.1–25.1 47355926–47430898 47398112 microtubule-associated protein 9 map9
LG25_El23.1–24.1 37126251–37202999 37137812 uncharacterized gene (ncRNA) †

All positions are relative to the odd-year genome. Variant with the lowest p-value located in intron (†) or exon (+).

�associated with an Fst peak.

https://doi.org/10.1371/journal.pone.0255752.t003
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but only two copies were found in the odd-year genome assembly on separate contigs (S1

File). As these contigs were not mapped to a chromosomal position, it is likely that parts of the

Y-chromosome specific region remain incomplete in these two assemblies.

There were two sdY haplotypes (variants found in non-coding DNA) observed in both odd

and even male pink salmon (Fig 7B, S1 File). Additionally, some males possessed multiple cop-

ies of the sdY gene (10/25 or 40%, assuming that 1.5x coverage or greater was due to a second

copy) (Fig 7B). Although both salmon used for sequencing the genomes appeared to have a

single copy of the sdY gene (or the sequences were collapsed during assembly), males from

Atnarko, Deena, Quinsam, and Yakoun had multiple copies of sdY. While most males had 1–2

copies of the sdY gene, one Quinsam male appeared to have four copies. The CGGA sdY

Fig 6. Chromosome LG15_El12.1–15.1 Fst peak. A) A Manhattan plot of 10 kbp sliding-window Fst values between odd and even-year pink salmon lineages on

chromosome LG15_El12.1–15.1. B) Genotypes visualized in IGV. Each row represents an individual pink salmon and each column represents a nucleotide variant (dark

blue–homozygous reference, light blue–heterozygous reference, green–homozygous alternative, and white–missing genotype). Individuals were sorted by year-class

(shown on the right) and then by assigned genotype (shown on the left). C) Counts of genotypes of the chromosomal polymorphism based on manual genotyping.

https://doi.org/10.1371/journal.pone.0255752.g006

Table 4. Distribution of the LG15_El12.1–15.1 Fst peak haplotypes in odd-year pink salmon.

Haplotype–AA Haplotype–AB Haplotype–BB

Atnarko River 2 1 3

Kitimat River 1 1 1

Quinsam River 5 12 4

Kushiro River (Japan) 0 1 0

https://doi.org/10.1371/journal.pone.0255752.t004
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haplotype (see Materials and Methods section) was only identified in a single odd-year male

pink salmon, while the TTAC haplotype was evenly distributed between year-classes and was

the only haplotype with multiple copies (S1 File).

Based on manual inspection of the genotypes, long stretches of heterozygosity were

observed near the sdY gene in some males, but not in others. In males with the TTAC sdY hap-

lotype, there were extended or short runs of heterozygosity evenly distributed between year-

classes (S1 File). Even-year males with the TTAC sdY haplotype and a short run of heterozy-

gosity were more likely to have multiple copies of the sdY gene (n = 4, average = 2.7) than the

same group with long runs of heterozygosity (n = 4, average = 0.9, p = 0.017 with one-tailed,

unpaired t-test). Any individuals with the CGGA sdY haplotype did not have stretches of

Fig 7. The location and counts of the sex-determining gene, sdY, in pink salmon. A) A genome-wide association

analysis with sex as the phenotype under investigation shown as a Manhattan plot. The putative sex-determining

region is indicated with an arrow. B) A scatterplot with the average coverage of the variants across the genome on the

x-axis for all the pink salmon, and the estimated sdY count on the y-axis (sdY has previously been identified as the sex-

determining gene in most salmonids). The different colour points represent different year-classes and sdY haplotypes.

https://doi.org/10.1371/journal.pone.0255752.g007
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heterozygosity near the putative location of sdY. One hypothesis to explain these results is that

individuals with the CGGA sdY haplotype have an alternative sex chromosome.

Discussion

Population structure

Similar to previous studies [25, 56], pink salmon population structure divergence was found to

be greater between year-classes rather than based on geography at the whole genome level.

