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C O G N I T I V E  N E U R O S C I E N C E

Incorporating intrinsic suppression in deep neural 
networks captures dynamics of adaptation 
in neurophysiology and perception
K. Vinken1,2,3*, X. Boix1,2,4, G. Kreiman1,2

Adaptation is a fundamental property of sensory systems that can change subjective experiences in the context 
of recent information. Adaptation has been postulated to arise from recurrent circuit mechanisms or as a con-
sequence of neuronally intrinsic suppression. However, it is unclear whether intrinsic suppression by itself can 
account for effects beyond reduced responses. Here, we test the hypothesis that complex adaptation phenomena 
can emerge from intrinsic suppression cascading through a feedforward model of visual processing. A deep con-
volutional neural network with intrinsic suppression captured neural signatures of adaptation including novelty 
detection, enhancement, and tuning curve shifts, while producing aftereffects consistent with human perception. 
When adaptation was trained in a task where repeated input affects recognition performance, an intrinsic mech-
anism generalized better than a recurrent neural network. Our results demonstrate that feedforward propagation 
of intrinsic suppression changes the functional state of the network, reproducing key neurophysiological and 
perceptual properties of adaptation.

INTRODUCTION
The way we process and perceive the environment around us is not 
static but is continuously modulated by the incoming sensory inform
ation itself. This property of sensory systems is called adaptation and 
can markedly alter our perceptual experience, such as the illusory 
perception of upward motion after watching a waterfall for some 
time (1). In the brain, neural responses adapt to the recent stimulus 
history in a remarkably similar way across sensory modalities and 
across species, suggesting that neural adaptation is governed by fun
damental and conserved underlying mechanisms (2). The effects of 
adaptation on both the neural and perceptual levels have been most 
extensively studied in the visual system, where they appear to play a 
central role in the integration of temporal context (3–5). Therefore, 
to understand vision under natural, dynamic conditions, we must 
consider the neural processes that contribute to visual adaptation 
and how these processes generate emergent functional states in 
neural networks. Yet, we do not have a comprehensive understand
ing of what the underlying mechanisms of adaptation are and how 
they give rise to changes in perception.

A fundamental question is whether the dynamics of adaptation 
are implemented by recurrent interactions in the neural network 
(6) or whether they can arise from established intrinsic biophysical 
mechanisms operating within each individual neuron (2). An im
portant argument for the role of intrinsic cellular mechanisms in 
adaptation is that contrast adaptation in cat visual cortex leads to a 
strong afterhyperpolarization of the membrane potential (7). In other 
words, the more a neuron fires, the more its excitability is reduced, 
which is why the phenomenon is sometimes called neuronal fatigue 
(8). In this scenario, adaptation is caused by intrinsic properties of 
individual neurons that reduce their responsiveness proportional to 

their previous activation. Throughout the paper, we use the term 
intrinsic suppression to refer to such neuronally intrinsic mecha
nisms, which suppress responses on the basis of recent activation.

However, adaptation phenomena in the brain go well beyond 
firing rate–based suppression, and it is not always clear whether 
those phenomena can be accounted for by intrinsic neuronal prop
erties. First, the amount of suppression does not just depend on the 
preceding firing rate but can be stimulus specific; i.e., suppression 
depends on whether the current stimulus is a repetition or not (9). 
Second, adaptation can also lead to response enhancement of single 
neurons (5, 8, 10, 11), sometimes even at the population level (12). 
Last, adaptation can cause a shift in the neuron’s tuning function 
for a particular stimulus dimension such as orientation (13, 14), 
direction (15), or spatial and temporal frequency (16, 17). Tuning 
shifts include both response suppression and enhancement (13) and 
have been linked to perceptual aftereffects where adaptation pro
duces a shift in the perception of a stimulus property (15). Complex 
adaptation phenomena such as tuning shifts have fueled the ar
gument that recurrent network mechanisms should be involved 
(13, 15, 16, 18). The putative involvement of recurrent signals is 
supported by computational models, which implemented adapta
tion by changing recurrent interactions between orientation tuned 
channels to successfully produce peak shifts (18–20).

Adaptation effects cascade through the visual system and can alter 
the network interactions in unexpected ways (2, 21). For example, 
adaptation induced shifts in spatial tuning of primary visual cortex 
(V1) neurons can be explained by a twolayer model where changes in 
response gain in lateral geniculate nucleus cascade to V1 through 
a fixed weighting (22). These findings highlight the need for deeper, 
multilayer models to capture the effects of adaptation, because pre
vious models that lack the characteristic hierarchical depth and 
complexity of the visual cortex may not be sufficient to demon
strate the feedforward potential of intrinsic neuronal mechanisms. 
Moreover, the units in previous models are only designed to encode 
a particular stimulus dimension, such as orientation, and thus can
not provide a comprehensive framework of visual adaptation. In 
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contrast, deep convolutional neural networks have recently come 
forward as a powerful new tool to model biological vision (23–26) 
[see, however, discussion in (27)]. When trained to classify natural 
images, these models describe the stages of ventral visual stream 
processing of brief stimulus presentations with unprecedented ac
curacy (28–33), while capturing essential aspects of object recogni
tion behavior and perceived shape similarity (29, 31, 34). In this 
study, we exploit another advantage of deep neural networks, 
i.e., their ability to demonstrate how complex properties can 
emerge from the introduction of biophysically inspired neural 
mechanisms. We implemented activationbased intrinsic sup
pression in a feedforward convolutional neural network (35) and 
tested the hypothesis that complex adaptation phenomena readily 
emerge without dedicated recurrent mechanisms.

A comprehensive model of visual adaptation should not only 
capture the neurophysiological dynamics of adaptation but also 
produce the perceptual consequences. Therefore, we evaluated the 
proposed computational model implementing intrinsic suppression 
with critical neurophysiological and psychophysical experiments. 
We first show that the model captures the fundamental neuro
physiological hallmarks of repetition suppression, including stimulus 
specific suppression, not only from one image to the next but also 
across several image presentations (5). Second, we show that the 
model readily produces the two fundamental perceptual after
effects of adaptation, namely, a perceptual bias in the estimate of 
a stimulus parameter and an enhanced discriminability between 
parameter levels (3). In contrast with previous models that were 
constrained to one lowlevel property such as orientation, we demon
strate these effects using face gender (36) as a stimulus parameter, to 
highlight the general applicability of the model. Third, we show that 
perceptual aftereffects coincided with response enhancements as well 
as tuning peak shifts, phenomena that are often considered to need 
the involvement of recurrent network mechanisms (13, 15, 16, 18). 
Response magnitude changes contributed mostly to the perceptual 
bias, but tuning changes were required to explain enhanced dis
criminability. Last, we show that a trained intrinsic neural mecha
nism is less likely to overfit and thus provided a less complex solution 
than a recurrent network mechanism. Overall, while not ruling out 
any role of recurrent processes in the brain, these results demon
strate that the hallmark neural and perceptual effects of adaptation 
can be accounted for by activationbased suppression cascading 
through a complex feedforward sensory system.

