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With action video games (AVGs) becoming increasingly popular worldwide, the cognitive benefits of AVG experience have
attracted continuous research attention over the past two decades. Research has repeatedly shown that AVG experience can
causally enhance cognitive ability and is related to neural plasticity in gray matter and functional networks in the brain.
However, the relation between AVG experience and the plasticity of white matter (WM) network still remains unclear. WM
network modulates the distribution of action potentials, coordinating the communication between brain regions and acting as
the framework of neural networks. And various types of cognitive deficits are usually accompanied by impairments of WM
networks. Thus, understanding this relation is essential in assessing the influence of AVG experience on neural plasticity and
using AVG experience as an interventional tool for impairments of WM networks. Using graph theory, this study analyzed WM
networks in AVG experts and amateurs. Results showed that AVG experience is related to altered WM networks in prefrontal
networks, limbic system, and sensorimotor networks, which are related to cognitive control and sensorimotor functions. These
results shed new light on the influence of AVG experience on the plasticity of WM networks and suggested the clinical
applicability of AVG experience.

1. Introduction

Originally designed for entertainment purposes, action video
games (AVGs) have also attracted increasing research atten-
tion, as they offer a unique perspective experience-related
brain plasticity [1]. This may be due to the fact that AVG
playing requires cognitive abilities [2] in a manner similar
to conventional sports (e.g., basketball).

According to the behavioral evidence over the past two
decades, AVG experience can causally improve cognitive
control and sensorimotor abilities. For example, AVG expe-
rience can enhance selective attention [3], spatial distribution
of visuospatial attention [4], and attentional capture [5].
Furthermore, AVG experience can improve the behavioral
performance of tasks in working memory [6], vision [7],

multisensory temporal processing abilities [8], eye-hand
motor coordination [9], and response speed [10].

Although little, neuroscience evidence also supports the
cognitive benefits of AVG experience. For example, Granek
et al. showed the cortical network features of extensive
AVG experience related to enhanced visuomotor transfor-
mation [11]. AVG experience is also related to increased
gray matter volume (GMV) in dorsal striatum [12]; right
posterior parietal [13], entorhinal, hippocampal, and occi-
pital volume [14]; and dorsolateral prefrontal cortex [15],
which are related to improved performance on cognitive
control and sensorimotor functions. Our recent study also
found that AVG experience was related to increased resting
state functional connectivity (rsFC), mainly involving atten-
tional and sensorimotor networks [16].
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However, little research has examined the relation
between AVG experience and the plasticity of white mat-
ter (WM) fiber networks. Understanding this relation is
essential in assessing the influence of AVG experience on
neural plasticity. First, WM network modulates the distri-
bution of action potentials, coordinating the communication
between brain regions and acting as the framework of neural
networks [17]. Thus, WM network offers an important venue
to examine experience-related plasticity of neural networks.
Second, various types of cognitive deficits are usually ac-
companied by impairments of WM networks. For example,
the evidence showed that patients with attention-deficit
hyperactivity disorder (ADHD) have impaired attentional
WM network [18, 19]. Thus, understanding this relation will
help to use AVG experience as an interventional tool for
impairments of WM networks.

Using diffusion tensor image (DTI, a noninvasive tech-
nique trackingWM fibers of brain) and graph theory analysis,
this study examined WM networks in AVG experts and
amateurs in terms of global and nodal characteristics and
structural connections. Graph theory is the study of graphs,
which are mathematical structures used to model pairwise
relations between objects. A graph is a set of nodes (vertices)
linked by connections (edges) and provides an abstract repre-
sentation of the elements and their interactions in a system.
Graph theory has been widely used to quantitatively charac-
terize topological organization of neural networks [20].

Specifically, we first examined WM network with global
characteristics in terms of global efficiency, mean clustering
coefficient, and local efficiency. Then, we further examined
local characteristics of WM network in terms of connections,
nodal efficiency, nodal strength, and nodal clustering coeffi-
cient. Global characteristics were used to investigate potential
alterations of WM networks in a whole brain level. And local
characteristics were used to investigate in detail the alteration
of global characteristics in a local brain area level. To control
confounding variables, two groups were carefully matched
based on demographic and behavioral data. We predict that
if AVG experience can enhance cognitive functions, experts
should have altered WM networks compared to amateurs.

2. Materials and Methods

2.1. Participants. The experimental protocols were approved
by the ethics research committee of the University of
Electronic Science and Technology of China (UESTC) and
were performed in accordance with ethical standards out-
lined by the Declaration of Helsinki. Informed consents were
obtained from all subjects.

