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The pediatric T cell acute lymphoblastic leukemia (T-ALL) still
remains a cancer with worst prognosis for high recurrence.
Massive studies were conducted for the leukemia relapse based
on diagnosis and relapse paired samples. However, the initially
diagnostic samples may contain the relapse information and
mechanism, which were rarely studied. In this study, we
collected mRNA and microRNA (miRNA) data from initially
diagnosed pediatric T-ALL samples with their relapse or remis-
sion status after treatment. Integrated differential co-expres-
sion and miRNA-transcription factor (TF)-gene regulatory
network analyses were used to reveal the possible relapse mech-
anisms for pediatric T-ALL. We detected miR-1246/1248 and
NOTCH2 served as key nodes in the relapse network, and
they combined with TF WT1/SOX4/REL to form regulatory
modules that influence the progress of T-ALL. A regulatory
loop miR-429-MYCN-MFHAS1 was found potentially associ-
ated with the remission of T-ALL. Furthermore, we proved
miR-1246/1248 combined with NOTCH2 could promote cell
proliferation in the T-ALL cell line by experiments. Mean-
while, analysis based on the miRNA-drug relationships
demonstrated that drugs 5-fluorouracil, ascorbate, and trastu-
zumab targeting miR-1246 could serve as potential supple-
ments for the standard therapy. In conclusion, our findings
revealed the potential molecular mechanisms of T-ALL relapse
by the combination of co-expression and regulatory network,
and they provide preliminary clues for precise treatment of
T-ALL patients.
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INTRODUCTION
T cell acute lymphoblastic leukemia (T-ALL), which accounts for
10%–15% of childhood and 25% of adult ALL cases,1 is an aggressive
hematologic neoplasm mainly caused by the malignant transforma-
tion of T-lymphocyte progenitors and the accumulation of genomic
lesions in T cell development.2 Although the therapeutic outcome
of pediatric T-ALL has improved in recent decades (70%–75%
long-term event-free survival rates),3 it still remains a subgroup of
cancers with the worst prognosis, and nearly 20% of child T-ALL
patients still suffer relapse and cannot be salvaged by standard ther-
184 Molecular Therapy: Nucleic Acids Vol. 12 September 2018 ª 2018
This is an open access article under the CC BY license (http://creati
apies.1,4 Thus, systematically investigating the mechanism of relapse
and identifying prognostic biomarkers for pediatric T-ALL will be
helpful to clinical diagnosis and therapy.

Previous studies have focused on the genetic and epigenetic abnor-
malities in pediatric T-ALL and identified some driver events, such
as NOTCH1 mutation, DNA methylation, and leukemia-initiating
cell escape.5,6 Some genes (e.g., CFLAR and BTG3) have been consid-
ered as prognosis markers for the relapse of pediatric T-ALL.7 More-
over, multiple significant biological pathways have been reported
playing vital roles in the recurrence of T-ALL, such as PI3K/AKT
and JAK/STAT pathways, which are involved in the proliferation
and survival of the leukemia cells.8,9 However, rare research investi-
gated the difference of transcriptome profiling between the relapse
and remission specimens at the initial status (before treatment),
which may provide new insights for the precise treatment of pediatric
T-ALL. Additionally, microRNAs (miRNAs) as important post-tran-
scriptional regulators play crucial roles in multiple biological
processes and diseases, and some related databases are built for
further studies.10,11 Some miRNAs were reported to serve as
biomarkers to predict the prognosis of child T-ALL, such as
miR-181 and miR-451.12,13 Meanwhile, transcription factors (TFs)
as regulators of gene expression may promote or inhibit the progres-
sion of T-ALL, such as KLF4 and TAL1/SCL.14,15 Although some
factors were discovered to be associated with the relapse of pediatric
T-ALL, the detailed molecular mechanisms have not been investi-
gated so far.

Weighted gene correlation networks and differential co-expression
analysis, such as Weighted Gene Co-expression Network Analysis
The Author(s).
vecommons.org/licenses/by/4.0/).
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Figure 1. The Function Enrichment Analysis

(A) The clustered heatmap of all DEGs in relapse and

remission. Relatively higher expression is shown in red

and lower expression is in green. (B) KEGG enrichment of

DEGs by DAVID database (p value < 0.01). Number be-

side bar, counts enriched in KEGG pathway. (C) KEGG

enrichment of DEMs by DIANA-miRPath (p value < 0.05).

