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ABSTRACT: Comprehensive profiling of lipid species in a biological
sample, or lipidomics, is a valuable approach to elucidating disease
pathogenesis and identifying biomarkers. Currently, a typical lipidomics
experiment may track hundreds to thousands of individual lipid species.
However, drawing biological conclusions requires multiple steps of data
processing to enrich significantly altered features and confident identification
of these features. Existing solutions for these data analysis challenges (i.e.,
multivariate statistics and lipid identification) involve performing various
steps using different software applications, which imposes a practical limitation and potentially a negative impact on reproducibility.
Hydrophilic interaction liquid chromatography-ion mobility-mass spectrometry (HILIC-IM-MS) has shown advantages in
separating lipids through orthogonal dimensions. However, there are still gaps in the coverage of lipid classes in the literature. To
enable reproducible and efficient analysis of HILIC-IM-MS lipidomics data, we developed an open-source Python package,
LiPydomics, which enables performing statistical and multivariate analyses (“stats” module), generating informative plots (“plotting”
module), identifying lipid species at different confidence levels (“identification” module), and carrying out all functions using a user-
friendly text-based interface (“interactive” module). To support lipid identification, we assembled a comprehensive experimental
database of m/z and CCS of 45 lipid classes with 23 classes containing HILIC retention times. Prediction models for CCS and
HILIC retention time for 22 and 23 lipid classes, respectively, were trained using the large experimental data set, which enabled the
generation of a large predicted lipid database with 145,388 entries. Finally, we demonstrated the utility of the Python package using
Staphylococcus aureus strains that are resistant to various antimicrobials.

■ INTRODUCTION

Lipids are a class of biomolecules with broad biological
importance, from being structural components of the cell
membrane and microdomains to serving as signaling
molecules, and dysregulation of lipid metabolism is a common
feature of many disease states.1,2 Lipidomics, the comprehen-
sive analysis of lipids within a biological system, continues to
gain popularity as it offers insight into metabolic phenotype
and underlying mechanisms of these disease states.3−5

Lipid species can be broken into classes and subclasses on
the basis of their headgroup chemistry, in addition to the
composition of their fatty acyl tails (chain length, number,
arrangement, and stereochemistry of double bonds).6−8

Identification of lipid species may be performed at a variety
of levels of structural detail, ranging from basic lipid class
(Level 1) to complete molecular species (lipid class, subclass,
and fatty acid isomeric composition, Level 5),8,9 according to
the Lipidomics Standard Initiative (LSI). In lipidomics
experiments, it is desirable to identify lipid species at the
highest level possible in order to gain the most complete
understanding of the biological processes being studied. The
use of liquid chromatography coupled to ion mobility-mass
spectrometry (LC-IM-MS) for lipidomics experiments has

been demonstrated to provide a good balance between
analytical throughput, resolution, and confidence in lipid
identifications.5,10−12 Hydrophilic interaction liquid chroma-
tography (HILIC) is particularly advantageous as it provides
resolution on the basis of lipid headgroups in the retention
time dimension, while the orthogonal IM and MS separations
allow for further delineation of overlapping subclass and fatty
acid sum composition.11−13 Therefore, this method generally
allows Level 3 lipid identifications (lipid class/subclass and
fatty acid sum composition).8,9

Lipid identifications by IM-MS rely on reference CCS values
to compare against, and although there are several large
collections of experimental lipid CCS values in the
literature,11−19 these collections do not yet comprehensively
cover the vast lipid chemical space (both in terms of class and
composition). CCS prediction using machine learning (ML) is
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one solution that has gained traction in recent years,14,19−24

and variants of this general technique have been used by
multiple groups to generate predicted CCS databases for
lipids.14−16 Zhou et al. were the first to construct regression
models for predicting lipid CCS from a large set of molecular
descriptors (45 and 66 for positive and negative modes,
respectively) using support vector regression.14,25 Blazěnovic ́ et
al. trained several classification models (primarily K-nearest
neighbor algorithm) using combinations of m/z, retention
time, and CCS for the prediction of lipid class and carbon
number,15 but their approach did not result in a predicted
database covering theoretical lipids. We recently reported a
clustering-to-prediction approach for a comprehensive pre-
diction of CCS of diverse chemical structures, including lipids
and other types of molecules, but a comprehensive predicted
lipid CCS database is still needed.19 More recently, a large
predicted CCS database was constructed using a regression
model (XGBoost algorithm) that predicts lipid CCS from 328
molecular descriptors.16 However, although the previous
approaches perform well in lipid identification or classifica-
tion,14−16,25 previous databases mostly cover mammalian lipid
species, have limited coverage of bacterial lipids, and have no
built-in statistical functions, which are needed for a complete
lipidomics workflow.
A typical lipidomics experiment may track hundreds to