RESULTS
We investigate whether complex adaptation phenomena readily 
emerge from the propagation of activationbased intrinsic suppres
sion, in a feedforward neural network model of ventral stream 
processing. We used a pretrained convolutional neural network 
(Fig. 1A) (35) as a bottomup computational model of vision and 
introduced an exponentially decaying intrinsic adaptation state into 
each unit of each layer of the network, with its parameters set to 
impose suppression (Fig. 1B; Materials and Methods). The two neural 
adaptation parameters  and  (Eqs. 1 and 2) were not trained to fit 
the neuronal responses or behavioral results but were the same for 
each unit and were chosen to lead to a gradual buildup and recovery 
of the adapted state over several time steps (Fig. 1B). Throughout 
the paper, we use  = 0.96 and  = 0.7, unless indicated otherwise. 
Because of the intrinsic suppression mechanism, the model units 

display temporally evolving responses (Fig. 1C), and their activations 
can be directly compared to the neurophysiological dynamics.

A neural network incorporating intrinsic suppression 
captures temporal dynamics of adaptation at 
the neurophysiological level
We start with the most prominent characteristic of neural adaptation: 
repetition suppression, which refers to a reduction in the neuronal 
responses when a stimulus is repeated. We illustrate this phenomenon 
using an experiment where face stimuli were presented to a macaque 
monkey in pairs of two: an adapter followed by a test stimulus (Fig. 2A) 
(37). In repetition trials, the test stimulus was identical to the adapter 
whereas, in alternation trials, the adapter and test stimuli were dif
ferent. Neurons recorded in the middle lateral face patch of inferior 
temporal (IT) cortex showed a decrease in the response during stim
ulus presentation and after stimulus offset. In addition, the neurons 
showed a lower response to a face stimulus when it was a repetition 
trial (blue) compared to an alternation trial (orange; Fig. 2B).

We evaluated the average time courses of the model unit activa
tions for the same experiment (Fig. 2C; mean of all N = 43,264 units 
in layer conv5). The model units showed a decrease in the response 
during the course of stimulus presentation. Consistent with repeti
tion suppression in biological neurons, the response of model units 
to the test stimulus was lower for repetition than alternation trials. 
For this stimulus set, the largest difference between repetition and 
alternation trials was observed for layer conv5 (see other layers in 
fig. S1A).

The model units demonstrated several key features of adaptation 
at two time scales: (i) during presentation of any stimulus, including 
the first stimulus, there was a decrease in the response with time; 
(ii) the overall response to the second stimulus was smaller than the 
overall response to the first stimulus; and (iii) the response to the 
second stimulus was attenuated more when it was a repetition. 
However, the model did not capture more complex dynamics such 
as the second peak in neural responses. The model responses showed 
a smaller difference between repetitions and alternations than bio
logical neurons: The average alternationrepetition difference was 
0.07, SD = 0.12 (model, five test time steps), and 0.11, SD = 0.15 
(IT neurons, 850 to 1000 ms window) in the normalized scale of 
Fig. 2 (B and C).

We hypothesized that the computergenerated faces were too 
similar for the model to display the full range of adaptation effects. 
Therefore, we ran the same experiment using natural images with 
more variability. Natural stimuli resulted in a considerably larger 
difference between repetition and alternation trials (fig. S1B), sug
gesting that the selectivity of adaptation at least partially reflects 
stimulus similarity in the model representations. Consistent with 
this idea, the stimulus similarity in preadaptation activation patterns 
for different adapter and test images was positively correlated with 
the amount of suppression for most layers (fig. S2).

An important property of repetition suppression in macaque IT 
is stimulus specificity: Even for two adapters that equally activate 
the same neuron, the suppression for an image repetition is still 
stronger than for an alternation (9). It is not straightforward to see 
how a neuronally intrinsic mechanism could account for this pheno
menon, because an intrinsic firing rate–based mechanism is by 
itself not stimulus selective (5). However, fig. S3 demonstrates that 
when activationbased suppression propagates through the layers of 
the network, neural adaptation of single units becomes increasingly 
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less dependent on their previous activation, until stimulusspecific 
suppression is present for most single units in fully connected layers.

In addition to the two temporal scales illustrated in Fig. 2 (A to C), 
adaptation also operates at longer time scales. For example, repeti
tion suppression typically accumulates across multiple trials and can 
survive intervening stimuli (9). To illustrate this longer time scale, 
we present multiunit data from rat visual cortex (12), recorded 
during an oddball paradigm where two stimuli, say A and B, were 
presented in a random sequence with different probabilities (Fig. 2D): 
A standard stimulus was shown with high probability (P = 0.9; 
blue), and a deviant stimulus was shown with a low probability 
(P = 0.1; purple). Stimulus (A or B) and condition (standard or 
deviant) were counterbalanced for each neural recording. The stan
dard stimulus was far more likely to be repeated in the sequence, 
allowing adaptation to build up and therefore causing a decrease in 
the response for later trials in the sequence (Fig. 2, E and F, blue). 
Adaptation was evident both in V1 and in the extrastriate latero 
intermediate visual cortex (LI).

We evaluated the model in the oddball paradigm, without any 
tuning or parameter changes. The model qualitatively captured the 
response difference between standard and deviant stimuli (Fig. 2, 
H and I). Comparing Fig. 2E versus F, the effect of adaptation was 
stronger in LI compared to V1 (Fig. 2G). An increase in adaptation 
along the visual hierarchy is consistent with the idea of adaptation 
cascading through the visual system, with additional contributions 
at multiple stages. Like the neural data, the model showed increas
ing adaptation effects from one layer to the next (Fig. 2J), and this 
increase only occurred when intrinsic suppression was incorporated 
in multiple layers (fig. S7).

In the original experiment, images A and B were also presented 
in separate equiprobable control sequences, where each stimulus 

was presented with an equally low probability (P = 0.1) together 
with eight additional stimuli (Fig. 2D) (12). Equiprobable sequences 
are typically used to distinguish repetition from surprise effects, 
because the probability of a repetition in the control condition is the 
same as for the deviant, yet no image is more likely or unlikely than 
the others. Thus, if neural responses also signal the unexpectedness 
of the deviant, then the response to a deviant stimulus should be 
larger than the control condition, which was observed for recording 
sites in downstream visual area LI (Fig. 2F; purple > green). The 
model also showed a difference in response between deviant and 
equiprobable control conditions in higher layers (Fig. 2, I and J). 
Because the model only incorporates feedforward dynamics of in
trinsic suppression, this response difference cannot be attributed to 
an explicit encoding of expectation. Instead, the lower response for 
the control condition results from higher crossstimulus adaptation 
from the additional stimuli in the equiprobable sequences. This ob
servation means that intrinsic suppression in a feedforward neural 
network captures not only response differences due to the repetition 
frequency of a stimulus itself (deviant versus standard) but also dif
ferences related to the occurrence probability of other stimuli (devi
ant surrounded by highprobability standard versus surrounded by 
several equiprobable stimuli).