Number beside bar, targets of DEMs enriched in KEGG

pathway; m/n, DEMs/targets.
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(WGCNA) and coXpress, can help to identify important gene mod-
ules in specific biological processes and diseases through functional
module detection.16,17 The gene expression regulatory networks,
especially the miRNA-TF-gene co-regulatory networks based on
feedback loops (FBLs) and feedforward loops (FFLs), have been
applied to reveal the inner relationship among regulatory factors,
gene expression, and diseases.18 We have applied the miRNA-TF-
gene network and identified the miR-19-CYLD-NFKB module in
the development of T-ALL.19 Thus, the combination co-expression
and gene regulatory network analysis may better explain the associa-
tion of gene modules and diseases.

In this study, based on gene and miRNA expression data from
initially diagnosed patients with follow-up relapse or remission
status after standard Berlin-Frankfurt-Münster (BFM) treatment,
we performed gene co-expression and miRNA-TF-gene network
analysis to reveal potential molecular mechanisms underlying the
relapse of pediatric T-ALL. We identified relapse and remission-
specific regulatory networks and potential key modules, which
were associated with the relapse of pediatric T-ALL. Meanwhile,
our study highlights the advantages of regulatory networks com-
bined with functional module analysis in exploring the mechanism
of diseases.
Molecular Therap
RESULTS
Identification of Differentially Expressed

Genes and miRNAs

To detect important alterations of transcrip-
tome profiling relevant to the relapse of child
T-ALL, we performed differential expression
analysis of genes and miRNAs on relapse and
remission samples before treatment. In the
comparison of relapse versus remission group,
we found 832 genes (442 upregulated and 390
downregulated) and 61 miRNAs (5 upregulated
and 56 downregulated) were significantly differ-
entially expressed (DEGs and DEMs).

Hierarchical clustering of these DEGs excel-
lently segregated the relapse and remission sam-
ples into discrete categories (Figure 1A), which
indicated these DEGs can differentiate the
relapse and remission specimens well. Func-
tional enrichment results demonstrated the
DEGs were relevant to the processes of leukemia and cancer, such
as Central carbon metabolism in cancer, MAPK-signaling pathway,
and FoxO-signaling pathway (Figure 1B). The MAPK signaling
pathway regulates various cellular processes, including cell prolifera-
tion, survival, differentiation, and migration.20 Among these DEGs,
KRAS contributes to the leukemogenic transformation,21 and PTEN
mutation occurs in 11.1% pediatric T-ALL patients as a tumor sup-
pressor.22 Moreover, among those DEGs, 324 genes have stable
expression profiles, which meant the expressions of all specimens in
one experimental condition (relapse or remission) were higher or
lower than the other (Table S1). These stable genes may be the pivotal
markers of T-ALL relapse (Figure 2). For instance, we focused on the
top five DEGs with stable upregulated and downregulated profiling
across groups. TheCTBP2, as a co-repressor in the NOTCH-signaling
pathway, was stably downregulated in the relapse group (Figure 2);
SERPINB9, as a granzyme B inhibitor significantly downregulated
in main subtypes of pediatric ALL,23 was stably downregulated in
the relapse group and consistent with the previous study.

Meanwhile, target genes of the 56 downregulated DEMs were as-
signed to 6 Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways (p value < 0.05; Figure 1C), such as extracellular matrix
(ECM)-receptor interaction (p value < 0.001) and PI3K-Akt-signaling
y: Nucleic Acids Vol. 12 September 2018 185
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Figure 2. The Expression of DEGs and DEMs with Stable Pattern

Expression levels of top 5 upregulated and top 5 downregulated DEGs and all DEMswith stable expression profile in relapse and remission samples. R, relapse; N, remission.
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pathway (p = 0.012). ECM-receptor interaction pathway, which plays
important roles in cell migration and proliferation,24 was identified as
the most significant pathway in our results. PI3K-Akt-signaling
pathway, reported as an oncogenic pathway in T-ALL,25 was enriched
by the most targets of DEMs in our results. These results implied the
DEMs may contribute to the relapse of pediatric T-ALL through
diminishing the inhibition effects of oncogenes, which thereby acti-
vate carcinogenic pathways in T-ALL. Furthermore, we identified
four DEMs (miR-1246, miR-152-3p, miR-381-3p, and miR-452-5p)
with stable expression profiles (Figure 2), and miR-152 was reported
to be associated with poor clinical outcome for ALL in infants.26 The
miR-1246, which was highly expressed and stably upregulated in the
relapse group (fold change = 7.37, p value = 0.003), may regulate
the progress of T-ALL (Figure 2). Hence, DEGs and DEMs with stable
expression profiles may be potential markers to predict the relapse of
T-ALL and to explore the underlying molecular mechanism.