Twenty-eight AVG experts, males (M=24.6± 1.4 yrs.),
and 30 amateurs, males (24.3± 1.8 yrs.), participated in this
study. The AVG experts had at least 6 years AVG tournament
and training experience and were recognized as either
regional or national champions. The experts’ AVG experi-
ence was quantified based on their ladder rank score, ranging
from 1900 to 2600 points, measured on Elo’s chess skill rating
scale [21]. All the amateurs had less than 1200 points. The Elo
rating scale is widely used as a rating system for multiplayer
competition in AVGs. The difference in the ratings between

two players serves as a predictor of the outcome of a match.
A difference of 100 points indicates that the probability of
winning an AVG match for the stronger player is 64% and
200 points is 76%. Confounding variables (age, educational
experience, Raven’s progressive matrices, academic record,
and the onset age of playing AVG) were matched between
groups. The only significant between-group differences
were weekly average time (AT) spent on playing AVG.
The experts’ AT were correlated with their ladder rank scores
(rpoints = 0.53, p = 0 004), suggesting that AT is a sensitive
indicator of AVG expertise. All the participants were right
handed according to the Edinburgh Inventory [22], reported
to have normal or corrected-to-normal vision and normal
hearing, and presented no history of neurological illnesses.

2.2. Data Acquisition. Images were acquired on a 3T MRI
scanner (GE Discovery MR750) at the MRI Research Center
of UESTC. Anatomic 3D T1-weighted axial images were
acquired using a spoiled gradient recall (SPGR) sequence
that covered the entire brain (152 slices, TR=6.008msec,
TE=1.984msec, matrix = 256× 256, FOV=25.6 cm× 20 cm,
and flip angle = 90°). The DTI acquisition used a single-
shot spin-echo planar imaging sequence (TR=8, 500msec,
TE=66.6msec, matrix = 128× 128, FOV=25.6 cm× 25.6 cm,
thickness = 2mm without gaps, and 75 slices covered the
whole brain). Three unweighted B0 (b=0 s/mm) and 64
diffusion-weighted (b=1000 s/mm) images were collected.

2.3. Data Preprocessing. For each participant, the 15 diffusion-
weighted scans were aligned to the first unweighted B0 image
(b=0 s/mm) to minimize slight head movements using the
SPM8 software package (Statistical Parametric Mapping,
http://www.fil.ion.ucl.ac.uk/spm/software/spm8).

2.4. Network Node Definition. The definition of nodes was
based on the procedure used in previous studies [23]. Specif-
ically, for each participant, the T1-weighted structural image
was first coregistered to its B0 image (b=0 s/mm2) in the DTI
native space, using a linear transformation. Second, the
coregistered structural images in the DTI native space were
registered to the ICBM-152 T1 template in the MNI space
to obtain an affine transformation matrix, T, with 12 degrees
of freedom, together with a series of nonlinear warps charac-
terized by a set of 7× 8× 7 basis functions. Finally, the inverse
transformation matrix T1 was utilized to warp the automated
anatomical labeling (AAL) atlas [24] from the MNI space
to the DTI native space, the same procedure as previous
studies [25]. The procedure preserved discrete labeling values
using the nearest-neighbor interpolation method in SPM8.
After the completion of the above procedure, the cerebral
cortex and subcortex for each participant were anatomically
parcellated into 90 regions of interest (ROI), 45 for each
hemisphere, excluding the region of the cerebellum. Each
ROI represents one node of theWMnetwork in a participant.

2.5. WM Fiber Tractography. The corrected diffusion-
weighted images and B0 images were used to reconstruct
the whole brainWM tracts for each participant. The diffusion
tensor was estimated by the linear least-squares fitting
method at each voxel, using the interactive software Diffusion
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Toolkit 0.6.2 [26], and whole brain fiber tracking was per-
formed in the DTI native space [27]. During tracking, the
fiber assignment by continuous tracking algorithm was
employed [28]. If the FA value was less than 0.15 or the angle
between the current and the previous path segment was
higher than 35 degrees, the path tracking was stopped. After
whole fiber tracking, any fiber shorter than 20mm or longer
than 300mm and obvious false paths were discarded [29].
To ensure that each brain region was sufficiently in contact
with the fibers, they were expanded 2-3mm into the white
matter. Fiber bundles connecting each pair of brain regions
were extracted from the total collection of brain fibers.