Shared allele, DAPC, and admixture analyses point to a clear delineation of odd and even line-

ages, with the exception of the only sample from Japan. In British Columbia, the even-year

lineage appeared to be more homogeneous than the odd-year lineage based on the admixture

analysis and several population metrics such as nucleotide diversity. In a species-wide range

context, these results exhibit the same trend of a major divergence between odd and even-year

lineages previously observed in other studies (with minor geographic population structure

within a lineage) [15, 25, 56].

Divergence between lineages was also revealed by whole mitochondrial sequences. There

were 21 unique mitochondria genotypes among the 61 individuals sampled, and only one of

these haplotypes was shared between lineages. While the number of unique haplotypes was the

same between lineages, most of the even-year class haplotypes (8 out of 10) were similar in

sequence. The two major haplotypes seen in the even-year class were consistent with the Alas-

kan A and AA haplotypes seen in Churikov and Gharrett (2002) [35], as were the numerous

and more distantly related odd-year haplotypes.

The low nucleotide diversity of mitochondrial haplotype networks and the increase of rare

haplotypes have led previous studies to conclude that pink salmon (with some local excep-

tions) have undergone a bottleneck during the Pleistocene interglacial period and rapid expan-

sion since the last glacial maximum or earlier [35, 36, 119]. The interconnected mitochondrial

networks in these studies have inner shared haplotypes between year-classes. Churikov and

Gharrett (2002) suggested that these observations supported a model where a year-class might

go extinct and an alternate year-class would then replace that population rather than contin-

ued gene flow between year-classes that would be necessary to otherwise explain the shared

haplotypes (incomplete lineage sorting was tested) [35]. The mitochondrial network seen in

this study is consistent with that hypothesis. An alternative hypothesis is that environmental

factors influence maturation timing and the two-year life-cycle of pink salmon, and gene flow

between year-classes only occurs when environmental conditions favour changes to the two

year life-cycle, as that seen in the introduction of pink salmon to the Great Lakes [7, 37, 38].

Estimates of divergence based on mitochondrial sequences suggest that odd and even-year lin-

eages (from East Asia and Alaska) are relatively recent for pink salmon as a species (generally

less than 1 million years ago) and divergence may have began during the Pleistocene intergla-

cial period or later [24, 35, 36].

It has previously been reported that the odd-year lineage of pink salmon has higher levels of

heterozygosity, private alleles, and allelic richness [25, 56]. A similar trend was observed in this

study with the heterozygosity ratio, heterozygous genotypes per kbp, private alleles, and other

metrics assessing nucleotide diversity. Several factors could help explain the reduced levels of

nucleotide diversity seen in the sampled even-year populations. Tarpey et al. (2018) suggested

three possibilities and these possibilities also apply to our current results, 1) the odd-year line-

age was older and the even lineage was derived from the odd-year lineage, 2) there was a past

reduction in even-year lineage(s), and 3) genetic variation was lost during adaptation [25].

Further sampling will be required to understand if this phenomenon is seen in all even-year

populations (especially as lower heterozygosity in the even-year lineage is not universally
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supported, e.g., [22]). This information is important to interpret which hypothesis is better

supported or if another model is better suited (e.g., extirpated lineage replaced by alternate

year-class).

Genomic regions putatively under selection

A large component of the genetic and phenotypic diversity between pink salmon year-classes

likely originates from genetic drift as there is little evidence for gene flow between lineages.

However, in addition to genetic drift, these lineages may experience different selective pres-

sures even if they occupy the same streams. As mentioned in the Introduction, population

density between lineages is often different and this can generate different ecological environ-

ments. EigenGWAS (to identify regions potentially under selection–this section) and Fst anal-

yses (to identify major regions of the genome that have diverged between lineages–next

section) were used to identify regions of the genome potentially responsive to these environ-

mental differences between pink salmon year-classes (17 regions in the eigenGWAS analysis

and eight regions in the Fst analysis). Candidate genes under selection were organized into

three broad categories (immune system, organ development/maintenance, and behaviour),

and each is discussed below.