Detection of the Relapse- and Remission-Specific Gene Sets in

Pediatric T-ALL

To systematically investigate the potential functional modules in
relapse and remission conditions, we performed differential co-
expression module analysis for genes with coefficient of variation
(CV) > 10% by combining coXpress with WGCNA methods. The
detailed work flow is shown in Figure 3. Using coXpress, 7 signifi-
cantly differential co-expression modules with 742 genes were de-
tected in relapse condition at the given significant level (p < 0.05),
while 8 modules containing 374 genes were identified in remission
condition (Table 1). On the other hand, 22 modules with 1,455 genes
were detected by WGCNA in all samples (Table S2). Notably, 10 of
the 22 modules were strongly associated with immunity, and 8 mod-
186 Molecular Therapy: Nucleic Acids Vol. 12 September 2018
ules were related to cell proliferation (Figure 4A). The results demon-
strated the modules by WGCNA may be strongly associated with the
progression of T-ALL.

To obtain the comprehensive gene sets relevant to relapse/remission,
we merged the relapse/remission-specific modules with WGCNA
modules through hypergeometric test, respectively (p < 0.05; Figures
3 and 4A). As a result, 6 WGCNA modules were assigned to the
relapse gene set, and 4 of them were mainly involved in the immu-
nity/cell proliferation processes. Another 6 WGCNAmodules related
to immunity and cell proliferation were merged with the remission
gene set (Figure 4A). Finally, we obtained 1,002 genes associated
with the relapse condition and 583 genes related to remission, respec-
tively. Furthermore, the relapse/remission-specific gene sets shared
some common pathways related to cancer and hematopoietic system,
such as transcriptional misregulation in cancer, hematopoietic cell
lineage, and pathways in cancer (Figure 4B). Targeting the PI3K-
Akt-signaling pathway could strengthen remission of acute myeloid
leukemia (AML) through enhancing the drug sensitivity,27 and this
pathway here was specifically enriched by the remission gene set.
The pathway “osteoclast differentiation” peculiarly enriched by the
relapse gene set may indicate the tumor cells hijack the bone-remod-
eling process and create a fertile microenvironment for tumor
growth.28

Molecular Regulatory Network Analysis of Modules in Relapse

and Remission Conditions

To reveal the mechanism of gene expression regulation in the relapse
and remission of pediatric T-ALL, we built miRNA-TF-gene regula-
tory networks based on the DEMs and the two condition-specific
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gene sets, respectively. A total of 611 nodes (58 miRNAs, 52 TFs, and
501 genes) with 5,371 pairs were found in the remission-specific
network (Figure S1A), while the relapse-specific regulatory network
contained 13,920 regulating pairs consisting of 58 miRNAs, 93 TFs,
and 874 genes (Figure S1B). Furthermore, to detect key regulators
and genes within relapse and remission conditions, we performed
pathway crosstalk analysis based on the above networks and rebuilt
core regulatory sub-networks (Figures 5A, 5B, and 6A).

Totally, the relapse sub-network consisted of 57 miRNAs, 74 genes,
and 11 TFs (Figure S2), and most genes were related to cancer, immu-
nity, and apoptosis and signal transduction pathways (Figure 5A).
Furthermore, genes that acted as hub nodes connecting multiple bio-
logical processes and pathways in the relapse sub-network may
contribute to the relapse of pediatric T-ALL. For example, NOTCH2
reported as an oncogene promoting leukemia transformation,29 here
cross-linked the NOTCH signaling, miRNAs in cancer, and Th1/Th2
cell differentiation pathways in the relapse sub-network (Figure 5A).
miR-1246/1248/22-5p combined with TFs WT1/SOX4/REL regu-
lating 578 genes acted as core modules in the relapse-specific network
(Figure S2), and 65 of these genes were DEGs in the relapse versus
remission group comparison. Furthermore, 24 of 65 DEGs were
stably expressed between relapse and remission groups, which may
imply they were closely relevant to the relapse of T-ALL. For example,
NOTCH2 was reported to promote cell proliferation in T-ALL cell
lines;30 the stably upregulated REL as a TF could decrease cell
apoptosis of hematologic malignancies.31 Meanwhile, TF WT1,
positively regulating the expression of CD95L to stimulate CD95L-
mediated cell death,32 was the hub node with most connections in
our relapse-specific network (Figure S2).

