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A B S T R A C T

High-grade (large) germinal matrix-intraventricular haemorrhage (GM-IVH) is one of the most common causes
of somatomotor neurodisability in pre-term infants. GM-IVH presents during the first postnatal week and can
impinge on somatosensory circuits resulting in aberrant somatosensory cortical events straight after injury.
Subsequently, somatosensory circuits undergo significant plastic changes, sometimes allowing the reinstatement
of a somatosensory cortical response. However, it is not known whether this restructuring results in a full
recovery of somatosensory functions. To investigate this, we compared somatosensory responses to mechanical
stimulation measured with 18-channels EEG between infants who had high-grade GM-IVH (with ventricular
dilatation and/or intraparenchymal lesion; n = 7 studies from 6 infants; mean corrected gestational age = 33
weeks; mean postnatal age = 56 days) and age-matched controls (n= 9 studies from 8 infants; mean corrected
gestational age = 32 weeks; mean postnatal age = 36 days). We showed that infants who had high-grade GM-
IVH did not recruit the same cortical source configuration following stimulation of the foot, but their response to
stimulation of the hand resembled that of controls. These results show that somatosensory cortical circuits are
reinstated in infants who had GM-IVH, during the several weeks after injury, but remain different from those of
infants without brain injury. An important next step will be to investigate whether these evidences of neural
reorganisation predict neurodevelopmental outcome.

1. Introduction

Intraventricular haemorrhage arises from the germinal matrix (GM-
IVH) – a highly vascularised transient structure of the pre-term brain
(de Vries, 2018). GM-IVH presents during the first postnatal week and
its cause is unclear, although it is associated with respiratory distress
and cardiovascular problems and most frequent in extremely pre-term
infants (Ancel et al., 2015; Chalak et al., 2011; Levene et al., 1982).
High-grade (large) GM-IVH is associated with higher risk of adverse

somatomotor development (Ancel et al., 2006; Payne et al., 2013),
likely due to its disruption of motor and somatosensory circuits. During
the week straight after injury, the resultant compression and acute in-
flammation of periventricular tissue (Adler et al., 2010) is often re-
flected in the absence or gross delay of a somatosensory cortical event
(Pierrat et al., 1997; Pike et al., 1997; Pike and Marlow, 2000). A re-
sponse can then be reinstated during the subsequent weeks

(Klimach and Cooke, 1988; Pierrat et al., 1997; Pike and Marlow, 2000;
Slater et al., 2010; Vries et al., 1990), which is associated with positive
neurodevelopmental outcome (Willis et al., 1989). The return of a re-
sponse likely represents the ability of thalamo-cortical tracts to adopt
alternative trajectories to circumvent the injury and reach the cortex
(Arichi et al., 2014; Guzzetta et al., 2007; Staudt et al., 2006;
Wilke et al., 2009).
However, processing of somatosensory input in pre-term infants

involves multiple steps, beyond the simple transmission of the in-
formation to the brain (Donadio et al., 2018; Hrbek et al., 1973, 1968;
Pike et al., 1997; Whitehead et al., 2019). Here we hypothesised that
even if plastic changes allow the reinstatement of a cortical response to
somatosensory input after GM-IVH, this response could still differ from
that of infants who never experienced an injury. To test this hypothesis,
we compared temporal and spatial differences in somatosensory cor-
tical events following mechanical stimulation of the foot and hand
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between infants who had high grade GM-IVH and age-matched con-
trols.

2. Material and methods

2.1. Subjects

Subjects were recruited from the neonatal unit at the Elizabeth
Garrett Anderson wing of University College London Hospitals. Ethical
approval was obtained from the NHS Research Ethics Committee, and
informed written parental consent was obtained prior to each study.
Additional written parental consent was obtained to publish video data
from one infant. The study conformed to the standards set by the
Declaration of Helsinki. No neonates were acutely unwell at the time of
study, required mechanical ventilation, or were receiving anti-seizure
medication. Exclusion criteria included congenital abnormalities and
severe intra-uterine growth restriction (defined here as abnormal an-
tenatal Doppler ultrasound imaging and <2nd birth weight centile).
Subjects included six infants who had high-grade GM-IVH and eight

controls without high-grade GM-IVH matched for both corrected ge-
stational age (CGA) and postnatal age (PNA) (Table 1). The presence of
GM-IVH was assessed by reviewing the reports of routine (clinically
required) cranial ultrasound scans carried out during the postnatal
period, all evaluated and verified by a consultant neonatologist, re-
corded in the infant's hospital notes. High-grade GM-IVH comprised:
GM-IVH with ventricular dilatation (grade III) or GM-IVH with sec-
ondary intraparenchymal lesion (IPL) (de Vries, 2018)) (Table 1). It is
typical to combine these two subcategories in a single group as high-
grade GM-IVH (e.g. (Ancel et al., 2015; Chalak et al., 2011;

Nevalainen et al., 2015; Olischar et al., 2007)). Control infants were
defined as having either normal cranial ultrasound imaging or a small
(grade I) germinal matrix haemorrhage which had not bled into the
ventricles (one infant). Small germinal matrix haemorrhage is of no
clinical significance (Payne et al., 2013; Radic et al., 2015) and asso-
ciated with normal somatosensory cortical events during the neonatal
period (Pierrat et al., 1997; Pike et al., 1997). Throughout the following
text, for brevity, GM-IVH refers to high-grade GM-IVH. No infants re-
ceived opiate or sedative medications in the 24 h prior to the study
apart from two infants in the GM-IVH group who were respectively
receiving a weaning regime of oral morphine (32 mcg/kg/dose) and
chloral hydrate (50mg/kg/dose). Morphine does not affect ongoing or
sensory-evoked brain activity at this age, when other medications and
clinical factors are corrected for (Bell et al., 1993; Dix et al., 2018;
Hartley et al., 2018). In children, chloral hydrate does not consistently
affect electrical brain activity (Thoresen et al., 1997).