thousands of individual lipid species (features) across a large
number of biological samples. The dimensionality of these data
sets (many features, fewer samples) can make the interpreta-
tion of results difficult since macroscopic differences between
samples often correspond to nuanced patterns of change across
many features. To address this challenge, multivariate statistical
analyses are often applied to lipidomics data in order to draw
out the features that are most important or explanatory with
regard to the specific biological question being probed.
Commonly employed analyses range from simple statistical
tests like per-feature ANOVA or Pearson correlation analysis
to multivariate dimensionality reduction analyses like principal
components analysis (PCA) and partial least-squares discrim-
inant analysis (PLS-DA). At a high level, the use of such
analyses allows large lipidomic data sets to be pared down to
the set of lipid features that are altered by the specific
biological conditions. Owing to the complexity of the entire
process and the fact that they are often implemented in
different pieces of software, thus requiring moving the data
between different programs and converting them between
different formats, these analyses can be laborious to perform
and difficult to apply consistently across multiple data sets.
To address the primary challenges faced in the analysis of

lipidomics data (lipid identification and data complexity), we
have prepared a Python package, LiPydomics, which contains a
suite of tools for performing data analysis and lipid
identification on HILIC-IM-MS lipidomics data in an efficient
and reproducible fashion. To support lipid identification, we
assembled a comprehensive experimental CCS database from
the literature, trained ML models for the prediction of CCS
and HILIC retention times using simple but specialized feature
sets, and built a predicted lipid database with a broad coverage
of lipid classes.

■ EXPERIMENTAL SECTION
Reference Lipids Database Assembly. A comprehensive

collection of lipid CCS values was assembled from individual
CCS collections available in the literature11−18 into a single

database of reference lipids for use in lipid identification.
Briefly, the source data sets were manually examined for errors
and the relevant data (i.e., lipid name, MS adduct, m/z, and
CCS) from each was converted into the JSON format, yielding
clean and consistently formatted data with separate files for
each data set. The SQLite3 relational database was initialized
with a table to hold the reference CCS values. A series of build
scripts developed in-house was used to assemble the combined
database from individual cleaned data files in a reproducible
fashion. During database assembly, the lipid names were
parsed for relevant information (i.e., lipid class, sum
composition of fatty acids [number of carbons and
unsaturation degrees], and presence of ether lipids), and this
information along with metadata reflecting measurement
conditions was associated with each entry. CCS values
measured on drift tube (DT), traveling wave (TW), and
trapped ion mobility spectrometry (TIMS) instruments were
included, and those measured on TW were calibrated using
lipid standards. For the individual data sets that were measured
using the same HILIC-IM-MS protocol as reported previously
(referred to hereafter as the established HILIC method),11−13

the retention time was also stored with each lipid measure-
ment. Additional tables containing predicted m/z, CCS, and
retention times were also added to the database and populated
as described below.

Generation of Exact Lipid m/z Values. Theoretical m/z
values were systematically produced for lipid classes using a
subpackage within LiPydomics (lipydomics/identif ication/Lip-
idMass). Monoisotopic masses were computed from the lipid
classes and subclasses, fatty acid compositions (ranging from
10 to 30 carbons, including both even and odd numbers, and
0−6 unsaturations per fatty acid), and MS adducts using a
method similar to that used in LipidPioneer.26 Separate
functions were used for each lipid class, and lipid classes are
further grouped into sphingolipids (Cer, GlcCer, SM),
glycerolipids (DG, TG), glycolipids (MGDG, DGDG,
GlcADG), glycerophospholipids (AcylPG, AcylPE, AlanylPG,
CL, LysylPG, PA, PC, PE, PG, PI, PIP, PIP2, PIP3, PS),
lysoglycerophospholipids (LPA, LPC, LPE, LPG, LPI, LPS,
LCL), and free fatty acids (FA). Lipid abbreviations follow the
standards established by LIPID MAPS (see Table S1 in the
Supporting Information for lipid class abbreviations).6,7 Exact
m/z values were computed for lipids using a number of
commonly observed ESI adducts in positive ([M]+, [M + H]+,
[M + Na]+, [M + K]+, [M + NH4]