On the other hand, the remission sub-network consisted of 55
miRNAs, 67 genes, and 11 TFs (Figure 5B), while 8 genes were stably
differentially expressed (Table S1). Notably, 18 genes acted as cross-
talk hubs connecting several crucial pathways in the development
of T-ALL (Figure 6A). For example, CTBP2, as the most significantly
DEG downregulated in the relapse group, cross-linked NOTCH- and
Wnt-signaling pathways in the remission sub-network (Figure 6A),
which were closely associated with the development of T-ALL.33

Meanwhile, CTBP2 was a co-repressor for the NOTCH-signaling
pathway,34 and it was targeted by miR-1246/1248 upregulated in
the relapse group (Figures 2A and 5B). Meanwhile, TF MYCN is a
central regulator of multiple vital cellular processes, and it has been
described as an oncogene in multiple cancer types.35 In our remission
sub-network, MYCN was predictively targeted by tumor suppressor
miR-429 (Figure 5B) and significantly downregulated in the remis-
sion group. Furthermore,MFHAS1, reported to promote the progress
of cancer,36 was regulated by MYCN. Interestingly, both MYCN and
MFHAS1 may be targets of miR-429, which implied miR-429-
MYCN-MFHAS1 may form an FFL taking part in the progress of
T-ALL (Figure 5B).

miR-1246/1248 Could Promote Cell Proliferation in the T-ALL

Cell Line through the NOTCH2 Pathway

To evaluate the biological effects of miR-1246/1248 underlying the
relapse of pediatric T-ALL, we performed gain-of-function and
loss-of-function experiments using miRNA mimics and inhibitors
on the Jurkat cell line. First, Jurkat cells were infected with lentiviral
expression vectors to overexpress miR-1246 and miR-1248, respec-
tively, and the cell growth was evaluated at 24 hr after infection.
A significant increase of cell proliferation rates was observed after
transfecting miR-1246 or miR-1248 mimics into the Jurkat cells
compared with the control group (Figures 6B and 6C). Next, we
transfected the Jurkat cells with miR-1246 and miR-1248 inhibitors,
respectively. As a result, we found the anti-miR-1246 and anti-miR-
1248 had opposite effects on the Jurkat cell line, which significantly
decreased cell proliferation (Figures 6B and 6C). Combining the
above results, we inferred that the miR-1246/1248 could promote
cell proliferation in the T-ALL cell line, which may result in the
relapse of T-ALL.

To further investigate the mechanism through which miR-1246 and
miR-1248 promote cell proliferation, we focused on the crucial gene
NOTCH2 in the relapse sub-network, and we determined the effects
of NOTCH2 on Jurkat cells. Jurkat cells were transfected with small
interfering RNAs (siRNAs) of NOTCH2 and miR-1246/miR-1248
Molecular Therapy: Nucleic Acids Vol. 12 September 2018 187
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Table 1. The Significant Modules Detected by coXpress under Relapse and

Remission Conditions

Group N pr.g1 pr.g2 Mean.cor1 Mean.cor2

coXpress Modules Related to Relapse

7 241 0 0.06 0.825 0.048

2 137 0 0.71 0.750 0.027

13 113 0 0.89 0.727 0.012

6 112 0 0.26 0.801 0.05

3 56 0 0.45 0.749 0.029

5 51 0 0.21 0.756 0.046

21 32 0 0.19 0.738 0.050

coXpress Modules Related to Remission

5 82 0.95 0 0.002 0.813

10 58 0.34 0 0.032 0.694

39 47 0.79 0 0.007 0.724

18 45 0.09 0 0.072 0.848

7 41 0.06 0 0.101 0.822

34 35 0.53 0 0.020 0.828

6 34 0.59 0 0.020 0.700

36 32 0.06 0 0.106 0.771

Group is the group number and N is the group size (gene number). pr.g1 and pr.g2 are
the probability of randomness statistics for the relapse and remission subsets, respec-
tively. The mean.corr1 and mean.corr2 are the mean pairwise correlation coefficients
for the genes in relapse and remission, respectively. The table has been screened by
pr.g1 % 0.05, pr.g2 R 0.05, and N R 30.
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mimic, and then we calculated the cell proliferation rate. As expected,
the expression of NOTCH2 was repressed by its siRNAs (Figure S3A),
and Jurkat cells transfected with NOTCH2_siRNA showed a signifi-
cant retardation of cell growth (Figure 6B). However, even if the
miR-1246 or miR-1248 was overexpressed, the proliferations of Jurkat
cells were nearly unchanged with the knockdown of NOTCH2
(Figures 6B and 6C). These results implied the oncogenic roles of
miR-1246/1248 may rely on the signal transduction of NOTCH2,
and NOTCH2 cooperating with miR-1246/1248-promoting cell
proliferation may contribute to the relapse of T-ALL.