2.6. Network Edge Definition. Two regions (regions i and j)
were considered structurally connected if at least one fiber
bundle with two endpoints was located in these two regions
[30]. According to the number of fibers linking region i and
region j, the weight of the edge linking regions i and j was
normalized: w i, j =Ni,j/max Ni,j , where Ni,j is the number
of fibers linking regions i and j, and max(Ni,j) is the maxi-
mum number of fibers linking any two nodes in graph G.
After the above procedure, a weighted WM network, repre-
sented in a symmetric 90× 90 matrix, was constructed for
each participant.

2.7. Connectivity Backbone. Because of noise and limitations
in tractography, the risk of false-positive connections exists.
To limit this risk, a connectivity backbone was estimated
according to the aforementioned network for each partici-
pant [30]. First, a maximum spanning tree, which connects
all nodes of the network such that the sum of its weights is
maximal and in which there are no cycles, was extracted.
Then, additional edges were added in order of their weights
until the average node degree (the degree of a node is the
number of edges connected to that node in a graph) was K.
To insure the sparseness and efficiency of the network, K

was set as 4 according to our previous experience and a
previous study [30]. All subsequent network (graph) analyses
andvisual representationswerebasedon the resultantnetwork
(connectivity backbone).

2.8. Graph Theory Analysis. In this study, we used the Brain
Connectivity Toolbox (http://www.brain-connectivity-toolbox.
net) to analyze the following network and nodal characteris-
tics. Detailedmathematical formulas are presented in Table 1.

2.9. Statistical Analysis. The comparison analysis at the group
level was performed using a nonparametric approach (per-
mutation test), which was usually used when the normality
assumption was violated [31, 32]. For a given parameter, we
first estimated the t value to indicate the between-group
difference. Then, we randomly assigned the parameter values
for all subjects in this study into two groups to recalculate
the t value between the two randomized groups. We repeated
the permutation 10,000 times and obtained 10,000 t values.
Finally, we determined the significance level of the between-
group differences at 95% of the empirical distribution in
a two-tailed test, also see [33]. Partial correlations were
computed between characteristics and behavior data with
age controlled.

3. Results

3.1. Global Characteristics. Compared to the amateurs, AVG
experts had three significantly increased global characteris-
tics, including global efficiency, mean clustering coefficient,
and local efficiency (p < 0 05 Bonferroni corrected).

3.2. Structural Connections. Compared to the amateurs, AVG
experts had significantly strengthened structural connections
among the three brain networks—the prefrontal network,
the limbic system, and the sensorimotor network (p < 0 005,

Table 1: Mathematical formulas used in graph theoretical analyses.

Characteristics Mathematical formulas Interpretations

Global efficiency Eglobal =
1

N N − 1 〠
i≠j∈G

1
Lij

Eglobal reflects how efficiently information can be
communicated over the whole network.

Local efficiency Elocal =
1
N

〠
j≠k∈G

Eglobal Gi

Elocal has been used to reveal the fault
tolerant capability of a network.

Mean clustering coefficient Cp =
1
N
〠
i∈G

Ci

Cp is a measure of the extent of the mean
interconnectivity or cliquishness in a graph.

Nodal clustering coefficient Ci =
1

ki ki − 1 〠
j,k∈G
j,k≠i

wij ⋅ wjk ⋅ wki
1/3

Ci is a measure of the extent of the local
interconnectivity or cliquishness in a

graph (the edge weight (w)).

Nodal efficiency Ei =
1

N − 1 〠
i≠j∈G

1
Lij

Ei depicts the importance of node i during the
information communication within a network.

Nodal strength Si = 〠
i∈G

wij The larger Si is, the more important node i becomes.

We defined the subgraph Gi as the set of nodes that is the direct neighbors of the ith node, that is, directly connected to the ith node with an edge. The degree of
each node, Ki,i=1,2, ,23, is defined as the number of nodes in the subgraph Gi .
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uncorrected). Furthermore, the experts did not have signifi-
cantly weakened structural connections (see Figure 1).

3.3. Nodal Characteristics. Significantly increased node
characteristics were found in AVG experts compared to ama-
teurs, including nodal clustering coefficient, nodal efficiency,
and nodal strength (p < 0 005 uncorrected) (see Figure 2).
These significant nodes had a similar spatial distribution
with significant nodes of structural connection (see details
in Table 2).

3.4. Correlational Analyses. In the expert group, we found
that AT was significantly correlated with the global efficiency
(r = 0 385, p = 0 048), nodal efficiency (rnodal efficiency REG−AT=
0.395, p = 0 033; rnodal efficiency CAU.R−AT=0.41, p = 0 031; and
rnodal efficiency SFG.R−AT= 0.35, p= 0.041), and nodal clustering
coefficient (rCAU.R−AT=0.423, p = 0 022), respectively.

