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Therapeutic antibodies are one of the most important parts of the pharmaceutical industry. They are widely used in treating various
diseases such as autoimmune diseases, cancer, inflammation, and infectious diseases. Their development process however is often
brought to a standstill or takes a longer time and is then more expensive due to their hydrophobicity problems. Hydrophobic
interactions can cause problems on half-life, drug administration, and immunogenicity at all stages of antibody drug
development. Some of the most widely accepted and used technologies for determining the hydrophobic interactions of
antibodies include standup monolayer adsorption chromatography (SMAC), salt-gradient affinity-capture self-interaction
nanoparticle spectroscopy (SGAC-SINS), and hydrophobic interaction chromatography (HIC). However, to measure SMAC,
SGAC-SINS, and HIC for hundreds of antibody drug candidates is time-consuming and costly. To save time and money, a
predictor called SSH is developed. Based on the antibody’s sequence only, it can predict the hydrophobic interactions of
monoclonal antibodies (mAbs). Using the leave-one-out crossvalidation, SSH achieved 91.226% accuracy, 96.396% sensitivity or
recall, 84.196% specificity, 87.754% precision, 0.828 Mathew correlation coefficient (MCC), 0.919 f -score, and 0.961 area under
the receiver operating characteristic (ROC) curve (AUC).

1. Introduction

One of the developing areas in the pharmaceutical industry is
therapeutic antibody. The antibody drugs have been used in
the treatment of autoimmune diseases, cancer, inflammation,
and infectious diseases. However, developing antibody can-
didates as therapeutic drugs is an expensive and perilous pro-
cess. Many monoclonal antibody (mAb) candidates failed
due to various problems such as poor manufacturability,
low stability and solubility, high viscosity, hydrophobicity,
and aggregation propensity [1, 2].

Though problems mentioned above are due to various
reasons, hydrophobic interactions between antibodies them-
selves or materials of containers have been shown to be the
most predominant one. Currently, the available wet lab
methods for measuring the hydrophobic interaction of
monoclonal antibodies include standup monolayer adsorp-

tion chromatography (SMAC), hydrophobic interaction
chromatography (HIC), and affinity-capture self-interaction
nanoparticle spectroscopy (AC-SINS). SMAC is used to
assess colloidal stability of antibodies under different buffer
conditions. Antibodies with colloidal instability may be more
likely to have nonspecific interactions, and hydrophobic
interactions have been suggested to be the main mode of
problematic interactions [3]. HIC is used to evaluate the sol-
ubility, viscosity, and serum clearance of antibodies, which
are mainly influenced by the hydrophobicity of mAbs [4].
AC-SINS is widely used to detect antibody self-association
[5, 6]. Although many physicochemical factors are involved
in protein self-association, the presence of hydrophobic moi-
eties on the protein surface is often the primary driver [7].
The methods above have offered a high-throughput solution
to developability screening at early-stage antibody drug dis-
covery. However, experimentally screening a large number
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of candidates is still expensive and time-consuming. Compu-
tational screening tools are urgently needed.

Computational methods, especially data mining and
machine learning techniques, have been widely used in vari-
ous aspects of biomedical studies [8–17]. The field of anti-
body drug development is no exception. There are attempts
to predict viscosity, developability, crossinteraction, or self-
interaction of antibodies [18–20].

Currently, there are also quite a few existing methods
for predicting the hydrophobicity of proteins including
mAbs [21–23]. These methods are mostly based on three-
dimensional structures of proteins. A recent paper by Jain
et al. describes a model for predicting delayed retention of
antibodies in HIC from the sequence using machine learning
[24]. However, no web service is available for this model, just
as other published methods for antibody hydrophobicity
prediction.

According to our previous working experience on pre-
dicting crossinteraction or self-interaction of antibodies,
combining data from different but relevant experimental
assays gives better results than just relying on a single exper-
imental assay data. In this study, we combine data from
SMAC, SGAC-SINS, and HIC that are closely related to the
hydrophobicity of antibodies, build a model using machine
learning, and construct a web server called SSH. It can predict
hydrophobic interactions of antibodies based on just their
sequences. The server is freely available at http://i.uestc.edu
.cn/eli/cgi-bin/ssh.pl. We believe it can benefit antibody drug
screening community by saving time, money, and resources.