Potential Drug-Targeting miRNAs Related to the Relapse of

T-ALL

Previous study demonstrated that miRNAs as important transcrip-
tional regulators mediate the progression of T-ALL and may serve
as potential therapeutic targets.37 We investigated whether BFM ther-
apy could have effects on miRNAs through drug-miRNA interac-
tions. Notably, we found that no DEMs were targeted by BFM drugs
in the SM2miR database.38 However, some other drugs could target
DEMs and may serve as useful supplements for classic therapy,
such as arsenic trioxide. Arsenic trioxide was reported inhibiting
the progress of leukemia by upregulating the expression of some
miRNAs, including miR-150-5p,39 which was among downregulated
DEMs in the relapse group (Figure 7). Furthermore, we constructed
an miRNA-drug network to reveal the potential drug targets (Fig-
188 Molecular Therapy: Nucleic Acids Vol. 12 September 2018
ure 7), which provided the possible clues for molecular therapy for
pediatric T-ALL. For instance, the upregulated miR-1246 was
targeted by ascorbate, trastuzumab, and 5-fluorouracil (Figure 7),
and ascorbate regulated leukaemogenesis,40 while trastuzumab was
engaged in very high-risk-relapsed adult B cell-ALL (B-ALL).41 The
5-fluorouracil can significantly dysregulate the expression level of
miR-1246 in cancer cells.42 Moreover, the miR-1246/1248-NOTCH2
may provide a clue for the relapse of pediatric T-ALL, and 5-fluoro-
uracil/ascorbate/trastuzumab targeting miR-1246 may serve as
potential candidates for the T-ALL.

DISCUSSION
The diagnosis and treatment for the relapse of pediatric T-ALL
remain a challenge because of its heterogeneity and malignancy. In
current study, we investigated potential molecular mechanisms for
the relapse of pediatric T-ALL by integrating co-expression and
miRNA-TF-gene network analysis. We detected several key genes
and regulators, such as miR-1246, miR-1248, and miR-429 and
NOTCH2/MYCN/MFHAS1, may play vital roles for T-ALL relapse.
Moreover, we validated miR-1246/1248-NOTCH2 could cooperate
to promote cell proliferation in the Jurkat cell line, which may
contribute to the relapse of pediatric T-ALL. The miRNA-drug
network analysis could provide preliminary clues for precision med-
icine approaches on pediatric T-ALL.

Previous research mainly focused on the paired samples (diagnosis
and relapse after treatment) to explore the mechanism underlying
the relapse of pediatric T-ALL. However, for the heterogeneity of
T-ALL, studies based on initially diagnosed samples with known
follow-up relapse/remission after therapy may provide new insights
for the precise treatment of pediatric T-ALL. Meanwhile, dissection
of the differential co-expression pattern between specific conditions
could provide additional information, which cannot be detected by
standard co-expression methods.43 Our study based on pre-treatment
samples (leukemia state) has discovered specific regulatory networks
relevant to the relapse/remission of pediatric T-ALL. Genes emerged
in relapse or remission network have meant to be more closely asso-
ciated with the specific biological processes. MiR-1246/1248 com-
bined with NOTCH2 and TFsWT1/SOX4/REL acted as core modules
in the relapse-specific network. NOTCH2 as a crucial crosstalk gene
connected multiple pathways, including the miRNAs in cancer and
the NOTCH-signaling pathway (Figure 5A), and it was an important
carcinogenic pathway in leukemia.29