A neural network incorporating intrinsic suppression 
produces perceptual aftereffects
A comprehensive model of visual adaptation should not only cap
ture the neural properties of repetition suppression but also explain 
perceptual aftereffects of adaptation. Aftereffects occur when recent 
exposure to an adapter stimulus biases or otherwise alters the per
ception of a subsequently presented test stimulus. For example, pre
vious exposure to a male face will make another face appear more 

Fig. 1. Neural network architecture and incorporation of activation-based intrinsic suppression. (A) Architecture of a static deep convolutional neural network, in 
this case AlexNet (35). AlexNet contains five convolutional layers (conv1 to conv5) and three fully connected layers (fc6, fc7, and the decoder fc8). The unit activations in 
each layer, and therefore the output of the network, are a fixed function of the input image. Photo credit: Kasper Vinken, Boston Children’s Hospital, Harvard Medical 
School. (B) Intrinsic suppression was implemented for each unit using an intrinsic adaptation state s(t) (orange), which modulates the response r(t) (blue) and is updated 
at each time step based on the previous response r(t − 1) (Eqs. 1 and 2). The parameter values  = 0.96 and  = 0.7 were chosen to impose a response suppression ( > 0) 
that gradually builds up over time: For constant input (gray shaded areas), the value of the intrinsic state s(t) gradually increases, leading to a reduction in the response 
r(t). The intrinsic adaptation state recovers in the absence of input (nonshaded areas). (C) Expansion over time of the network in (A), where the activation of each unit is a 
function of its inputs and its activation at the previous time step (Eqs. 1 and 2).
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female to an observer, and vice versa (Fig. 3A). In other words, 
adaptation biases the decision boundary for perceptual facegender 
discrimination toward the adapter. A defining property of this type 
of aftereffect is that no perceptual bias should occur when the 
adapter corresponds to the original boundary stimulus (e.g., a gender 
neutral face). Here, we focus on the facegender dimension, but 
similar results for the tilt aftereffect (38) with gratings are shown in 
fig. S4.

To evaluate whether the model can describe perceptual after
effects, we created a set of face stimuli that morphed from average 
male to average female and measured the category decision boundary 
for each layer of the model before and after adaptation (Materials 
and Methods). Once again, we considered the same model from 
the previous section without any parameter changes. Exposing the 
model to an adapter face biased the decision boundary toward the 
adapter. Before adaptation, the predicted female probabilities for 
the model fc7 layer showed a typical sigmoidal curve centered 
around the genderneutral face stimulus with morph level 50% 
(Fig. 3B, blue). After adapting to a male face with morph level 0%, 
the decision boundary shifted ∼30 percentage values toward the 
gender of the adapter (Fig. 3B, orange). Figure 3C shows that for all 
layers, adaptation to a face stimulus resulted in a boundary shift 

toward the adapter. Consistent with perceptual aftereffects in 
human subjects, adapting to the original genderneutral boundary 
stimulus with morph level 50% had no effect on the decision boundary 
(Fig. 3C). The perceptual bias did not suddenly emerge in later 
layers, but slowly built up with increasing layers (Fig. 3C, from 
black to purple to yellow colors), and already occurred within the 
first layer with intrinsic suppression (fig. S8A).

Although adapting to the boundary stimulus did not shift the 
decision boundary, it did increase the slope of the psychometric 
function for fc7 from 0.077 to 0.099 (29%; for layers conv1 to fc6, 
the slope changes were −3, 11, 9, 12, 16, and 31%, respectively). An 
increase in slope signifies a repulsion of more female and more male 
stimuli away from the adapter. This result is inconsistent with the 
perceptual renormalization hypothesis, which predicts that adapta
tion uniformly shifts the norm of the representational space toward 
the adapter and thus that adapting to the original norm (i.e., the 
boundary stimulus) should have no effect whatsoever [see figure 3 
of (39)]. A series of previous experiments has shown that both tilt 
and face aftereffects involve repulsion rather than renormalization 
(40), which is consistent with the computational model proposed here.

Besides biasing the perception of a stimulus property, adaptation 
is also thought to increase sensitivity of the system for small differences 

Fig. 2. Activation-based intrinsic suppression in a neural network captures the attenuation in neurophysiological responses during repetition suppression. 
(A) Face stimuli (created with FaceGen: facegen.com) were presented in repetition trials (adapter = test) and alternation trials (adapter ≠ test). (B) Responses in IT cortex 
(n = 97, shown normalized to average peak activity) are suppressed more for a repeated stimulus (blue) than for a new stimulus [orange, data from (37)]. Black bars 
indicate stimulus presentation. (C) The same experiment as in (A) and (B) produced similar repetition suppression in the model with intrinsic suppression (black, blue, and 
orange lines; gray: no adaptation mechanism; average activity after ReLU of all N = 43,264 conv5 units). The x-axis units are time steps, mapping to bins of 50 ms in (B). 
(D) Example oddball sequence (top) with a high-probability standard (blue) and a low-probability deviant (purple) and example equiprobable sequence (bottom) as 
control (green, texture images from vismod.media.mit.edu/pub/VisTex/). (E and F) Average neural responses in rat V1 [n = 55, (E)] and LI [n = 48, (F)] (12) for the standard 
(blue), deviant (purple), and control (green) conditions (normalized by the response at trial one). (G) Deviant − standard (blue) and deviant − control (green) response 
differences increase from V1 to LI [error bars: 95% bootstrap confidence interval (CI), assuming no inter-animal difference]. (H to J) Running the experiment in the model 
captures response dynamics similar to rat visual cortex. (H) and (I) show the results for conv1 and fc7 [indicated by larger markers in (J)], respectively. Green and blue 
horizontal lines and shading in (J) indicate the neural data averages of (G).

http://facegen.com
http://vismod.media.mit.edu
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from the current prevailing input characteristics, which could serve 
to maintain good stimulus discriminability (3, 4). In line with this 
hypothesis, Yang et al. (41) found that adapting to a female/male 
face improved gender discrimination around the facegender morph 
level of the adapter. We evaluated whether intrinsic suppression in 
the model could account for such improved discrimination (Materials 
and Methods). Adaptation in the model indeed enhanced facegender 
discriminability at morph levels close to the adapter (red diagonal 
in Fig. 3D) while decreasing discriminability at morph levels different 
from the adapter (blue). Like the perceptual bias (Fig. 3C), and 
consistent with the results shown in Fig. 2 (G and J), the discrimin
ability effects built up monotonically across successive layers (Fig. 3E; 
see fig. S4, D and E, for similar results with oriented gratings). 

Unlike boundary shifts, discriminability enhancements first occurred 
downstream of the first layer with intrinsic suppression (fig. S8B). 
Overall, the proposed model shows that activationbased suppres
sion can account for discriminability improvements close to the 
adapter without any other specialized mechanisms and without 
introducing any model changes.

Response enhancement and tuning curve shifts emerge 
from intrinsic suppression propagating to deeper layers
To better understand the mechanisms underlying perceptual after
effects, we investigated how adaptation affects the responses of 
individual units in the facegender experiment (see fig. S5 for analyses 
of the tilt aftereffect). Figure 4A shows the preadaptation activation 
of each responsive fc7 unit across the female/male dimension 
(column 1) and how each unit’s activation strength changed as a 
function of the adapter (columns 2 through 6). The rows in each 
heatmap are sorted according to the gender selectivity index (SIg; 
Materials and Methods), ranging from more responsive to male 
faces (SIg < 0, units shown at the top) to more responsive to female 
faces (SIg > 0, units shown at the bottom). After adaptation, most 
units showed an overall suppressed response (blue), regardless of 
the adapter gender morph level. However, units with a strong 
preference for male faces (top rows) showed an enhanced response 
(red) after neutral to female adapters (columns 3 to 5), whereas 
units with a strong preference for female faces (bottom rows) 
showed the opposite effect (columns 1 to 3). Thus, highly selective 
units showed response enhancement after adapting to the opposite 
of their preferred gender. This response enhancement can be ex
plained by disinhibition (8), where adaptation reduces the inhibitory 
input for units that prefer morph levels further away from the 
adapter, much like response enhancements of middle temporal cells for 
their preferred direction, after adapting to the opposite direction (42).