4. Discussion

This study investigated the relationship between AVG experi-
ence and the plasticity of WM networks by comparing AVG
experts and amateurs. The analyses on global characteristics,
structural connections, and nodal characteristics showed
alteredWMnetworks in AVG experts compared to amateurs.
The alterations were evident in the prefrontal network, the
limbic system, and the sensorimotor network, which are
mainly related to cognitive control and sensorimotor func-
tions according to the previous studies.

4.1. Increased Global Characteristics. For the global charac-
teristics, AVG experts had significantly increased global
efficiency, mean clustering coefficient, and local efficiency
compared to amateurs. Global characteristics often indicate

the global information of a network [34]. Specifically, the
increased global efficiency is usually associated with enhanced
efficiency of information communication in the whole net-
works; the increased local efficiency was usually expressed as
enhanced fault tolerance of the network when a particular
node is absent (e.g., due to Alzheimer’s disease) [35]; and the
increased mean clustering coefficient often indicates the
advanced ability of specialized informationprocessing inmost
nodes [34]. These results are consistent with our recent study
which found AVG experts had increased global efficiency and
mean clustering coefficient in salience and central executive
networks with resting-state functional data [36]. These results
are also consistent with the previous behavioral results which
suggested AVG experts have better performance in strong
anti-interference, mass information processing, high-speed
information acquisition, and quick and accurate response
[37–40]. The increased network characteristics therefore
suggest that AVG experts’ WM networks could integrate
specialized information and tolerate risk factors more effi-
ciently than amateurs.

4.2. Increased Local Characteristics. According to the
functional features of brain regions, the whole brain
WM network would be divided to subnetworks or subsys-
tems. We found AVG experts had significantly strengthened
connections for some key subnetworks. Specifically, we
found significantly strengthened connections in the prefron-
tal network, limbic system, and sensorimotor network,
respectively (including SFGmorb.L-SFG.L, REG.R-AMYG.R
REG.R-STGp.R, MTG.L-SOG.L, and SPG.R-MOG.R). We
also found significantly strengthened connections between
the prefrontal networks and limbic system (SFGorb.L-
PUT.L), between limbic system and sensorimotor network
(CAU.R-CAL.R), and between the prefrontal network and
sensorimotor network (MFGorb.R-SOG.R and IFGorb.R-
CAL.R) (Figure 1). For healthy people, strengthened WM
connections often indicate better WM connectivity which
might support more efficient information coordination
and communication between brain cortexes. Thus, these
strengthened connections (both the intra- and intersubnet-
work)might be important reasons in supportingAVGexperts’
higher global efficiency.

For the nodal characteristics, AVG experts have
increased nodal clustering coefficient, nodal efficiency, and
nodal strength in the prefrontal network, limbic system, and
sensorimotor network. Research suggested that the nodal
clustering coefficient is related to the ability for specialized
information processing of nodes, nodal efficiency reflects
the ability of nodes to integrate specialized information from
other nodes, and nodal strength is related to the importance
of nodes during the information processing [34]. Thus,
these findings are considered important reasons in sup-
porting AVG experts’ higher mean clustering coefficient
and local efficiency.

The correlations between the global efficiency, nodal
efficiency, and nodal clustering coefficient and the AT further
suggested AVG experts’ advanced cognitive control and
sensorimotor functions might be based on these alterations
of relevant WM networks. This is very possible because AVG

Strengthened connections

Figure 1: The differences in structural connection at the group level.
See Table 1 for full names of nodes. Red nodes were located at the
prefrontal network; green nodes were at the limbic system; blue
nodes were at the sensorimotor network (L = left, R = right). The
gray lines denote the structural connection where experts had
significant enhancements compared with amateurs.
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Increased nodal 
clustering coefficient Increased nodal efficiency Increased nodal strength

Figure 2: The differences in network and nodal characteristics at the group level. Red nodes were at the prefrontal network; green nodes were
at the limbic system; blue nodes were at the sensorimotor network (L = left, R = right). All nodes denote the network or nodal characteristics
where experts had significant enhancements compared with amateurs.

Table 2: Detailed information on significant nodes. BA: Brodmann areas.