Cell experiments validated that miR-1246/1248 could promote Jurkat
cell proliferation by NOTCH2 signal. The upregulation of miR-1246
and -1248 may suppress the expression of CTBP2, which is a co-
repressor of the NOTCH2 signal pathway. Hence, the miR-1246/
1248 may activate the downstream signaling pathway of NOTCH
through suppressing the expression of CTBP2. Meanwhile, TFs
WT1/SOX4/REL may regulate NOTCH2 takes part in the process of
T-ALL. These results implied that the miR-1246/1248-NOTCH2
may contribute to the relapse of T-ALL and the relapse-specific
network could play vital roles in T-ALL. On the other hand, FFL



BA

Hematopoietic cell lineage

Amoebiasis

Tuberculosis

Cell adhesion molecules (CAMs)

Phagosome

Osteoclast differentiation

Pathways in cancer

HTLV−I infection

Influenza A

PI3K−Akt signaling pathway

0.0 2.5 5.0 7.5

−log10(pvalue)

relapse
remission

26

18

15

28

24

36

22

25

28

24

24

21

45

31

23

Transcriptional misregulation in cancer

positive regulation of 
I-kappaB

kinase/NF-kappaB
signaling

mitochondrial protein 
catabolic process 

cellular protein complex 
localization

regulation of catalytic 
activity

translational initiation

carbohydrate
phosphorylation

protein oligomerization

positive regulation of 
transcription from RNA 
polymerase II promoter 

negative regulation of 
transcription from RNA 
polymerase II promoter 

salmon

midnightblue

transcription from RNA 
polymerase II promoter 

error-prone translesion 
synthesis

darkgrey

lightcyan

positive regulation of 
transcription,

DNA-templated

Relapse
gene set 

positive regulation of 
PI3K signaling 

signal transduction by 
protein phosphorylation 

Signal transduction

positive regulation of 
protein kinase activity 

cell surface receptor 
signaling pathway 

positive regulation of 
MAPK cascade 

Protein synthesis

ciliary neurotrophic 
factor-mediated

signaling pathway 

signal transduction

transmembrane
receptor protein tyrosine 

kinase signaling 
pathwaypositive regulation of 

JNK cascade 

lightgreen
darkred

darkquoise

grey60

black

turquoise

Immune

Cell
proliferation

cellular response to 
amino acid stimulus 

male gonad 
development

response to bacterium

anterior/posterior
pattern specification 

Others

nervous system 
development

transdifferentiation

response to toxic 
substance

blood circulation

Gene expression

retinal ganglion cell 
axon guidance 

branching
morphogenesis of an 

epithelial tube 

greenyellow

red

lightyellow

Metabolism

royalblue

cholesterol biosynthetic 
process

fatty acid beta-oxidation

Remission
gene set 

blue

yellow

darkgreen
magenta

orange

brown

cell division

negative regulation of 
cell proliferation Leydig cell differentiation

G1/S transition of 
mitotic cell cycle 

positive regulation of 
mesenchymal cell 

proliferationG2/M transition of 
mitotic cell cycle 

mitotic nuclear division
immune response
T cell mediated immunity

erythrocyte
differentiation

positive regulation of 
apoptotic process T cell receptor V(D)J 

recombination

cell growth

positive regulation of 
cell proliferation 

chemotaxis

regulation of apoptotic 
process

antigen processing and 
presentation of peptide 
antigen via MHC class I 

antigen processing and 
presentation of peptide 

or polysaccharide 
antigen via MHC class II 

positive regulation of 
monocyte differentiation 

defense response to 
virus

regulation of nitric-oxide 
synthase activity 

innate immune response

response to virus

pink

regulation of immune 
response

cell adhesion

tan

regulation of 
TNF-mediated signaling 

pathway

Figure 4. The Function Analysis of Modules

(A) The GO enrichment of 22 WGCNAmodules (p value < 0.05). Purple, GO terms; green and dark green, modules; gray, function type. (B) KEGG pathways enriched by the

specific gene sets (relapse/remission gene sets) (p value < 0.01).

www.moleculartherapy.org
miR-429-MYCN-MFHAS1 detected in the remission sub-network
may play vital roles in the process of T-ALL. MiR-429 was signifi-
cantly upregulated in the remission group, which may result in the
downregulation of its target MFHAS1 (Figure 5B). MFHAS1, regu-
lated by TFMYCN in our remission sub-network, may be a significant
prognosis factor for AML in The Cancer Genome Atlas (TCGA)
cohort (Figure 3B) and could promote the progress of cancer.36 Other
key nodes in our regulatory networks were also closely related to the
process of T-ALL. For example, DUSP6 as a phosphatase, regulated
phosphorylation of its downstream gene ERK1/2 to promote cell pro-
liferation,44 and it may contribute to the relapse by crosstalk with
WT1 through transcriptional misregulation in cancer pathway (Fig-
ure 5A). Moreover, genes involved in the pathway crosstalk may
play core roles in the relapse of T-ALL, such as BCL2, which was a
potential therapeutic strategy for T-ALL (Figure 5A).45