To quantify and compare this response enhancement for all 
layers, we considered highly genderselective units (|SIg| > 0.6) and 
calculated their response enhancement (averaged across all stimuli) 
after adapting to the opposite of their preferred gender. Figure 4B 
shows that the response enhancement for highly selective units 
(red) emerged in deeper layers (always downstream of the first layer 
with intrinsic suppression; fig. S9A), whereas less selective units 
mostly showed response suppression (blue) throughout all the layers.

Adaptation can lead to changes in response strength, but it can 
also cause a shift in the peak of a neuron’s tuning curve. For example, 
in orientationselective neurons, adapting to an oriented grating 
can produce a shift in the tuning curve’s peak either toward the 
adapter [attractive shift (13, 14, 43)] or away from the adapter 
[repulsive shift (13, 18)]. Adaptation in the model produced both 
types of peak shifts in tuning curves (Fig. 4, D and E). For each unit, 
we calculated the proportion of adapters that produced an attractive 
shift or a repulsive shift (Fig. 4C). Adaptationinduced peak shifts 
emerged in deeper layers of the network, downstream from the first 
layer with intrinsic suppression (fig. S9B). Attractive shifts were 
more common overall, culminating to a proportion of ∼0.5 in the 
last layers.

Tuning changes are thought to be necessary for producing 
perceptual aftereffects. For example, it has been argued that a repulsive 
perceptual bias, where the decision boundary shifts toward the 
adapter, requires tuning curves that shift toward the adapter 
(15, 19). The fact that intrinsic suppression in the model produces 
mostly attractive shifts (Fig. 4C) while also capturing boundary 

Fig. 3. A neural network incorporating intrinsic suppression produces the 
perceptual bias and enhanced discriminability of aftereffects. (A) Examples of 
the face-gender morph stimuli (created with webmorph.org) used in our simulated 
experiments. After exposure to a male adapter face, the gender decision boundary 
shifts toward the adapter and an observer perceives a subsequent test face as 
more female, and vice versa (36). The example adapt, test, and perceive morph 
levels were picked on the basis of the estimated boundary shift shown in (B). 
(B) Decision boundaries before (blue) versus after (orange) exposure to a male 
(0%) adapter based on the top layer (fc7) of the model with intrinsic suppression. 
Markers show class probabilities for each test stimulus, full lines indicate the 
corresponding psychometric functions, and vertical lines denote the classification 
boundaries. Adaptation to a 0% (male) face leads to a shift in the decision boundary 
toward male faces, hence perceiving the 20% test stimulus as gender-neutral 
(50%). (C) Decision boundary shifts for the test stimulus as a function of the adapter 
morph level per layer. The round marker indicates the boundary shift plotted in (B). 
(D) Relative face-gender discriminability (Materials and Methods, values >1 signify 
increased discriminability and values <1 denote decreased discriminability) for fc7 
as a function of adapter and test morph level. See color scale on the right. The red 
diagonal indicates that face-gender discriminability is increased for morph levels 
close to the adapter. (E) Average changes in face-gender discriminability per layer 
as a function of the absolute difference in face-gender morph level between 
adapter and test stimulus.

http://webmorph.org
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shifts (Fig. 3C) seems consistent with this idea. To disentangle the 
separate contributions of tuning changes and response magnitude 
changes to the perceptual adaptation effects produced by the model, 
we manipulated the postadaptation layer activations to only contain 
either tuning changes or magnitude changes (Materials and Methods; 
Fig. 5). Changes restricted to response magnitude without tuning 
changes led to even larger boundary shifts than the original model, 
whereas changes restricted to tuning without any changes in response 
magnitude led to smaller boundary shifts (Fig. 5A). This observation 
suggests that while the perceptual bias of aftereffects might be the 
result of a complex interaction between changes in responsivity and 
tuning, the perceptual bias does not necessarily require attractive 
shifts as suggested by previous models (15, 19). On the other hand, 
an increased facegender discriminability for morph levels close to 
the adapter did require changes in the tuning response patterns of 
single units. Magnitude changes only produced the opposite effect, 
with increased discriminability for morph levels furthest from the 
adapter (Fig. 5B).

Intrinsic adaptation can be optimized by maximizing 
recognition performance
Thus far, we have considered a model with an intrinsic adaptation 
state for each unit, and the adaptation parameters  and  (Eqs. 1 
and 2) were chosen to impose response suppression. This leaves 
open the question of whether such adaptation mechanisms can be 
optimized or learned in a deep learning framework given a certain 
task goal. We considered two possible ways in which adaptation 
could be learned by artificial neural networks: (i) optimize  and  
by training a feedforward network with intrinsic adaptation state on 
a task where adaptation is useful for biological vision; and (ii) train 
a recurrent network without an intrinsic adaptation state on the 
same task.

To assess whether adaptation could be learned and to compare the 
two possible network mechanisms, we needed a task objective with 
a suitable goal where adaptation could affect visual performance. As 
mentioned earlier, one of the proposed computational roles of 
neural adaptation is to increase sensitivity to small changes in the 
sensory environment (3, 4). A system could increase sensitivity by 
decreasing the salience of recently seen stimuli or features (5, 21). 
Thus, we developed a task where the end goal was object classifica
tion, but the objects were hidden in a temporally repeated noise pat
tern. If adaptation serves to reduce the salience of a recent stimulus, 
then adapting to a noise pattern should increase the ability to recog
nize a subsequently presented target object embedded in the same 
noise pattern, and a network trained on this task could learn to 
reduce the salience of previously presented input. To keep the 
networks relatively lightweight, we chose a classification task with 
lowresolution handdrawn doodles rather than natural images 
(Fig. 6A).

Before training any network, we evaluated human recognition 
performance in this task. For this experiment, adaptation to the 
noise pattern at early levels of processing is likely sufficient to 
enhance the object information of the doodle. We ran a psycho
physics experiment where participants were exposed to an adapter 
image and then classified a test image (Fig. 6B; Materials and Methods). 
Recognizing the doodles in this task is not trivial: whereas subjects 
can readily recognize the doodles in isolation, when they are 
embedded in noise and in the absence of any adapter, categorization 
performance was 59.7% (SD = 8.1%) where chance is 20%. As 

conjectured, adapting to the same noise pattern increased categori
zation performance by 9.3% (Fig. 6C; P = 0.0043, Wilcoxon signedrank 
test, n = 15 subjects). This increase in categorization performance 
was contingent upon the noise pattern presented during the test 
stimulus being the same as the noise pattern in the adapter: Perform
ance in the samenoise condition was 9.6% higher than in the differ
entnoise condition (P = 0.0015, Wilcoxon signedrank test, n = 15 
subjects).