+, [M + H-H2O]
+, [M +

2Na-H]+, [M + 2 K]2+) and negative ([M-H]−, [M +
HCOO]−, [M + CH3COO]

−, [M + Cl]−, [M-2H]2−) modes.
Prediction of CCS Using Machine Learning. Predicted

CCS values for lipids were produced using a predictive model
trained on the reference lipid database. For all reference lipids,
lipid classes, fatty acid modifiers (e.g., “p” indicating a
plasmenyl lipid), and MS adducts were each encoded into
one-hot binary vectors (22, 3, and 11 features, respectively; see
the Supporting Information for specific encodings). Only the
lipid classes, fatty acid modifiers, and MS adducts with
sufficient representation (at least 20 measurements) in the
database were explicitly encoded. The final feature vector was
prepared by appending fatty acid sum composition (number of
carbons and unsaturations) and observed m/z to the binary
encoded vectors for each lipid (a total of 39 features; Tables
S2−S4). A subset of the reference lipid database (6394
measurements; Table S2) consisting of only the explicitly
encoded lipid classes, fatty acid modifiers, and MS adducts was
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selected for use in CCS prediction. This subset was randomly
split into training and test data sets in proportions of 80 and
20%, respectively, and the test data set was set aside until
model training was complete. The training data were scaled
such that all features had a variance of 1 to avoid arbitrary
overweighting of individual features based on their scale. A
support vector machine with radial basis function kernel (svr)
was selected for CCS prediction based on preliminary testing,
and hyperparameters were optimized using a grid search with
fivefold cross-validation on the training data. Using the
optimized hyperparameters, the model was trained on the
full set of training data, and performance metrics [mean
absolute error (MAE), median absolute error (MDAE),
median relative error (MDRE), and root mean squared error
(RMSE)] were computed on the training data. Finally, the
same performance metrics were computed with the trained
model on the test set data to validate model performance on
unseen data.
Prediction of HILIC Retention Time Using Machine

Learning. Predicted HILIC retention times were produced
using a predictive model trained on all entries in the reference
lipid database that contain HILIC retention times measured
using the HILIC method mentioned above (596 lipids in total;
Table S5).11−13 A smaller feature set (26 features) was used for
retention time prediction compared with CCS prediction:
binary encoded lipid class (22 features), fatty acid modifier (2
features), and sum composition (2 features). The smaller
number of lipid classes and fatty acid modifiers present in the
feature set are reflective of the fact that this subset represents
less than 10% of the complete reference lipids database (596 of
7907 lipids, see Table S5 for specific encodings). In addition,
m/z and encoded MS adduct were not included since these do
not relate directly to chromatographic retention time. This
subset was split into training and test data sets as described
above for CCS prediction. A multivariate linear regression
model was used for retention time prediction. The model was

fit, and performance metrics (MAE, MDAE, and RMSE) were
computed using the training data. Finally, performance metrics
were computed with the trained model on the test set data to
validate model performance on unseen data.

Calibration of HILIC Retention Time. HILIC retention
times present in the reference lipid database were measured
using an established HILIC method mentioned above,11−13