Furthermore, studies on disease mechanisms will be eventually fed
back to effective drug designs and therapeutic strategies. Our
miRNA-drug network provided some potential drugs for the relapsed
T-ALL. For example, the upregulated miR-1246 was targeted by three
drugs (5-fluorouracil, ascorbate, and trastuzumab) (Figure 7). The
ascorbate was reported to regulate the leukemogenesis,40 and thus
the ascorbate may regulate the expression level of miR-1246 in
relapse, leading to the relief of T-ALL. The trastuzumab was reported
to allow for some responses in very high-risk-relapsed adult B-ALL
patients. Moreover, in the miRNA-drug network, we found arsenic
trioxide, as an effective anti-leukemia drug, promoted the upregula-
tion of miR-150-5p and miR-96-5p (Figure 7),39 which were downre-
gulated in relapsed samples. Thus, arsenic trioxide may relieve the
relapse of T-ALL patients by upregulating the miR-150-5p and
miR-96-5p.39 Similar to these observations, our drug target network
may provide some potential drug targets and drugs for the treatment
of T-ALL.

In summary, in this study, we integrated differential co-expression
and miRNA-TF-gene regulatory network analysis to reveal the
possible mechanisms for the relapse of T-ALL. Our finding indicated
that the upregulated miR-1246/1248 may cooperate withNOTCH2 to
promote the relapse of T-ALL by the NOTCH2-signaling pathway,
and they provided some miRNA-drug pair information, which may
be helpful for the precise treatment of T-ALL. Based on the differen-
tial transcriptome profiling between the relapse and remission speci-
mens, we suggested that different treatment protocols should be
applied to patients to achieve precise treatments.

MATERIALS AND METHODS
Data Collection, Pre-processing, and Differential Expression

Analysis

Gene expression profiles of pediatric pre-treatment T-ALL cases
(relapse, n = 5; remission, n = 7) were obtained from the European
Bioinformatics Institute (EBI): E-TABM-255, while miRNA data
(relapse, n = 5; remission, n = 7) were from GEO: GSE45839. Public
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(A) KEGG pathway network formed by relapse gene sets. Blue nodes, DEGs; pink labels, KEGG pathways. (B) miRNA-TF-gene regulatory network for DEGs in remission
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pediatric pre-treatment T-ALL cases were used in this study (range of
2–13.4 years). All patients were accepted for BFM therapy protocol.
BFM protocol included the following: 4 standard drugs (cyclophos-
phamide, 6-mercaptopurine, cytarabine, and methotrexate) and 6
improved BFM drugs (L-asparaginase, dexamethasone, doxorubicin,
prednisone, 6-thioguanine, and vincristine).46 Both gene and miRNA
data were normalized using the robust multi-array average (RMA)
method. Genes were annotated according to information, and multi-
ple probes for a single gene were treated by k.total,47 while miRNAs
were identified with miRXplore_v4.0 and miRBase (v21, GRCh38).
DEGs and DEMs were detected using limma package with the default
parameters and the following criteria: jfold change (FC)j > 1.5 and
adjusted p value < 0.05.48
Gene Module-Based Analysis of the Relapse and Remission

Samples

Gene co-expression modules were identified by the WGCNA pack-
age. First, we filtered out genes with low CV less than 10% in relapse
and remission specimens. Next, the remaining genes were used to
construct weighted gene correlation network. Here, soft-thresholding
power b of co-expression network was chosen by the criterion of
scale-free topology with R2 cutoff (0.9), and each branch in the
dendrogram represents a module in the network. To obtain modules
with proper biological functions, the parameters (minModuleSize =
20; minimum height = 0.2) were used to cut the tree.