After establishing that adapting to the repeated noise pattern 
indeed improves the ability to recognize the target objects, we con
sidered whether this behavior could be captured by the model. First, 
we considered the same model used in previous sections without 
any tuning. The same pattern of results was captured by the model 
with  and  fixed to impose activationbased suppression (fig. S10). 
Next, we asked whether it is feasible to fit intrinsic adaptation 
parameters  and  in the doodle experiment using recognition 
performance as the objective. We built a smaller network with an 
AlexNetlike architecture (Fig. 7A, without the recurrent connections 
shown in blue, which are discussed in the next paragraph; Materials 
and Methods). Each unit (excluding the decoder layer) had an ex
ponentially decaying intrinsic adaptation state as defined by Eqs. 1 
and 2. For simplicity, the trials were presented in three time steps: 
the adapter, a blank frame, and the test image (Fig. 7A). In addition 
to training the feedforward weights, we simultaneously optimized 
one  and one  parameter per layer. The value of  determines how 
fast the intrinsic adaptation state updates, ranging from no update 
( = 1) to completely renewing at each time step ( = 0). The value 
of  determines whether the intrinsic adaptation state is used for 
suppression ( > 0), enhancement ( < 0), or nothing at all ( = 0).

After training using 30 random initializations on samenoise tri
als, the resulting parameters revealed response suppression that was 
particularly strong for convolutional layers 1 and 2, as indicated by 
the positive high  and low  values (Fig. 7B). The average categori
zation performance on the test set was 97.9% (blue), compared 
to 74.8% when no intrinsic adaptation state was included (black; 
Fig. 7C). Thus, when a network with intrinsic adaptation state was 
trained on an object recognition task with a temporally prevailing 
but irrelevant input pattern, the resulting adaptation parameters 
showed activationbased suppression.

A common way to model temporal dynamics in the visual system 
is by adding recurrent weights to a feedforward network (44–46). 
Recurrent neural networks can demonstrate phenomena similar to 
adaptation (47). Recurrent neural networks are the standard archi
tectures used to process input sequences and should be able to per
form well in the noisy doodle categorization task. To compare the 
intrinsic suppression mechanism with a recurrent circuit solution, 
we considered a network without intrinsic adaptation state and 
added lateral recurrent connections illustrated in blue in Fig. 7A 
(see the “Learning adaptation” section). After training on same
noise and differentnoise trials, the recurrent architecture achieved 
the same categorization performance on the test set as the architecture 
with intrinsic adaptation (Fig. 7C). Thus, as expected, the recurrent 
network performed on par with the network with trained intrinsic 
adaptation.

Next, we asked whether there are any advantages of implement
ing adaptation via an intrinsic cellular mechanism versus lateral 
recurrent network mechanisms. We reasoned that a trained intrinsic 
suppression mechanism should generalize well across different in
put features or statistics, whereas the circuitbased solution learned 
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by a recurrent neural network might be less robust. Therefore, we 
considered situations where the distribution of noise patterns used 
during training and testing was different. The recurrent network 
failed to generalize well to higher standard deviations of Gaussian 
noise (Fig. 7D) and failed markedly when tested with uniformly 
distributed noise (Fig. 7E) or Gaussian noise with an offset (Fig. 7F). 
In stark contrast, the intrinsic mechanism generalized well across 
all of these different input noise changes (Fig. 7, D to F, magenta). 
This overfitting cannot just be explained by a difference in the 
number of parameters and also occurs when the number of param
eters is equalized between the two networks (fig. S11). Furthermore, 
depending on the number of parameters, the recurrent network did 
not necessarily demonstrate the hallmark property of repetition 
suppression (fig. S12). In sum, while a recurrent network imple
mentation can learn to solve the same task, the solution is less 
robust than an intrinsic mechanism to deviations from the particular 
statistics of the adapter noise used for training the network. These 
results suggest that intrinsic neuronal mechanisms could provide 
sensory systems in the brain with a wellregularized solution to re
duce salience of recent input, which is computationally simple and 
readily generalizes to novel sensory conditions.

DISCUSSION
We examined whether the paradigmatic neurophysiological and 
perceptual signatures of adaptation can be explained by a biologi
cally inspired, activationbased, intrinsic suppression mechanism 
(7) in a feedforward deep network. The proposed computational 
model bridges the fundamental levels at which adaptation phenomena 
have been described: from intrinsic cellular mechanisms, to responses 
of neurons within a network, to perception. By implementing 
activationbased suppression (Fig. 1), our model exhibited stimulus 

specific repetition suppression (4, 5), which recovers over time but 
also builds up across repeats despite intervening stimuli (48) and 
increases over stages of processing (Fig. 2) (12, 49). Without any 
finetuning of parameters, the same model could explain classical 
perceptual aftereffects of adaptation (Fig. 3), such as the prototypical 
shift in perceptual bias toward the adapter (36, 38) and enhanced 
discriminability around the adapter (41, 50), thus suggesting that 
adaptation modulated the functional state of the network similarly 
to our visual system. In single units, perceptual aftereffects were 
associated with changes in overall responsivity (including response 
enhancements) as well as changes in neural tuning (Figs. 4 and 5). 
In addition, both intrinsic and recurrent circuit adaptation mecha
nisms can be trained in a task where reducing the salience of repeated 
but irrelevant input directly affects recognition performance (Fig. 6). 
However, the recurrent neural network converged on a circuit 
solution that was less robust to different noise conditions than 
the proposed model with intrinsic neuronal adaptation (Fig. 7). 
Together, these results show that a neuronally intrinsic suppression 
mechanism can robustly account for adaptation effects at the neuro
physiological and perceptual levels.

The proposed computational model differs in fundamental ways 
from previous models of adaptation. Traditionally, adaptation has 
been modeled using multiplechannel models, where a fixed stimulus 
dimension such as orientation is encoded by a set of bellshaped 
tuning functions (6, 19, 20). The core difference is that here we 
implemented adaptation in a deep, convolutional neural network 
model trained on object recognition (35). Even though current 
convolutional neural networks differ from biological vision in many 
ways (27), they constitute a reasonable firstorder approximation 
for modeling ventral stream processing and provide an exciting 
opportunity for building general and comprehensive models of ad
aptation. First, in contrast with channelbased models, deep neural 