Abbr. Full name BA Involved networks Involved functions

SFGmorb Superior frontal gyrus, medial orbital BA 10 Prefrontal networks Cognitive control

SFG Superior frontal gyrus BA 9 Prefrontal networks Cognitive control

SFGorb Superior frontal gyrus, orbital BA 11 Prefrontal networks Cognitive control

IFGorb Inferior frontal gyrus, orbital BA 47 Prefrontal networks Cognitive control

MFGorb Middle frontal gyrus, orbital BA 46 Prefrontal networks Cognitive control

IFGtri Inferior frontal gyrus, triangular BA 45 Prefrontal networks Cognitive control

IFGoper Inferior frontal gyrus, opercular BA 44 Prefrontal networks Cognitive control

REG Rectus gyrus BA 11 Limbic system Cognitive control

ACC Anterior cingulate gyrus BA 24 Limbic system Cognitive control

PUT Lenticular nucleus, putamen — Limbic system Motor learning and execution

PAL Lenticular nucleus, pallidum — Limbic system Regulating movements

CAU Caudate nucleus — Limbic system
Spatial and motoric memory

Directed movements

AMRG Amygdala — Limbic system Stressing response

HIP Hippocampus — Limbic system Spatial memory and navigation

STGp Superior temporal gyrus, temporal pole BA 38 Limbic system Limbic associational integration

SMA Supplementary motor network BA 6 Sensorimotor network The control of movement

MTG Middle temporal gyrus BA 21 Sensorimotor network Temporal associational integration

STG Superior temporal gyrus BA 48 Sensorimotor network Audio-visual integration, and motion perception

SPG Superior parietal gyrus BA 7 Sensorimotor network Spatial orientation

SOG Superior occipital gyrus BA 19 Sensorimotor network Processing visual information

ANG Angular gyrus BA 39 Sensorimotor network Spatial orientation

CAL Calcarine fissure and surrounding cortex BA 18 Sensorimotor network Processing visual information

MOG Middle occipital gyrus BA 19 Sensorimotor network Processing visual information

PoCG Postcentral gyrus BA 3 Sensorimotor network Processing somatosensory information

SMG Supramarginal gyrus BA 40 Sensorimotor network Spatial orientation
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playing requires one to processmultiple objects and battlefield
landforms, to constantly make, assess, and update tactical
plans under time pressure, and to manipulate units by
executing over 200 bimanual actions per minute by key-
board and mouse [16]. Furthermore, cognitive control of
the prefrontal network is related to the adjustment of
arousal and motion in the limbic system, information input,
and response output at the sensorimotor network. Thus,
the alterations of WM networks might be a structural
basis for efficient information communication among these
brain networks.

4.3. The Potential Clinical Applicability. This study showed
the AVG experience-related alterations on WM networks,
suggesting the potential to use AVG as an interventional tool
for mental and neurological deficits. For example, a recent
DTI study showed decreased node efficiency in SFGorb.L,
SMG.L, and ANG.L and global efficiency in ADHD patients
[19]. Furthermore, Alzheimer’s disease (AD) patients had
decreased global efficiency and node efficiency of WM
networks including SFGorb.R and MFGorb.R [41], while
schizophrenia showed reduced node strength (related to
IFG.R, MFG.L, and SFG.L) and node clustering coefficient
(related toMFG.R andMTG.L) [42]. More importantly, these
impairments in ADHD, AD, and schizophrenia patients
correspond to the increases in AVG experts, thus supporting
the potential clinical applicability of AVG.

4.4. Limitations and Interpretation. In this study, the cor-
relational nature of this study precludes causal inferences.
For example, AVG experts may have an innate advanced
attentional ability, which in turn may reinforce their interest
in AVG. In addition, AVG experts may lead a more active life
than amateurs, which may also contribute to the structural
network change. However, the logistic difficulty of retaining
subjects throughout a training study often limits the duration
of training, which is usually much shorter than the acquisi-
tion of expertise in the real world that may take several years.
This can pose a challenge especially to the studies on the
plasticity of WM, which usually occurs through long-term
continuous training. Thus, research on structuralWMplastic-
ity often use a cross-sectional approach by comparing experts
and amateurs [43, 44], based on the logic that if learning of
specific skills does induce changes of particular brain areas,
such changes should be most easily observable by comparing
experts and amateurs.

5. Conclusions

Using graph theory, this study analyzed WM networks in
AVG experts and amateurs. Results showed that AVG
experience is related to altered WM networks in prefrontal
networks, limbic system, and sensorimotor networks, which
are related to cognitive control and sensorimotor functions.
These results shed new light on the influence of AVG experi-
ence on the plasticity of WM networks and suggested the
clinical applicability of AVG experience.
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