Immune system. Variation in immune related genes is a common phenomenon between

salmonid populations (e.g., [79, 120, 121]). Between odd and even-year pink salmon, five eigen-

GWAS peaks were identified near or in genes with immune related functions (i.e., the gene clos-

est to the variant with the lowest p-value). These include the H-2 class II histocompatibility

antigen, A-U alpha chain (H2-Aa) [122–126], B-cell receptor CD22 (CD22) [127, 128], polh

polymerase (DNA directed), eta (POLH) [129–133], AT-rich interactive domain-containing

protein 3A (arid3a) [134, 135], and purine nucleoside phosphorylase (PNP) [136–140] genes.

Several factors could influence why these immune related genes might be under selection

between odd-year and even-year populations of pink salmon. For example, altered migration

patterns (reviewed in [141, 142]), increased pathogen loads between year classes due to

increased density (reviewed in [142, 143]), and increased physiological stress from competition

and increased number of predators during years with larger returns (e.g., [142]) could all influ-

ence the differences observed in immune related genes. Further investigations into the nature

of these genes in pink salmon may uncover the environmental factors and selective pressures

relevant to the evolutionary history of these pink salmon lineages. Preliminary metrics (i.e.,

observed heterozygosity, Tajima’s D, and manually annotated genotype haploblocks) suggest

that there have been recent selective sweeps in the even-year populations for all of these genes,

while only two genes appeared to experience the same sweeps in the odd-year populations (for

the opposite haploblocks), arid3a andH2-Aa.

Organ development/maintenance. Salmon go through nutritional and behavioural

changes that require organ-level alterations and maintenance throughout their life-cycle. This

can be observed in developing salmon that transition from planktivorous to piscivorous diets.

In the eye, this transition requires the development of new functionality such as night vision to

chase prey. One example of such a transition is the change of opsins in Pacific salmon during

maturation, from UV opsins in hatched salmon to blue opsins in later life stages [144, 145].

Variation in vision related genes have previously been observed between sockeye salmon

populations [79]. In Atlantic salmon, six6, a gene related to eye development, daylight vision

[146, 147], and fertility [148] was also found to be associated with age at maturity [149, 150]

and later with stomach fullness during migration [151]. These studies suggest that genetic vari-

ation influencing organ development, transition, or maintenance are important components

influencing salmonid evolution.
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Similar to six6 in Atlantic salmon, Protein tyrosine phosphatase receptor type J (PTPRJ)
[152], histidine N-acetlytransferase (hisat) [153–160], and microtubule-associated protein 9

(MAP9 or ASAP) [161] all appear to play roles in proper vision. The variation in these genes

may represent differences in selective pressure between odd and even-years and could be

driven by the different population dynamics observed between odd and even-year populations.

Preliminary metrics suggest odd-year populations have had recent selective sweeps of all three

of these genes, and even-year populations have had a recent selective sweep for the opposite

haploblock of the hisat gene.

Cystathionine gamma-lyase (CTH) may have, among other roles, a function in hearing

[162–164], and could have been influenced by similar population dynamics as those suggested

for vision-related genes. Multidrug and toxin extrusion protein 2 gene (SLC47A2) is not

related to a specific organ, though it may have a special role in the blood-brain barrier [165,

166]. Instead, it may help in removing toxins [166], which might accumulate in more dense

populations. For example, dense spawning populations of salmon have been shown to drasti-

cally decrease dissolved oxygen in a stream [167] and increase ammonium and other toxin lev-

els (reviewed in [168]). Evidence for a selective sweep of SLC47A2 was observed in preliminary

metrics of odd-year populations.

Behaviour. Fish display consistent behavioural differences from each other, analogous to

human personalities [169]. Personality variation in a population may represent adaptive solu-

tions to different environmental pressures [169]. In high density populations, such as the odd-

year populations, more aggressive behaviours during high-density spawning conditions [42]

could result in more offspring, but might waste energy in lower-density conditions. Associa-

tions to genes related to behaviour have previously been identified among sockeye salmon

populations [79], and under selection between wild and farmed Atlantic salmon [170]. In the

present study, protein-methionine sulfoxide oxidase mical2b (mical2b) [171, 172] and cell

division control protein 42 homolog (CDC42) [173], both putative genes found in the eigen-

GWAS analysis between even and odd-year pink salmon, have previously been found to be

associated with anxiety/reactiveness and schizophrenia, respectively. Preliminary evidence of a

recent selective sweep was identified in even-year populations for themical2b gene and in the

odd-year populations for the CDC42 gene.