Fig. 4. Response enhancements and tuning shifts emerge in deeper layers of a network incorporating intrinsic suppression. (A) Effects of adapting to female/male 
faces on the activation strength of single units. Left: Heatmap showing the activation normalized to the maximum of all 556 responsive fc7 units (rows) for all face-gender 
morph images (columns). See the color scale on the bottom left. Rows are sorted according to the SIg (Eq. 3). The remaining five heatmaps show the difference (post − pre 
adaptation) in single-unit activations after adapting to five different adapters. See the color scale on the bottom right. (B) Mean response change (activity post − activity pre) across 
responsive units for each layer (shaded area = 95% bootstrap CI). For highly gender-selective units (red), the magnitude change (averaged across stimuli) was taken after adapt-
ing to a gender stimulus opposite to the unit’s preferred gender [0% adapter for SIg > 0.6, 100% adapter for SIg < −0.6; black rectangles in (A)]. For less gender-selective units 
(blue), the magnitude change after both 0 and 100% adapters was used. (C) Proportion of adapters causing the preferred morph level to shift toward (attractive, magenta) 
or away (repulsive, green) from the adapter, averaged across units (shaded area = 95% bootstrap CI). (D) An example unit showing a repulsive shift in tuning curves for 
the 25% (left) and 75% (right) adapters [the y axes depict activation in arbitrary units (a.u.); black, preadaptation tuning curve; green, postadaptation tuning curve; yellow 
marker, adapter morph level]. (E) An example unit showing an attractive shift in tuning curves [magenta, postadaptation tuning curve; same conventions as (D)].
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networks can operate on any arbitrary image, from simple gratings 
to complex natural images. Second, the features encoded by the 
deep neural network model units are not handcrafted tuning func
tions restricted to one particular stimulus dimension but consist of 
a rich set of increasingly complex features optimized for object 
recognition, which map reasonably well onto the features encoded 
by neurons along the primate ventral stream (28–32). A set of bell
shaped tuning curves might be a reasonable approximation of the 
encoding of oriented gratings in V1, but this scheme might not be 
appropriate for other visual areas or more complex natural images. 
Third, the realization that adaptation should be considered in the 
context of deep networks, where the effects can propagate from one 
stage of processing to the next (2, 21), calls for complex multilayer 
models that can capture the cascading of adaptation. Last, whereas 
several models implement adaptation by adjusting recurrent weights 
between channels (19, 20), we implemented an intrinsic suppres
sion property for each unit and allowed adaptation effects to emerge 
from the feedforward interactions of differentially adapted units.

The goal was not to fit the model on specific datasets but to 
generally capture the phenomenology of adaptation in a model by 
giving its artificial neurons a biophysically plausible mechanism. 
The adaptation parameters  and  were not finetuned for each 
simulated experiment and had the same value for each unit, showing 
that the ability of the model to produce adaptation phenomena did 
not hinge upon a carefully picked combination of parameters.

By using a feedforward deep neural network as the base for our 
computational model, we were able to empirically study the role of 
intrinsic suppression, without any contribution of recurrent inter
actions. These results should not be interpreted to imply that recur
rent computations are irrelevant in adaptation. The results show 
that complex neural adaptation phenomena readily emerged in 
deeper layers, arguing that, in principle, they do not need to depend 
on recurrent mechanisms. Among the neural adaptation effects 
were enhanced responses of single units, as well as shifts in tuning 
curves, which are often thought to require recurrent network mech

anisms (13, 15, 16, 18). Any effect of intrinsic suppression could 
also be implemented by lateral inhibitory connections in the circuit, 
leaving open the question of why the brain would prefer one 
solution over the other. The generalization tests in Fig. 7 point to an 
intriguing possibility, which is that intrinsic suppression provides a 
simpler solution that is more constrained, yet sufficient to imple
ment the goals of adaptation. In contrast, recurrent mechanisms 
require a complex combination of weights to achieve the same goals 
and tended to overfit to the specific training conditions.

There are several functional goals that have been attributed to 
adaptation. Activationbased suppression could serve to decrease 
salience of recently seen stimuli or features (5, 21). We successfully 
exploited this principle to train adaptation in neural networks on a 
task with temporally repeated but irrelevant noise patterns. Reducing 
the salience of recently seen features has functional consequences 
beyond these artificial conditions. By selectively reducing the sensi
tivity of the system based on previous exposure, adaptation effec
tively changes the subjective experience of an observer, leading, for 
example, to a perceptual bias in the facegender aftereffect. These 
changes in perception may more broadly reflect mechanisms that 
serve to maintain perceptual constancy by compensating for varia
tions in the environment (51). The introduction of activationbased, 
intrinsic suppression to an artificial neural network subjected 
the network to the same perceptual biases characterizing percep
tual aftereffects in humans (Fig. 3, B and C), suggesting that 
intrinsic suppression changed the model’s functional state in a way 
that is similar to how exposure changes the functional state of our 
visual system.

Another proposed benefit of reducing sensitivity for recently seen 
stimuli may be to improve the detection of novel or less frequently 

Fig. 5. Response magnitude and tuning changes in the model differentially 
explain perceptual boundary shifts and discriminability changes. (A) Face- 
gender boundary shifts toward the adapter were produced both by magnitude 
changes without tuning changes (top) and by tuning changes without magnitude 
changes (bottom). Gray shading indicates the range of original layer effects shown 
in Fig. 3C. (B) Face-gender discriminability enhancement for morph levels close to 
the adapter was produced by tuning changes without magnitude changes (bottom), 
but not by magnitude changes without tuning changes (top). Gray shading 
indicates the range of original layer effects shown in Fig. 3E.

Fig. 6. Adapting to prevailing but interfering input enhances object recognition 
performance. (A) Representative examples for each of the five doodle categories 
from the total set of 540 selected images (63). (B) Schematic illustration of the 
conditions used in the doodle experiment. In each trial, participants or the model had 
to classify a hand-drawn doodle hidden in noise (test), after adapting to the same 
(middle), a different (right), or no (left) noise pattern. The trials with different or no 
noise adapters were control conditions where we expected to see no effect of 
adaptation. (C) Participants showed an increase in categorization performance 
after adapting to the same noise pattern. Gray circles and lines denote individual 
participants (n = 15). The colored circles show average categorization performance; 
error bars indicate 95% bootstrap CIs. Chance = 20%.
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occurring stimuli (12, 48). For example, by selectively decreasing 
responses for more frequent stimuli, adaptation can account for the 
encoding of object occurrence probability, described in macaque IT 
(52, 53). Consistent with these observations, intrinsic suppression 
in the proposed computational model decreased the response 
strength for a given stimulus proportional to its probability of 
occurrence (Fig. 2, H to J). The model also produced stronger re
sponses to a deviant stimulus compared to an equiprobable control 
condition. Thus, response strength in the model captured not only 
differences in occurrence probability (standard versus deviant) but 

also relative differences in occurrence probability (control versus 
deviant): Compared to the control condition, the deviant is equally 
likely in terms of absolute occurrence probability, but it was un
expected merely by virtue of the higher occurrence probability of 
the standard stimulus.

Adaptation has also been suggested to increase coding efficiency 
of single neurons by normalizing their responses for the current 
sensory conditions (4). Neurons have a limited dynamic range with 
respect to the feature they encode and a limited number of response 
levels. Adaptation can maximize the information carried by a neuron 
by recentering tuning around the prevailing conditions and 
thus increasing sensitivity and preventing response saturation (51). 
While AlexNet has ReLU activation functions, which do not suffer 
from the saturation problem, we did observe an abundance of attrac
tive shifts of tuning curves (Fig. 4C). The collective result of these 
changes in tuning curves was an increased discriminability between 
stimuli similar to the adapter (Fig. 4D), consistent with reports 
for orientation, motion direction, and facegender discrimination 
in humans (41, 50).

Besides direct functional benefits, adaptation may also serve an 
important role in optimizing the efficiency of the neural population 
code. Neurons use large amounts of energy to generate action 
potentials, which constrains neural representations (54). When a 
particular feature combination is common, the metabolic efficiency 
of the neural code can be improved by decorrelating responses of 
the activated cells and reducing their responsiveness. Adaptation 
has been shown to maintain existing response correlations and 
equality in timeaveraged responses across the population (55), 
possibly resulting from intrinsic suppression at an earlier corti
cal stage, which we confirmed by running these experiments in the 
proposed computational model (fig. S13).