and the ML model for predicting retention times was trained
on these retention times. In order to be able to compare
retention times acquired using other HILIC conditions, a
retention time calibration utility was developed and included in
the library. This utility uses linear interpolation of known
standards to calibrate retention times of a given HILIC
gradient to the retention times in the database. Multiple
calibration points can be used in order to approximate
nonlinear relationships between reference and measured
HILIC retention times. This approach offers excellent
calibration accuracy and flexibility, without the complications
of choosing a fitting function when the relationship is
nonlinear. Once a retention time calibration has been set,
the calibrated retention time is automatically used for
compound identification. To evaluate this calibration strategy,
we first examined three different gradients on the same
Phenomenex Kinetex HILIC column (100 × 2.1 mm, 1.7 μm)
with Solvent A being acetonitrile/water (50/50) with 5 mM
ammonium acetate and Solvent B being acetonitrile/water
(95/5) with 5 mM ammonium acetate: (1) 0−1 min, 100% B;
1−4 min, 100−90% B; 4−7 min, 90−70% B; 7−8 min, 70% B;
8−9 min, 70−100% B, 9−12 min, 100% B; (2) 0−0.8 min,
100% B; 0.8−1.8 min, 100−90% B; 1.8−2.8 min, 90−70% B;
2.8−3.8 min, 70% B; 3.8−4.8 min, 70−100% B, 4.8−8 min,
100% B; (3) 0−2 min, 100% B; 2−8 min, 100−90% B; 8−14
min, 90−70% B; 14−15 min, 70% B; 15−16 min, 70−100% B,
16−19 min, 100% B. We then examined three different
columns from the Phenomenex Kinetex HILIC series (100 ×
2.1, 50 × 2.1, or 30 × 2.1 mm; 1.7 μm). The gradients for

Figure 1. Schematic representation of the LiPydomics data processing workflow. Input/output files (with corresponding file formats) are depicted
in gray. Each cell represents an individual data processing step, and arrows reflect possible workflow sequences. Each cell is color-coded according
to the specific module used to perform each step. The consistent and modular API of LiPydomics allows for data processing workflows to be
customized to the needs of a particular experiment.
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different columns were changed in linear relation to their
lengths. Specifically, the gradients for 50 and 30 mm columns
were as follows: (1) 0−0.5 min, 100% B; 0.5−2 min, 100−90%
B; 2−3.5 min, 90−70% B; 3.5−4 min, 70% B; 4−4.5 min, 70−
100% B, 4.5−6 min, 100% B; (2) 0−0.3 min, 100% B; 0.3−1.2
min, 100−90% B; 1.2−2.1 min, 90−70% B; 2.1−2.4 min, 70%
B; 2.4−2.7 min, 70−100% B, 2.7−3.6 min, 100% B.
Statistical and Multivariate Analyses for Lipidomics

Data. All statistical and multivariate analyses implemented in
this library are available from the SciPy27 and Scikit-Learn28

Python libraries, respectively. These analyses use either the raw
or normalized intensities from samples belonging to user-
specified groups, and the computed statistics are automatically
stored along with the data set. The analyses generally fall into
two categories: untargeted and targeted. The untargeted
analyses (ANOVA and PCA) can be computed on two or
more groups in an unsupervised fashion, that is, they report on
intrinsic characteristics of the data used in their calculation.
The targeted analyses [Pearson correlation analysis, PLS-DA,
Log2(fold-change)] are performed between two specified
groups in a supervised fashion, where features that differ
between the specified groups are highlighted. In addition,
partial least-squares regression analysis may be performed in
order to find correlations between lipidomic data and an
external continuous variable.

■ RESULTS AND DISCUSSION

Development of an All-in-One Python Package for
Comprehensive Lipidomics: LiPydomics. To enable
efficient and reproducible analysis of HILIC-IM-MS data, we
developed a free and open-source (MIT license) Python
package, LiPydomics. The library contains several modules,
each responsible for handling different aspects of lipidomics
data analysis (Figure 1). The data module is responsible for
the organization and storage of the lipidomics data set itself,

along with relevant metadata and any statistics calculated on
the data set using the stats module. It also contains utilities for
saving/loading a data set to file, exporting to a spreadsheet, and
normalizing intensities. The stats module contains functions
for applying statistical and multivariate analyses [ANOVA p-
value, Pearson correlation, PCA, PLS-DA, partial least-squares
regression analysis, two-group Log2(fold-change)] on the data
set, and the plotting module contains functions for extracting
data and generating standard plots, such as bar graph and
heatmap, for the visualization of the data set and statistical
analyses. The identif ication module is used for calibrating
HILIC retention times and identifying lipid features at various
confidence levels using m/z, HILIC retention times, and CCS,
and contains utilities for accessing and retraining the CCS and
HILIC retention time predictive models as discussed below.
The identif ication module additionally contains a subpackage,
LipidMass, which allows for easy generation of exact masses for
a large selection of lipid classes. The interactive module
contains a user-friendly text-based interface for performing
lipidomics data analysis (see the Supporting Information,
Figure S1). This entire package, including the interface, can be
easily installed on any computer with a compatible Python
interpreter (version 3.5 or greater). The assembly of the
experimental database, development of CCS and retention
time prediction models, the assembly of the predicted
database, and demonstration of various modules are discussed
in the following sections. A more in-depth overview of the
library structure and function is available in the package
documentation on GitHub (https://github.com/dylanhross/
lipydomics).