2. Results

The area under the receiver operating characteristic (ROC)
curve (AUC), which is a graphical representation of varying
threshold values, explains how well a binary classifier can
predict the new data. AUCmeasures the sensitivity and spec-
ificity of the binary classification algorithm, which measures
the overall performance of the model; it is referred to as
how well a model can predict its negative and positive data.
Most binary classification uses AUC as a determinant to
show how skewed the classification is toward specificity and
sensitivity [25]. The analysis of the ROC curve helps to illus-
trate how well an individual dataset performs independent of
the threshold of prediction [26, 27]. As shown in Figure 1 and
Table 1, our models achieved AUC of 0.952, 0.967, 0.965, and
0.961 for SSH1, SSH2, SSH3, and SSH, respectively. AUC
represented in the ROC curve further indicates good perfor-
mance of the classifiers.

Also, the sensitivity or true positive rates (TPR) and spec-
ificity or false negative rates (FNR) give the discrepancies in
the model; it also shows which data and how many positive
and negative data are predicted correctly in the leave-one-
out crossvalidation. Our ensemble model SSH predicted cor-
rectly 96.396% and 84.073% of the positive and negative data,
respectively, as shown in Table 1 below.

As shown in Figure 2, the heat map from f -scores of 8000
tripeptides of the 3 models, SSH1, SSH2, and SSH3, shows
which tripeptide or amino acid contributes more to predic-
tive results.

To determine which amino acid gave more predictive
values and is the most important to model construction, we
calculated the f -scores of the tripeptides; the amino acid fre-
quency of the 30 TPC with the best f -scores is shown in
Figure 3, which shows tyrosine is the most occurring and
important in the model construction. Also, Figure 4 shows
30 tripeptides with the best f -scores.

3. Discussion

In this study, machine learning methods were employed to
predict the hydrophobic interactions of antibodies. Improper
hydrophobic interactions can cause a lot of problems in anti-
body drug development. The datasets were constructed
according to three biophysical assay values. Our model SSH
was trained with TPC and achieved an accuracy of 91.226%
using the leave-one-out crossvalidation, with 96.396% sensi-
tivity or recall, 84.100% specificity, 87.754% precision, 0.828
MCC, 0.919 f -score, and 0.961 AUC. This work provides
the ability to accurately predict flags in antibodies caused
by hydrophobic interactions and will help facilitate the ease
of development and subsequent drug manufacturing.

From our analysis, tyrosine, serine, threonine, and gly-
cine are the four amino acids with the best f -scores or the
best predictive amino acids; tyrosine residues are vastly pres-
ent in the active sites of antibodies [28, 29].
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Figure 1: ROC and AUC of our model from the leave-one-out
crossvalidation.

Table 1: Statistical results of the SSH.

SSH1 SSH2 SSH3 SSH

Recall/sensitivity 97.297% 94.595% 97.297% 96.396%

Specificity 83.871% 87.097% 81.300% 84.073%

Accuracy 91.177% 92.647% 89.855% 91.226%

BAC 0.906 0.908 0.893 0.902

AUC 0.952 0.967 0.965 0.961

MCC 0.827 0.855 0.803 0.828
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The 96.396% sensitivity proved the ability of our model
to correctly identify those antibodies with “flags,” and the
84.10% specificity proved the ability of our model to correctly
identify those antibodies without “flags.” The AUC of 0.961
and MCC of 0.828 proved that our model is good at predict-
ing both the negative and positive data.

To determine the prediction results or SSH, a voting
method is used depending on the p value of the three models
SSH1, SSH2, and SSH3. SSH predicts the probability of each
antibody input. The higher the probability is, the more likely
the antibody is to have hydrophobicity problems. Also, users
can set the threshold between 0 and 1, with a higher thresh-
old meaning stricter validation.

In summary, the predictor enhanced our knowledge of
how problems in antibodies could be detected for cost and

time reduction; also, the work shows the possibility of virtual
screening antibody drug candidates in a large scale at the
early stage of development.

4. Dataset and Methods

4.1. Dataset. The antibody dataset was downloaded from the
supplementary materials of the article published by Jain et al.
[30]. The dataset includes 48 approved antibodies and 89
antibodies in the phase 2 and phase 3 clinical trials with 6
entries excluded due to conflicting sequences. The remaining
131 antibodies were used to develop SSH. The 10% threshold
was employed as in Jain et al. to determine if the antibody has
1 or more “flags” (problems) according to the 3 assays, i.e.,
SMAC, SGAC-SINS, and HIC [30]. An antibody is labeled
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Figure 2: Heat map of the 131 observations in the leave-one-out crossvalidation.
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with a flag if one of its above assay values falls within the
worst 10% threshold. On the other hand, the antibody with
an assay value that falls outside the threshold value is deemed

without a flag. Of the 131 antibodies, 94 have no flag, 25 have
exactly one flag, 8 antibodies have exactly two flags, and 4
antibodies have exactly three flags, as shown in Figure 5.
The antibodies with no flags were used as the negative data-
set, and those antibodies with at least one flag were used as
the positive dataset. The datasets are not balanced, since
there are more negative entries. To solve this problem, we
split the negative dataset randomly into three subsets with
31, 31, and 32 antibodies, respectively. Each subset is paired
with the positive dataset, and 3 models were trained and
called SSH1, SSH2, and SSH3. An ensemble method is used
to combine the 3 models into SSH using the voting method.