There are several possible extensions to the current model, includ
ing the incorporation of multiple time scales and recurrent circuit 
mechanisms. Adaptation operates over a range of time scales and 
thus may be best described by a scaleinvariant power law, which could 
be approximated by extending the model using a sum of exponential 
processes (56). Our model also did not include any recurrent dy
namics, because we focused on the feedforward propagation of in
trinsic suppression. Yet, recurrent connections are abundant in 
sensory systems and most likely do contribute to adaptation. There 
is some evidence suggesting that recurrent mechanisms contribute 
to adaptation at very short time scales of up to 100 ms (57). During 
the first 50 to 100 ms after exposure, adaptation to an oriented 
grating produces a perceptual boundary shift in the opposite di
rection of the classical tilt aftereffect (58). This observation was pre
dicted by a recurrent V1 model that only predicted repulsive tuning 
shifts (6). Repulsive shifts are indeed more common in V1 when 
each test stimulus is immediately preceded by an adapter (13, 18), 
whereas adaptation seems to produce mostly attractive shifts at longer 
gaps (14, 43, 59), consistent with the effects of intrinsic suppres
sion in the proposed model (Fig. 4 and fig. S5; although repulsive 
shifts were more common in highly responsive units; fig. S6). These 
results seem to suggest that recurrent interactions contribute in the 
first (few) 100 ms, whereas qualitatively different longer adapta
tion effects might be best accounted for by intrinsic suppression.

The results of the noisy doodle experiment in humans (Fig. 6) 
could be explained by local light adaptation to the adapter noise 
patterns. It is unclear where in the visual system such local light 
adaptation would take place. In principle, it could take place 

Fig. 7. Intrinsic adaptation can be trained by maximizing recognition perform-
ance and is more robust to over-fitting than a recurrent neural network. 
(A) A convolutional neural network with an AlexNet-like feedforward architecture. 
For the adaptation version, an exponentially decaying hidden state was added to 
each unit according to Eqs. 1 and 2 (except for the decoder). For the recurrent version, 
fully recurrent weights were added for the fully connected layer and convolutional 
recurrent kernels for the three convolutional layers (see drawings in blue; Materials 
and Methods). (B) Average fitted parameters  and  for each layer after training 30 
random initializations of the network with intrinsic adaptation state on same noise 
trials (SEM bars are smaller than the markers). (C) Test categorization performance 
on trials with the same Gaussian noise distribution as during training. Full markers: 
average categorization performance after training 30 random initializations on the 
same noise trials without intrinsic adaptation state (black), after training with 
intrinsic adaptation state on same noise trials (blue) or on different noise trials 
(orange). Empty markers: same as full markers but for the recurrent neural network. 
SEM bars are smaller than the markers. Chance = 20%, indicated by the horizontal 
dotted line. (D to F) Average generalization performance of the networks with an 
intrinsic adaptation state (magenta), recurrent weights (blue), or neither (gray) for 
same noise trials under noise conditions that differed from training. Performance 
is plotted as a function of increasing standard deviations (x axis) of Gaussian 
noise [(D), the vertical line indicates the SD = 0.32 used during training] and uni-
form noise (E) or as a function of increasing offset values added to Gaussian noise 
[(F), SD = 0.32, same as training]. Error bounds indicate SEM.
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partly or totally at the level of photoreceptors in the retina. However, 
given that each noise pixel was only 0.3 × 0.3 visual degrees and 
given that luminance was distributed independently across noise 
pixels, inherent variability in the gaze of a fixating subject poses a 
limit on the contribution of photoreceptor adaptation (60). Most 
likely, the increased performance observed in the behavioral data 
results from a combination of adaptation at different stages of pro
cessing, including the retina. The proposed computational model 
does not incorporate adaptation at the receptor level (i.e., pixels), 
but future models could incorporate adaptation in both the input 
layer and later processing layers.

Overall, the current framework connects systems to cellular neuro
science in one comprehensive multilevel model by including an 
activationbased, intrinsic suppression mechanism in a deep neural 
network. Response suppression cascading through a feedforward 
hierarchical network changed the functional state of the network similar 
to visual adaptation, producing complex downstream neural adaptation 
effects as well as perceptual aftereffects. These results demonstrate that 
intrinsic neural mechanisms may contribute substantially to the 
dynamics of sensory processing and perception in a temporal context.

MATERIALS AND METHODS
Computational models
Implementing intrinsic suppression
We used the AlexNet architecture (Fig. 1A) (35), with weights 
pretrained on the ImageNet dataset (61) as a model for the ventral 
visual stream. We implemented an exponentially decaying intrinsic 
adaptation state (62) to simulate neuronally intrinsic suppression. 
Specifically, in all layers (except the decoder), each unit had an 
intrinsic adaptation state st, which was updated at each time step t 
based on its previous state st−1 and the previous response rt−1 (i.e., 
activation after the ReLU rectification and linearization operation)

   s  t   =   s  t−1   + (1 −  )  r  t−1    (1)

where  is a constant in [0,1] determining the time scale of the 
decay (Fig. 1B). This intrinsic adaptation state is then subtracted 
from the unit’s current input xt (given weights W and bias b) before 
applying the rectifier activation function , so that

   r  t   = (b +  Wx  t   −   s  t  )  (2)

where  is a constant that scales the amount of suppression. Thus, 
strictly speaking, Eq. 2 modifies the bias and thus responsivity of the 
unit, before applying , to avoid negative activations. For  > 0, 
these model updating rules result in an exponentially decaying re
sponse for constant input that recovers in case of no input (Fig. 1B), 
simulating an activationbased suppression mechanism intrinsic to 
each individual neuron. Note that  < 0 would lead to response 
enhancement and  = 0 would leave the response unchanged. By 
implementing this mechanism across discrete time steps in AlexNet, 
we introduced a temporal dimension to the network (Fig. 1C). 
This model was implemented using TensorFlow v1.11 in Python. 
Throughout the paper, we use  = 0.96 and  = 0.7 unless indicated 
otherwise (in Fig. 7, those parameters are tuned).
Decision boundaries
Perceptual aftereffects are typically measured by computing shifts 
in the decision boundary along a stimulus dimension. We evaluated 

boundary shifts in the model using a set of face stimuli that morphed 
from average male to average female in 100 steps (created using 
webmorph.org) and measured category decision boundaries before and 
after adaptation using the 101 facemorph images (Fig. 3, A to C). 
The experiments were simulated by exposing the model to an adapter 
image for 100 time steps, followed by a gap of uniform gray input 
for 10 time steps before presenting the test image. The results were 
qualitatively similar when the number of time steps was changed.