Fst peaks between odd and even-year lineages

A single major chromosomal polymorphism (either a fusion or deletion) was identified proxi-

mal to a centromere on LG15_El12.1–15.1. This region was characterized by ~4 Mbp runs of

homozygosity/heterozygosity. This region was identified from an Fst analysis because nearly

the entire region was fixed in the even-year lineage, but appeared to segregate as a single locus

in Hardy-Weinberg equilibrium in the odd-year lineage. It is difficult to distinguish between a

deletion and a chromosomal fusion in these analyses. Previous research supports chromo-

somal variants in pink salmon [174] and a species-specific fusion of this chromosome [68], but

further research will be needed to test this hypothesis.

Interestingly, runs of homozygosity/heterozygosity were common at centromeres rather

than an effect of chromosomal polymorphisms (all but two of the 26 pink salmon chromo-

somes are metacentric–the other two are subtelocentric [175]). Six other major runs of homo-

zygosity/heterozygosity were also located near centromeres and they differed between

lineages. All of these Fst peaks extend for at least 1 Mbp and were in Hardy-Weinberg equilib-

rium. The only other Fst peak, besides the one on LG15_El08.2–20.1 that was fixed in a popu-

lation, was the peak on LG21_El24.2–22.1. All of the other Fst peaks were skewed toward

opposite genotypes, with the exception of LG26_El09.1–11.1, which varied by the fraction of
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homozygous and heterozygous genotypes between odd-year and even-year populations. It is

expected that regions with reduced recombination, such as centromeres, will have increased

runs of homozygosity and reduced genetic diversity (reviewed in [176]). This may help explain

why there are long runs of homozygosity at centromeres, but not why there are differences

between lineages at these loci. Genetic drift or selection such as centromere drive (a form of

meiotic drive thought to occur during female meiosis) would also need to be considered.

The centromere drive hypothesis posits that a centromere can be retained in a female gam-

ete (i.e., retained in the oocyte rather than the polar body) more often than an alternative cen-

tromere during meiosis due to an advantageous DNA sequence mutation at the centromere or

from mutations in centromere associated proteins (reviewed in [177–179]). In populations

that become isolated, the competition between centromere sequences can quickly drive differ-

entiation at these regions between the populations and result in hybrid defects should they

come into contact again [178]. These observations reveal that the pink salmon lineages may be

at a point where speciation is a likely outcome as these large centromere differences could

cause hybrid defects. For example, in medaka, genomic diversity at non-acrocentric repeats in

centromeres were associated with speciation [180].

The centromere drive hypothesis may further shed light on the fixation of the Fst peak on

LG15_ El12.1–15.1. Robertsonian fusions (assuming that the Fst peak on LG15_El12.1–15.1 is

indeed associated with a fusion rather than a deletion) can generate centromeres that are pref-

erentially able to segregate to the egg during female meiosis [179]. This could help drive the

fusion to fixation in a population. Alternatively, if the telocentric chromosomes instead of the

fused metacentric chromosome had more effective centromeres, the telocentric chromosomes

would become fixed. Further studies will be needed to confirm if there is indeed a fusion

instead of a deletion (e.g., fluorescence in situ hybridization) and that the fusion leads to fixa-

tion by centromere drive (e.g., studying segregation distortion in crosses between fish with

and without the fusion).