Assembly of an Experimental Reference Lipid Data-
base. A database of experimental reference lipid CCS values
was assembled from data sets available in the literature.11−18 In
total, 7907 experimental CCS values were included in the
database, representing 45 lipid classes (Table S6) and covering

Figure 2. Comparisons of (A, B) TWCCS and (C, D) TIMSCCS vs DTCCS values for lipids in the experimental database. Histograms and CCS-CCS
plots provided for the comparisons of the following groups to corresponding overlapping DT values: (A) TW positive mode, (B) TW negative
mode, (C) TIMS positive mode, and (D) TIMS negative mode with linear corrections applied. Dotted lines show the linear equation y = x.
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major lipid species present in both mammalian and bacterial
systems. The database covers a variety of MS adducts with
5110 positive mode measurements and 2797 negative mode
measurements. CCS measurements made on DTIM, TWIM,
and TIMS instruments were included in the database (1285,
596, and 6026 values, respectively). Excellent agreement has
already been demonstrated between measurements made on
DT and TW platforms when lipid calibrants are used to
calibrate CCS values in TW measurements.29 However, a
systematic comparison of TIMS16,18 CCS values against the
established DT method has not yet been performed. To this
end, we assessed the agreement between CCS values of
overlapping lipids present in TW and TIMS data sets relative
to DT values (Figure 2). Both positive and negative mode TW
CCS values (Figure 2A,B) show excellent agreement with DT
values as evidenced by median relative errors (MDRE) much
less than 1% and high degrees of correlation in CCS-CCS
plots. Positive mode TIMS CCS values also showed excellent
agreement with DT values (Figure 2C); however, negative
mode TIMS values (Figure S2A) displayed an MDRE of ∼1%
with two apparent populations in the histogram. Negative
mode TIMS CCS values from the two constituent data
sets16,18 were examined separately (Figure S2B,C), and it was
found that both data sets displayed MDREs >1%, but in
opposite directions. The CCS-CCS plots indicated distinct
linear relationships between these TIMS CCS values and DT

values for the two data sets. Therefore, in order to utilize both
data sets for building the CCS prediction model, we applied a
linear correction to each data set toward DT values using
equations shown in Figure S2 prior to ML model training.
After this correction, the MDRE for negative mode TIMS CCS
values is −0.36% (Figure 2D). Overall, this database represents
comprehensive coverage of currently available experimental
lipid CCS values, with a broad representation of lipid classes
and IM-MS platforms. A particular strength of this
comprehensive lipid database is the extended coverage of
bacterial lipids, such as LysylPGs, AlanylPGs, AcylPGs,
AcylPEs, GlcADG, and doubly charged lipids, such as CLs
and LCLs, which were not covered in previous large-scale
lipidomics data sets that contain mostly mammalian lipids.14,16

Performance of CCS Prediction Using Machine
Learning. An ML model was trained on data from the
experimental lipid database to predict CCS values using only a
minimal feature set consisting of encoded lipid class, fatty acid
composition, encoded MS adduct, and m/z. These features do
not require computation, which make them easy to assemble
for a wide range of lipids and avoids reproducibility issues
regarding structural assignment and descriptor generation. It
has also been demonstrated that lipids display distinct trends in
CCS with respect to m/z, lipid class, MS adduct, and acyl chain
composition (visit CCSbase.net for interactive visualization of
such trends),11,14,17,19 supporting their inclusion in our