To measure the pre and postadaptation decision boundaries for 
a given layer, we trained a logistic regression classifier to discriminate 
between male and female faces using the preadaptation activations 
of responsive units for the full stimulus set. After training, the 
classifier can output female/male class probability estimates for any 
given activation pattern. Thus, we used the trained classifier to 
provide female/male probability estimates for each morph level, 
based on either the pre or postadaptation activation patterns. The 
decision boundary is then given by the morph level associated with 
a female/male class probability of P = 0.5, which was estimated by 
fitting a psychometric function on the class probabilities (average 
R2 of at least 0.99 per layer).
Face-gender discriminability
To assess model changes in facegender discriminability in Fig. 3J, 
we calculated the stimulus discriminability at each morph level of 
the stimulus dimension before and after adaptation. An increased 
discriminability between morph levels can be conceptualized as an 
increased perceived change in morph levels with respect to a certain 
physical change in morph level. Thus, to quantify discriminability, 
a linear mapping was fit to predict stimulus morph levels from pre
adaptation unit activations using partial least squares regression 
(using four components). We then used this linear mapping to pre
dict morph levels from activation patterns before and after adapta
tion. If adaptation increases discriminability, then the change in 
modelestimated morph level y with respect to a physical change 
in morph level m should also increase. Thus, to quantify the change 
in discriminability at morph level m, we calculated the absolute 
derivative of the predicted postadaptation morph level (ympost), nor
malized by the absolute derivative of the predicted preadaptation 
morph level (ympre): |ympost|/|ympre|.
Selectively retaining tuning or magnitude changes
For Fig. 4B, we manipulated the postadaptation layer activations to 
only contain either tuning changes or magnitude changes. To retain 
only tuning changes, we started with the postadaptation activation 
patterns and multiplied the activation of each unit by a constant so 
that the resulting mean activation matched the preadaptation mean 
value. On the other hand, to retain only magnitude changes, we 
started with the preadaptation activation patterns and multiplied 
the activation of each unit by a constant so that the resulting mean 
activation matched the postadaptation mean value.
Learning adaptation
In Fig. 7, we present two models where adaptation is learned for the 
noisy doodle classification task: a model with intrinsic adaptation 
state and a recurrent neural network model. The base feedforward 
part of the model was based on the AlexNet architecture (35) for the 
two networks, consisting of three convolutional layers and a fully 
connected layer followed by a fully connected decoder. The first 
convolutional layer filters a 28 × 28 × 1 input image with 32 kernels 
of size 5 × 5 × 1 with a stride of 1 pixel. The second convolutional 
layer filters the pooled (kernel = 2 × 2, stride = 2) output of the first 
convolutional layer with 32 kernels of size 5 × 5 × 32 (stride = 1). 

http://webmorph.org
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The third convolutional layer filters the pooled (kernel = 2 × 2, 
stride = 2) output of the second convolutional layer with 32 kernels 
of size 3 × 3 × 32 (stride = 1). The fully connected layer has 1024 
units that process the output of the third convolutional layer with 
50% dropout during training.

The recurrent version was extended with lateral recurrent 
weights. For convolutional layers, lateral recurrence was imple
mented as 32 kernels of size 1 × 1 × 32 (stride = 1), which filtered the 
nonpooled outputs of the layer at time step t − 1 (after ReLu) and 
were added to the feedforwardfiltered inputs of the same layer at 
time step t (before ReLu). The fully connected layer was recurrent in 
an alltoall fashion.

The intrinsic adaptation version was extended with adaptation 
states, as described in the “Implementing intrinsic suppression” 
section, of which the  and  parameters were now also trained 
using backpropagation. The  parameters were initialized at 0 (i.e., 
no adaptation), and the  parameters were initialized using a uni
form distribution ranging from 0 to 1.

Both the recurrent and intrinsic adaptation models were trained 
on the doodle classification task using TensorFlow v1.11 in Python. 
We used a training set of 500,000 doodle images (https://github.
com/googlecreativelab/quickdrawdataset; 100,000 per category), 
with a separate set of 1000 images to select hyperparameters and 
evaluate the loss and accuracy during training. We used the Adam 
optimization algorithm (63) with a learning rate of 0.001, the sparse 
softmax cross entropy between logits and labels cost function, a 
batch size of 100, and 50% training dropout in fully connected 
layers. For the weights, we used Gaussian initialization, with the 
scale correction proposed by Glorot and Bengio (64). Each model 
was trained for five epochs on the training set, which was sufficient 
for the loss and accuracy to saturate. Generalization performance 
was then tested on a third independent set of 5000 images.

Neurophysiology
We present neurophysiological data from two previously published 
studies to compare them with the neural adaptation effects of the 
proposed computational model: singlecell recordings from IT 
(n = 97) cortex of one macaque monkey G (37) and multiunit 
recordings from V1 (n = 55) and laterointermediate visual area 
(LI; n = 48) of three rats (12). For methodological details about the 
recordings and the tasks, we refer to the original papers.

Psychophysics
Before starting the data collection, we preregistered the study design 
and hypothesis on the Open Science Framework at https://osf.io/
tdb37/ where all the source code and data can be retrieved.
Participants
A total of 17 volunteers (10 female, ages 19 to 50) participated in 
our doodle categorization experiments (Fig. 6). In accordance with 
our preregistered data exclusion rule, two male participants were 
excluded from analyses because we could not record eye tracking 
data. All subjects gave informed consent, and the studies were 
approved by the Institutional Review Board at Children’s Hospital, 
Harvard Medical School.
Stimuli
The stimulus set consisted of handdrawn doodles of apples, cars, 
faces, fish, and flowers from the Quick, Draw! dataset (https://
github.com/googlecreativelab/quickdrawdataset). We selected a total 
of 540 doodles (108 from each of the five categories) that were 

judged complete and identifiable. We lowered the contrast of each 
doodle image (28 × 28 pixels) to either 22 or 29% of the original 
contrast, before adding a Gaussian noise pattern (SD = 0.165 in nor
malized pixel values) of the same resolution. The higher contrast 
level (29%) was chosen as a control so that the doodle was relatively 
visible in onesixth of the trials and was not included in the analy
ses. The average categorization performance on these highcontrast 
trials was 74% (SD = 8.3%), versus 63% (SD = 8.9%) in the low 
contrast trials.
Experimental protocol
Participants had to fixate a cross at the center of the screen to start a 
trial. Next, an adapter image was presented (for 0.5, 2, or 4 s), fol
lowed by a blank interval (of 50, 250, or 500 ms), a test image (for 
500 ms), and lastly a response prompt screen. The test images were 
noisy doodles described in the above paragraph. The adapter image 
could either be an empty frame (defined by a white square filled 
with the background color), the same mosaic noise pattern as the 
one of the subsequent test image, or a randomly generated different 
noise pattern (Fig. 6). Participants were asked to keep looking at the 
fixation cross, which remained visible throughout the entire trial, 
until they were prompted to classify the test image using keyboard 
keys 1 to 5. All images were presented at 9° × 9° from a viewing 
distance of approximately 52 cm on a 19inch cathode ray tube 
monitor (Sony Multiscan G520; 1024 × 1280 resolution), while we 
continuously tracked eye movements using a videobased eye track
er (EyeLink 1000, SR Research, Canada). Trials where the root 
mean square deviation of the eye movements exceeded 1° of visual 
angle during adapter presentation were excluded from further 
analyses. The experiment was controlled by custom code written in 
MATLAB using Psychophysics Toolbox Version 3.0 (65).

Data analysis
Selectivity index
For the facegender experiments, we calculated a selectivity index 
based on the average activation of a unit to male (morph level < 50%) 
and female (morph level > 50%) faces

   SI  g   = ( A  F   −  A  M   ) / ( A  F   +  A  M  )  (3)

A value >0 indicates stronger activation for female faces, and a 
value <0 indicates stronger activation for male faces.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/42/eabd4205/DC1

View/request a protocol for this paper from Bio-protocol.
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