Sex determination and sdY

With the discovery of a novel sex-determining gene in salmonids [116], and previously with

closely linked genetic markers [181, 182] researchers have been able to identify instances of

sex-determination switching between chromosomes in salmonids [183–187]. As suggested in

Yano et al. (2013), Y-chromosome switching may act in response to (expected) degeneration

of the Y-chromosome due to mutation accumulation from reduced recombination [188]. In

pink salmon, sdY was located on LG20_El14.2, but we suggest there may be an alternative loca-

tion as well. Several pieces of information indicate that LG20_El14.2 may not be the only loca-

tion of the sex-determining gene, sdY, in the pink salmon genome. For instance, there were

two sdY haplotypes and several males had multiple copies of this gene. Also, all males with the

CGGA sdY haplotype had a run of homozygosity similar to most females on the LG20_El14.2

chromosome near the putative location of sdY. We identified the CGGA sdY haplotype in

even-year males from Snootli Creek (2 out of 3 males), Kitimat River (3 out of 3), and the

Yakoun River (2 out of 3). The haplotype was not observed in even-year males from Deena

Creek (n = 3) or the Quinsam River (n = 3). The single odd-year male with the CGGA sdY
haplotype was from the Kitimat River (1 out of 2). It is expected that near the sdY gene, recom-

bination is reduced and mutations would accumulate between the X and Y-chromosomes as a

result of reduced recombination. Females tend to have long runs of homozygous genotypes

where recombination is reduced and males tend to have long stretches of heterozygous geno-

types when reads from the X and Y-chromosome align at the same location [79]. Since the

males with the CGGA sdY haplotype have long runs of homozygous genotypes at the
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LG20_El14.2 region, as most of the females do, we suggest that the CGGA sdY is at another

location in the genome in these individuals. We were unable to identify a precise putative alter-

native location because there were too few individuals with the CGGA sdY to obtain a signal

from a genome wide association analysis, however, the potential discovery of another salmon

species with alternative sdY locations, further supports the hypothesis of Y-chromosome

switching put forth by Yano et al. (2013) for salmonids [188].

Conclusions

We generated reference genome assemblies for both pink salmon lineages, RNA-seq data for

genome annotation, and whole genome re-sequencing data to expand the available resources

for this commercially important and evolutionarily interesting species. The coupled whole

genome re-sequencing study of 61 individuals from several streams in British Columbia (and

one from Japan) helped us to characterize regions of the genome that have diverged between

the temporally isolated groups. The amount and degree of lineage-specific genomic variation

suggests that there is little gene-flow between the year-classes, but the shared variants such as

whole mitochondrial and sdY haplotypes suggests that there has been enough recent gene-flow

or alternative year-class replacement to maintain these similarities. Divergence at centromeres

between the two lineages may be a consequence of centromere drive (or genetic drift and

reduced recombination) and represent early stages of speciation. Genes related to the immune

system, organ development/maintenance, and behaviour were divergent between odd and

even-year classes as well. These example lineage defining differences offer us a glimpse into the

evolutionary landscape and the selective pressures or demographic histories of pink salmon.

Supporting information

S1 File. Sample information. The sample tab has metadata about each sample, including

information on sex, river, and year-class (latitude and longitude locations are approximate).

The StatsAllFilters tab shows metrics from the.vcf file after filtering for LD (see methods).

Stats1stFilter has the same information, but from the.vcf file after only preliminary filtering

(see methods). The eigenGWAS tab contains the DAPC values used in the eigenGWAS analy-

sis (see methods). The Mitochondrion tab shows metadata used to generate the mitochondria

figures. The GPS tab shows the coordinates used in the sample map. The Admixture tab has

the values output from the admixture analysis. For each tab with LG, these sheets have manu-

ally genotyped areas and calculations of HWE. The PrivateAlleles tab has metrics output from

Stacks. The SharedAlleles tab has a matrix of shared alleles between individuals in long format

and statistics on the right. The Y-Chrom tab has information about the sdY haplotypes. The

GWAS tab has metadata used in the GWAS analysis. The GHp tab displays the alignments of

the growth hormone pseudogene and sdY gene to the odd and even genome.