Figure 3. Predicted (gold) and measured (purple) lipid CCS values and relative prediction errors for abundant lipid species in the lipid CCS
database in (A−C) positive and (D−F) negative ESI modes.
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minimal feature set. Lipid classes of the same MS adducts with
at least 20 measurements, resulting in 6394 CCS values in 22
lipid classes, were included for building the prediction model.
This selected subset of measurements was split in an 80/20
proportion for training and test data sets, respectively. The
predictive model was trained using support vector regression
with a radial basis function kernel as described in the
Experimental Section. This model was able to predict CCS
values for lipids with high accuracy, achieving MAE, MDAE,
and RMSE scores of 1.05, 0.55, and 1.79 Å2, respectively, on
the training data set and 1.34, 0.78, and 3.03 Å2, respectively,
on the test data set. Our model slightly outperformed a
recently reported lipid-specific CCS prediction model trained
on TIMS CCS values,16 which achieved RMSE scores of 1.4
and 2.8 Å2 on their training and test set data, respectively. With
MDRE scores of 0.20 and 0.27% on the training and testing
data, respectively, our model also modestly outperforms the
established Lipid CCS predictor, which achieved MDRE scores
of 0.50 and 0.42%, respectively, on positive and negative mode
intralab external validation sets (i.e., data not seen during
model training).14 Relative standard deviation (RSD) was
computed for 1667 lipid species having multiple reported CCS
measurements in the combined CCS database (CCS was
corrected as described above for negative mode data from
Vasilopoulou et al. and Tsugawa et al.16,18), and the mean and
median RSD for this group were 0.60 and 0.50%, respectively.
Thus, the performance of our predictive model (specifically by
MDRE) also compares favorably with variance in exper-
imentally measured CCS values. Figure 3 shows CCS versus
m/z plots for MS adducts of several major lipid classes in both
positive and negative modes along with corresponding relative
errors of predicted CCS values relative to available measured
values, where predicted values were produced using the ML
model and measured values are taken from the experimental
lipid CCS database. The predicted CCS and theoretical m/z
values for all lipids span a comprehensive range of fatty acyl
chain lengths and unsaturation degrees, with clear structural
trends visible in this space as a function of both characteristics.
The predicted CCS values for these lipid classes generally show
excellent agreement with the measured values, with residual
CCS of predicted values falling mostly within 1% of measured
values for most lipid species. We note that although there are
some outliers in the measured values (possibly attributable to
misidentified lipids), the contribution of these outliers to the
training of the overall prediction model appears to be
minimum as the majority of the consistent data outweigh the
small number of outliers during model training. Plots for
additional abundant lipid classes are available in the

Supporting Information, Figure S3. These results demonstrate
that high-quality lipid CCS predictions can be obtained using a
relatively small but specialized feature set, which includes lipid-
specific information, such as lipid class, sum fatty acid
composition, and fatty acid modifiers (Tables S2−S4), with
sufficient training data. Using these specialized features also
allows easy expansion of the prediction model as experimental
data for additional lipid classes becomes available since these
features are easy to generate without computational effort.

Performance of HILIC Retention Time Prediction
Using Machine Learning. A separate ML model was trained
on data from the reference lipid database using a smaller
feature set (minus the adduct types; see the Experimental
Section) to predict HILIC retention times based on the
HILIC-IM-MS method established previously.11−13 The
trained predictive model achieved MAE, MDAE, and RMSE
scores of 0.11, 0.08, and 0.15 min on the test set data,
respectively. Figure 4 shows the distributions of predicted and
measured retention times for the lipid classes that are well
represented in the database spanning the retention time range
of the established HILIC method. The predicted HILIC
retention times show excellent agreement with measured
values for all of these abundant lipid classes, and good
agreement with values for less represented lipid classes (Figure
S4). To allow the retention time database broadly applicable
for HILIC methods run with different gradients and on
different columns, we implemented a calibration method using
multiple segments of linear interpolation between calibrants.
To demonstrate this utility, retention times of lipids extracted
from a Staphylococcus aureus strain were measured using the
established HILIC method,12 as well as modified methods (see
the Experimental Section) using columns of different lengths
(Figure 5A) and/or different gradients (Figure 5B). For each
set of conditions, two to four individual lipids were used as
calibrants to convert measured retention times to reference
retention times. The lines in these plots represent the linear
interpolation that occurs between the calibrants, and their
overlap with the rest of the lipids not used for calibration
demonstrates the utility and accuracy of this flexible retention
time calibration scheme.