4.2. Features and Feature Selection. The tripeptide composi-
tion (TPC) is widely used to convert the sequences to vectors
as TPC helps to reflect the sequence order and total amino
acid composition. TPC has better predictive results than a
single amino acid and a dipeptide composition [19, 31].
The method for extracting TPC is shown as

TPC ið Þ = x ið Þ
∑8000

i=1 x ið Þ
, ð1Þ

where i equals one of the 8000 tripeptide compositions and
xðiÞ denotes the number of residues of each type of sequence.

From TPC, the best features were selected from the 8000
features using (fselet.py) in LIBSVM, which made use of f
-scores to obtain the optimal features; given two sets of real
numbers, f -score technique measures the discrimination of
the two sets [32]. Finally, 313, 315, and 315 features were
used to build models SSH1, SSH2, and SSH3, respectively.

4.3. The Threshold Method. The threshold method is used to
generate indexes for grouping the negative and positive data-
sets, as shown in Table 2. The 10% threshold is calculated as

Thresholdval =
∑i=0

i=NX N−y+ið Þ
y

, ð2Þ

where N is the number of antibodies, XðiÞ is the ith anti-
body’s assay value, and y = 10%ðNÞ.
4.4. Support Vector Machine (SVM). The support vector
machine (SVM) orders data by finding the best hyperplane
separating two classes of data points. The best hyperplane
for an SVM means the one with the largest margin between
the two classes. The margin means the maximal width of
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Table 2: Threshold values of 3 assays [30].

Assays
Threshold
values

Units (flags)

Standup monolayer adsorption
chromatography (SMAC)

12.8
Retention time

(min) (>)
Salt-gradient affinity-capture
self-interaction nanoparticle
spectroscopy (SGAC-SINS)

370
Salt concentration

(mM) (<)

Hydrophobic interaction
chromatography (HIC)

11.7
Retention time

(min) (>)
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the slab parallel to the hyperplane that has no interior data
points. SVM is a machine learning method for classifying
binary data and multiple class data. It is an effective machine
learning method for supervised pattern recognition based on
the theory of statistical learning. SVM has been widely used
in the field of bioinformatics. We employed LIBSVM [33]
with the following parameters: C = 2, 128, and 512 and g =
0:0078125, 0.0001220703125, and 0.0001220703125 for
SSH1, SSH2, and SSH3, respectively, for the development of
SSH using “RBF” kernel with the leave-one-out crossvalida-
tion [33] .

4.5. Performance Evaluation of SSH. To measure the perfor-
mance of the SSH, the leave-one-out crossvalidation was
used with these measurement parameters, namely, sensitivity
(SN), specificity (SP), Mathew correlation coefficient (MCC),
accuracy (ACC), and AUC.

Precision is the proportion of the predicted positive cases
that were correct. However, accuracy is not only the true
measure of a model; the Mathew correlation coefficient
(MCC) should be included to evaluate the prediction perfor-
mance of the developed tool (Equation (6)). MCC is another
measure used in machine learning for judging the quality of
binary classifications and is considered to be the most robust
parameter of any class prediction method.

SN/Recall = TP
TP + FN

, ð3Þ

SP =
TN

TN + FP
, ð4Þ

ACC =
TP + TN

TP + FN + TN + FP
, ð5Þ

MCC =
TP ∗ TN − FP ∗ FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp
,

ð6Þ
where TP is true positive, FN is false negative, TN is true neg-
ative, and FP is false positive.

Figure 6 shows the benchmark of the SSH; the 10%
threshold method is used for labeling the negative and posi-
tive data.

Abbreviations

AUC: Area under the receiver operating character-
istic curve

CDR: Complementarity-determining regions
HIC: Hydrophobic interaction chromatography
MCC: Mathew correlation coefficient
ROC: Receiver operating characteristic curve
SGAC-SINS: Salt-gradient affinity-capture self-interaction

nanoparticle spectroscopy
SMAC: Standup monolayer adsorption

chromatography
SVM: Support vector machine
TPC: The tripeptide composition
BAC: Balance accuracy.
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