(XLSX)

S1 Fig. Comparison of the odd and even-year genome assemblies. A chromosome-by-chro-

mosome comparison of the odd and even-year genome assemblies. Each slide has two figures

shown side-by-side with the odd-year scaffolds aligned to the corresponding odd-year chro-

mosome on the left and the even-year scaffolds aligned to the corresponding odd-year chro-

mosome. CHROMEISTER [111] was used to align the scaffolds to the chromosomes. On the

y-axes, the scaffold number (in descending order from the top) is shown, with dashed lines

delineating the scaffold alignments. The chromosome position is shown on the x-axes. The y-

axes are not equivalent between figures, but the x-axes are.

(PDF)
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S2 Fig. Chromosomal polymorphism at centromere on LG15_El08.2–20.1. Depiction of

LG15_El08.2–20.1 and a chromosomal polymorphism, either a deletion or evidence of a chro-

mosomal fusion. A) LG15_El08.2–20.1 is depicted with the distance and location of the pur-

posed polymorphism (in light translucent red). Scaffolds/contigs that comprise the region

surrounding the polymorphism are shown below the chromosomal depiction, with a blue

arrow showing where multiple small contigs were placed. B) Synteny with rainbow trout and

Northern pike is shown based on CHROMEISTER [111] alignments. C) ONT/Nanopore

reads that were used to generate the genome assemblies were aligned back to the odd-year

genome and visualized with IGV. Reads in the odd-year individual are shown flanking the

deletion (the display was split because the region was too large to adequately visualize continu-

ously, ellipses mark the split). The proposed deletion is shown below the long reads.

(TIF)

S3 Fig. Sex determining region of the even-year pink salmon compared to the rainbow

trout Y-chromosome. A) A CHROMEISTER [111] dotplot between the Y-specific portion

(top) and shared portion (bottom) of LG20_El14.2 of the even-year pink salmon genome

assembly and the rainbow trout Y-chromosome [65]. The location of the sdY gene is shown

based on the position in the rainbow trout chromosome. B) A plot of the Hi-C contact map of

the even-year pink salmon genome assembly produced by Juicebox [66]. The blue boxes repre-

sent chromosomes/pseudomolecules (the top is the proposed Y-specific region and the bottom

is the rest of LG20_El14.2) and the green boxes represent scaffolds or contigs mapped to this

chromosome. Red points represent contacts (close proximity) between regions. There are mul-

tiple inversions between the pink salmon and rainbow trout genome seen in the dotplot, but

the contact map supports the order and orientation for the pink salmon genome assembly and

these could represent actual inversions between species instead of assembly errors.

(TIF)

S4 Fig. Sex determining region of the even-year pink salmon compared to the coho salmon

chromosome 29 autosome. A) A CHROMEISTER [111] dotplot between the Y-specific por-

tion (top) and shared portion (bottom) of LG20_El14.2 of the even-year pink salmon genome

assembly and coho salmon chromosome 29. B) A plot of the Hi-C contact map of the even-

year pink salmon genome assembly produced by Juicebox [66]. The blue boxes represent chro-

mosomes/pseudomolecules (the top is the proposed Y-specific region and the bottom is the

rest of LG20_El14.2) and the green boxes represent scaffolds or contigs mapped to this chro-

mosome. Red points represent contacts (close proximity) between regions. There are multiple

inversions between the pink salmon and coho salmon genome seen in the dotplot, but the con-

tact map supports the order and orientation for the pink salmon genome assembly and these

could represent actual inversions between species instead of assembly errors.

(TIF)

S5 Fig. Sex determining region of the even-year pink salmon with genotype information.

Genotypes are shown from an IGV [112] screenshot for the 61 samples of pink salmon for the

region with the sdY sex-determining gene. The top portion shows the distance of the Y-specific

genome region (~3.2 Mbp) and the contig/scaffold boundaries that make up this region are

shown as vertical lines. Below the distances, allele frequencies for each locus are shown, and

below that individual genotypes. The x-axis of the genotypes represent loci and each line on

the y-axis represents an individual pink salmon. The dark-blue colour is a homozygous refer-

ence genotype, the light-blue colour a heterozygous genotype, and the green genotype is for a

homozygous alternative locus. There are large stretches (1–2 Mbp) of heterozygosity and

homozygosity based on sex. Please note that there is a possible inversion (from a mis-
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assembly) in this region as the runs of homozygosity and heterozygosity are broken by a sec-

tion from ~600 kbp and ~1,300 kbp.