Assembly of a Predicted Lipid Database. Separate data
tables were added to the reference lipid database containing
predicted m/z, CCS, and HILIC retention time for a large
collection of lipid species (145,388) comprising a broad
representation of lipid classes found in both mammalian and
bacterial systems. These predicted data were produced by
systematic enumeration of fatty acyl chain length (from 10 to
30 carbons per fatty acid, including both even and odd

Figure 4. Distributions of predicted (red) and measured (blue) HILIC retention times for major lipid classes (A: DGDG; B: PG; C: PI; D: PE; E:
PC; F: LysylPG) spanning the retention time range of the established HILIC method described in the Experimental Section.
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numbers) and unsaturations (from 0 to 6 per fatty acid) for 31
lipid classes (see Table S6) defined in the LipidMass module in
LiPydomics (LipidMass, see below) and using ML models
trained to predict HILIC retention time and CCS; 94,451 and
106,020 predicted CCS and HILIC retention time values were
generated, respectively, covering 22 and 23 lipid classes,
respectively. Together, this predicted database vastly expands
the coverage and depth of the reference lipid database and
enables identifications of more lipid species than using the
experimental reference data alone.
Automated Identification of Lipid Species at Differ-

ent Confidence Levels. Identification of lipid species is
performed by matching m/z, retention time, and CCS against
values from the reference lipid database. Lipid identifications
can be made at several levels of confidence based on the
number of components used for the identification and whether
these were compared against experimental or predicted values.
The available identification levels in this package are (in
descending order of confidence): measured m/z, retention
time, and CCS; predicted m/z, retention time, CCS; measured
m/z and retention time; predicted m/z and retention time;
measured m/z and CCS; predicted m/z and CCS; measured
m/z; and predicted m/z. The user may specify one of these
confidence levels when undertaking lipid identification or use a
tiered approach, where the highest confidence level is tried first
for each lipid species and successive levels are attempted until
an identification is made. If retention time calibration has been
set up, the calibrated retention time is automatically used for
lipid identification. Whenever lipid identifications are made,
both the putative identification(s) and the level of confidence
are stored for each lipid feature. When multiple annotations are
made for a single feature, the putative identifications are
ranked by a score reflecting the agreement between query and
reference values, computed as the dot product of residuals
from the matched values normalized by their respective search

tolerances. All lipid identifications made by this method are of
LSI Level 3,9 i.e., lipid class, subclass, and fatty acid sum
composition. Overall, this utility allows users to identify lipids
in an efficient, automated fashion. In addition, the predicted
lipid database was added to our existing web interface
(https://CCSbase.net)19 so that users can query these data
without using the complete LiPydomics package.

Demonstration of LiPydomics Functionality. In order
to demonstrate the functionality of LiPydomics, we reanalyzed
data from our recently published study examining lipidomic
changes associated with antibiotic resistance in methicillin-
resistant Staphylococcus aureus (MRSA) strains.30 Aligned and
peak-picked HILIC-IM-MS data acquired in negative ESI
mode were used for this analysis. The data contained
normalized intensities for 3647 features from four different
MRSA strains (JE2 parent strain, “Par”; JE2-derived strain with
reduced susceptibility to daptomycin, “Dap2”; reduced
susceptibility to dalbavancin, “Dal2”; and reduced suscepti-
bility to vancomycin, “Van4”), each with four biological
replicates. Lipids were identified by matching on predicted m/
z, retention time, and CCS (using search tolerances of 0.02 Da,
0.2 min, and 3.0%, respectively), or measured m/z and CCS to
cover lipid classes without retention time information. Using
the stats module, we computed a three-component PCA to see
how the groups separated according to their overall variance.
Figure 6A shows the PCA projections for each sample along
the first two principal components, colored by strain. These
components capture around 90% of the total variance in the
data set, and samples from each group cluster together and
separate from other groups in this space, indicating that there
are distinct characteristics that are associated with each strain.
We next looked specifically at the comparison between the
lipid profiles of the daptomycin-resistant Dap2 and the parent
strains that have been examined previously. First, we
performed PLS-DA and Pearson correlation between Dap2
and Par. The PLS-DA projections (Figure 6B) showed
excellent separation between the strains, and similar levels of
intragroup variance. The S-plot (PLS-DA x-loadings vs.
Pearson correlation) highlights multiple features that are
highly abundant in either strain and different between strains
(Figure 6C). Examination of these discriminating features
reveals systematic changes in the DGDG, LysylPG, and FA
lipid classes between these strains. To explore these effects at a
higher level, we computed the Log2(fold-change) between
Dap2 and Par and produced heat maps of all annotated lipids
from each of these classes using the plotting module (Figure
6D−F). From these heat maps, we observed a general decrease
in DGDGs, an increase in LysylPGs, and an increase in FAs
between 15 and 21 carbons in length in Dap2 strains relative to
Par. It should be noted that these heat maps include lipid
features annotated as unsaturated lipids; however, these are
unlikely to be found in the bacterial system studied. Indeed, a
close examination of those features suggests that most have low
signal intensities likely corresponding to background signals.
We also produced bar plots using the plotting module, showing
the mean intensities with standard deviation in Dap2 and Par
strains for the most significantly altered lipids in each of the
previously discussed lipid classes (Figure 6G−I). Overall, this
analysis using LiPydomics reproduced the key findings of the
previous report30 and was performed with only 19 lines of
Python code on minimally processed data.
Separately, we used both positive and negative ESI mode