To identify groups of genes that displayed differential co-expression
patterns, which distinguished between the relapse and remission sam-
190 Molecular Therapy: Nucleic Acids Vol. 12 September 2018
ples, we also applied coXpress on the gene expression dataset (param-
eter: s = pearson,m= average, h = 0.4). The conditionally relatedmod-
ules (relapse/remission) were identified for genes screened using the
coXpress package, which could detect differential co-expression
gene modules only highly associated with a given condition but little
or no relation in the other.17 Those significantly differential co-expres-
sion gene modules in relapse samples were selected for further study
(with N > 30, pr.g1 < 0.05, pr.g2 > 0.05). To find the opposite condi-
tion, the procedure was repeated but based on remission datasets.17

Finally, to obtain comprehensive gene modules that contribute to the
relapse of T-ALL, we combined coXpress with WGCNA modules
together bymeasuring the significant overlapping based on the hyper-
geometric probability. For example, if one differential module is
composed of k genes, and l genes are detected in one of the WGCNA
modules, the probability is obtained by hypergeometric test formula,
whereM andN represent the total number of genes in the correspond-
ing module, respectively. Here, we set the significance level at 0.01.

P ðX%kÞ= 1�
Xk
i= 0

�
M
i

��
N�M
k � i

�
�
N
k

�

Regulatory Network Analysis for the Significant Modules

We constructed a comprehensive regulatory network based on DEGs
(within the significant differential modules) and DEMs by themethod
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described in our previous studies.49 The miRNA-target information
was obtained from the miRwalk2.0,50 while the TF information was
from the AnimalTFDB.51,52

Statistical Analysis, Functional Enrichment, and Visualization

Gene ontology (GO) and KEGG pathway enrichment analyses
were performed on DAVID (https://david.ncifcrf.gov/).53 For
Molecular Therap
DEMs, functional enrichment analysis was
conducted by the DIANA-miRPath version
(v.)3.0.54 All networks were visualized by
Cytoscape (version 3.4.0) and ClueGO plu-
gin.55 NetworkAnalyzer was used to calculate
the degrees of network for identifying the
HUB factors.56 The disease-free survival
(DFS) analysis was performed on the AML
dataset (TCGA) using survival package
(p value < 0.1, log rank test). The interactions
of miRNAs and small molecules were obtained
from the SM2miR database.38

Cell Culture and Transfection of siRNA and

Mimics

The Jurkat human T-ALL cell line was ob-
tained from the China Center for Type Culture
Collection (CCTCC, Wuhan, China). Cells
were cultured in a complete medium (RPMI-
1640 supplement with 10% fetal bovine serum
[FBS] and 1% penicillin/streptomycin) in a
5% CO2 37�C incubator. Approximately 5 �
105 cells were seeded in six-well plates with
complete RPMI-1640 medium. Three different
pre-designed siRNAs (Ribo siRNA) targeting
NOTCH2 (siNOTCH2: stB0007281A,
stB0007281B, and stB0007281C) were pur-
chased from RIBOBIO (Guangzhou, China;
details in Table S3). Each siRNA or miRNA
mimics, negative control (NC), and reagent
(RIBOBIO, Guangzhou, China) were trans-
fected at a concentration of 50 nM according
to the manufacturer’s instructions. After trans-
fection, the cells were quickly transferred into culture medium.
Cells were harvested after 24 hr to extract total RNA for RT-PCR.

Real-Time qRT-PCR

Total RNA was extracted with TRIzol (Invitrogen) to synthesize
cDNA using PrimeScript RT Reagent Kit (Takara). Real-time
RT-PCR was performed on StepOne Real-Time PCR System (Life
y: Nucleic Acids Vol. 12 September 2018 191
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Technologies). The final reaction volume (10 mL) included 1 mL
PrieScript RT Enzyme MixI (Takara), 1 mL primers (forward and
reverse), 4 mL 5*PrimrScript Buffer 2, and 4 mL RNase-free H2O.
All experiments were repeated at least three times. Relative expres-
sion was analyzed using the DDCt method. The primer sequences
used for RT-PCR are shown in Table S4 (Genecreate, Wuhan,
China).

Cell Proliferation Assay

The effects of transfections on short-term growth were examined
using a colorimetric WST-8 assay (Cell Counting Kit-8, Beyotime
Biotechnology, Shanghai, China). Cells (2–4 � 104 cells/well) were
cultured in 0.1 mL 10% FBS-supplemented RPMI-1640 medium in
96-well culture plates. The NC, miRNA mimics, and siRNAs were
transfected into cells after 24 hr, and 10 mL CCK-8 was added to
the cells another day. The optical density (OD) was then measured
using an ELISA plate reader (Diatek) to determine the cell number.
The cell growth is shown as a percentage of the mean OD value
compared with the control. Student’s t test was used to determine
the statistical significance.
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