(TIF)

S1 Table. Nucleotide diversity, observed heterozygosity, and other metrics of putative can-

didate regions/genes under selection.

(XLSX)
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144. Cheng CL, Flamarique IN, Hárosi FI, Rickers-Haunerland J, Haunerland NH. Photoreceptor layer of

salmonid fishes: transformation and loss of single cones in juvenile fish. J Comp Neurol. 2006 Mar 10;

495(2):213–35. https://doi.org/10.1002/cne.20879 PMID: 16435286

145. Flamarique IN. Light exposure during embryonic and yolk-sac alevin development of Chinook salmon

Oncorhynchus tshawytscha does not alter the spectral phenotype of photoreceptors. J Fish Biol.

2019; 95(1):214–21. https://doi.org/10.1111/jfb.13850 PMID: 30370922

146. Ogawa Y, Shiraki T, Asano Y, Muto A, Kawakami K, Suzuki Y, et al. Six6 and Six7 coordinately regu-

late expression of middle-wavelength opsins in zebrafish. Proc Natl Acad Sci. 2019 Mar 5; 116

(10):4651–60. https://doi.org/10.1073/pnas.1812884116 PMID: 30765521

PLOS ONE Pink salmon genome

PLOS ONE | https://doi.org/10.1371/journal.pone.0255752 December 17, 2021 30 / 33

https://doi.org/10.1371/journal.ppat.1008464
http://www.ncbi.nlm.nih.gov/pubmed/32324805
https://doi.org/10.1038/sj.embor.7400582
http://www.ncbi.nlm.nih.gov/pubmed/16319960
https://doi.org/10.4049/jimmunol.176.3.1655
http://www.ncbi.nlm.nih.gov/pubmed/16424195
https://www.frontiersin.org/articles/10.3389/fimmu.2018.01101/full
http://www.ncbi.nlm.nih.gov/pubmed/29872436
https://doi.org/10.1038/s41577-018-0003-9
http://www.ncbi.nlm.nih.gov/pubmed/29556016
https://doi.org/10.1038/s41598-020-58180-7
http://www.ncbi.nlm.nih.gov/pubmed/31992747
https://www.frontiersin.org/articles/10.3389/fimmu.2014.00113/full
http://www.ncbi.nlm.nih.gov/pubmed/24678314
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429142/
https://doi.org/10.1038/ncomms14828
https://doi.org/10.1038/ncomms14828
http://www.ncbi.nlm.nih.gov/pubmed/28425483
https://doi.org/10.1016/s0163-7258%2800%2900097-8
https://doi.org/10.1016/s0163-7258%2800%2900097-8
http://www.ncbi.nlm.nih.gov/pubmed/11337031
https://doi.org/10.1038/nm.1867
https://doi.org/10.1038/nm.1867
http://www.ncbi.nlm.nih.gov/pubmed/18758447
https://doi.org/10.1107/S0907444909048276
http://www.ncbi.nlm.nih.gov/pubmed/20124695
https://doi.org/10.1128/AAC.02700-15
http://www.ncbi.nlm.nih.gov/pubmed/26926637
https://stm.sciencemag.org/content/11/473/eaau3174
https://stm.sciencemag.org/content/11/473/eaau3174
https://doi.org/10.1126/scitranslmed.aau3174
http://www.ncbi.nlm.nih.gov/pubmed/30602534
https://doi.org/10.1098/rstb.2017.0094
https://doi.org/10.1098/rstb.2017.0094
http://www.ncbi.nlm.nih.gov/pubmed/29531149
https://doi.org/10.1002/cne.20879
http://www.ncbi.nlm.nih.gov/pubmed/16435286
https://doi.org/10.1111/jfb.13850
http://www.ncbi.nlm.nih.gov/pubmed/30370922
https://doi.org/10.1073/pnas.1812884116
http://www.ncbi.nlm.nih.gov/pubmed/30765521
https://doi.org/10.1371/journal.pone.0255752
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