data from the same study to perform lipid identification using

Figure 5. Demonstration of linear interpolation retention time
calibration using data collected with columns of (A) different lengths
or (B) different gradients. Open circles and triangles in (A) represent
measured retention times from experiments using 50 and 30 mm
columns, respectively, plotted against retention time from the
established HILIC method (100 mm column). Open circles and
triangles in (B) represent measured retention times from experiments
using a faster and slower gradient, respectively, plotted against
retention time from the established HILIC method using the same
100 mm column. Solid colored points represent the individual lipids
chosen as calibrants, with colors distinguishing between the two
experiments. The colored lines reflect the linear interpolation between
calibrants that used for converting measured retention times to their
reference equivalent.
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the predicted lipid database at varying levels of confidence.
Figure 6J shows the number of lipids identified at each level of
confidence for both ESI modes. The number of lipids
identified decreases steadily as we progress from matching
solely based on m/z (lowest confidence) to matching based on
m/z, retention time, and CCS (highest confidence), using
search tolerances of 0.02 Da, 0.2 min, and 3.0%, respectively,
across all tests. This example demonstrates the flexibility of the
lipid identification utility in LiPydomics, which allows a user to
prioritize annotation coverage or confidence as it suits the
biological problem being studied.

■ CONCLUSIONS

The key strengths of LiPydomics as a resource for lipidomics
data analysis lie in its large coverage of lipid classes (both
experimental and predicted), versatility (from statistical
analysis to identification), reproducibility, extensibility, and
ease of use. In addition, data analyses can be partially or fully

automated through scripting, further enhancing the reprodu-
cibility and efficiency of such analyses. The unique reference
lipid database contains measured and predicted m/z, retention
time, and CCS values, with broad coverage of common and
rare lipid species from both mammalian and bacterial systems,
the latter being underrepresented in other lipid databases to
date. The predicted m/z, retention times, and CCS values
display good agreement with measured values and cover a
comprehensive range of lipid classes and fatty acid
compositions, enabling identification of more lipids than
would be possible using measured values alone. Thus, this
comprehensive lipid database enables the identification of lipid
species at the level of class, subclass, and sum fatty acid
composition (LSI Level 3) from diverse biological systems.
The package (including the lipid database and prediction
models) is also built to be highly extensible and customizable,
allowing easy expansion as more data becomes available and
optimization for specific analysis workflows via its flexible and

Figure 6. Illustration of LiPydomics functions by analyzing antibiotic-resistant MRSA strains. (A) PCA projections for parent strain (Par) and
strains with resistance to daptomycin, dalbavancin, or vancomycin (Dap2, Dal2, Van4, respectively). (B) PLS-DA projections computed between
Par (red) and Dap2 (blue) strains. (C) S-plot showing individual features driving separation between Par (red) and Dap2 (blue) strains. (D-F)
Heatmaps of Log2(fold-change) between Par and Dap2 strains for major bacterial lipid classes. (G-I) Bar plots of individual lipids displaying the
most significant differences between Par and Dap2 strains. (J) Number of lipids identified from positive and negative mode data using various
combinations of predicted identifiers (m/z, CCS, and/or HILIC retention time).
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well-documented API. The text-based user interface makes the
library more broadly accessible to those who are not familiar
with Python programming. Together, these attributes make
LiPydomics a unique and comprehensive tool for performing
analysis of HILIC-IM-MS lipidomic data.
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