2.2. EEG recording

Up to eighteen recording electrodes (disposable Ag/AgCl cup elec-
trodes) were positioned according to the modified international 10/10
electrode placement system. Montages customarily included Cz, CPz,
C3, C4, CP3, CP4, F3, F4, F7, F8, T7, T8, P7, P8, O1, O2, and sometimes
additionally Fz, P3, P4, POz, Oz, TP9, TP10. Two infants were studied
twice ≥14 days apart which does not underestimate the variance (see
the supplemental information in Fabrizi et al. (2011)), leading to a total
of 16 EEG studies. A reduced number of electrodes were applied if the
infant became unsettled during set-up (median 18 electrodes applied;
14/16 EEG studies included ≥15 electrodes, minimum 10; no

Table 1
Clinical data of infants.

High-grade GM-IVH Controls (No high-grade GM-IVH)

No. of EEG studies 7 9
No. of neonates 6a (3 female) 8b (2 female)
No. of foot stimulation trains

(Right: Left)
10
(7:3)

12
(7:5)

No. of hand stimulation trains
(Right: Left)

5
(3:2)

8
(3:5)

Mean (range) CGA at study (weeks+days) 33+4
(30+3-35+6)

32+3
(29+1-35+5)

Mean (range) GA at birth
(weeks+days)

25+4
(23+6-30+0)

27+3
(24+5-32+4)

Mean (range) PNA at study (days) 56
(31-77)

36
(21-65)

GM-IVH details (infants ordered by ascending CGA)
(limbs stimulated)

#1 L grade III / R grade III
(RF, LF, RH, LH)
#2 L grade III / R grade III; post-haemorrhagic hydrocephalus
managed by therapeutic LPsc

(RF, RH)

#3a L IPL / R grade II
(first study: RF, LF; second study: RF)

#4 L grade III / R grade III
(RF, RH)

#5 L grade I / R IPL
(RF, LF)

#6 L grade I / R IPL; post-haemorrhagic hydrocephalus managed by
therapeutic LPsc

(RF, LH)

PNA indicates postnatal age; GA indicates gestational age at birth; CGA indicates GA + PNA
LPs = lumbar punctures; L = left; R = right; F = foot; H = hand
a One infant (#3) studied twice with an inter-study interval of 14 days.
b One infant studied twice with an inter-study interval of 27 days.
c Managed post-haemorrhagic hydrocephalus is not consistently associated with additional somatosensory or other sensory cortical dysfunction, beyond that

associated with the GM-IVH (Klebermass-Schrehof et al., 2013; Pierrat et al., 1997; Radic et al., 2015), although appears to confer a small degree of additional
neurodevelopmental risk (Brouwer et al., 2008).
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statistically significant difference in the number of electrodes applied
between groups: p = =.258, unpaired t test). The reference electrode
was placed at either Fz or FCz. Target impedance of electrodes was
<10 kΩ (André et al., 2010). A single lead I ECG was recorded from
both shoulders. Respiratory movement was monitored with an ab-
dominal movement transducer. EEG was recorded with a direct current
(DC)-coupled amplifier from DC-800 Hz using the Neuroscan (Scan 4.3)
SynAmps2 EEG/EP recording system. Signals were digitized with a
sampling rate of 2 kHz and a resolution of 24 bit.

2.3. Tactile stimulation

Mechanical taps were delivered to the lateral edge of the infants’
palms and heels using a hand-held tendon hammer with a 15mm2

contact surface (see Supplementary Video). The hammer had a piezo-
electric transducer that allowed to record the precise timing of the
stimulation on the EEG recording (Worley et al., 2012). The inter-
stimulus interval was long, variable, and self-paced by the experimenter
(average 15 s) as shorter intervals could attenuate the somatosensory
response (Desmedt and Manil, 1970; Gibson et al., 1992;
Nevalainen et al., 2015; Stjerna et al., 2012). In case the infant moved,
the tap was delayed for several seconds to avoid potential modulation
of the somatosensory response by the movement (Saby et al., 2016) and
to allow movement artefacts to resolve. It was not possible to stimulate
one of the two hands when a cannula or longline (peripherally inserted
central venous catheter) was present, and a reduced number of stimuli
were delivered if the infant became unsettled. This resulted in a total of
35 stimulation trains (i.e. stimulated limbs) of 2-32 stimuli (mean 13)
delivered to one of the four limbs. There was no statistically significant
difference in the distribution of right and left limbs stimulated between
the GM-IVH and control groups (feet: p = =.571, hands: p = =.429,
chi-squared tests; Table 1).

Supplementary Video: Tactile stimulation of the heel in subject
#6. Vertical yellow line indicates the occurrence of a tap. To maintain
the infant's comfort, they remain wrapped in their bedding, with only a
small amount of skin uncovered to deliver the tap. Data are displayed
referred to Fz (acquisition montage) and with a bandpass filter of
0.5–70 Hz. Scale bar bottom left hand corner. Solid grey vertical lines
mark each second and dashed grey vertical lines mark each 200 milli-
seconds.

2.4. Analysis: pre-processing

Data pre-processing was carried out using EEGLAB v.14 (Swartz
Center for Computational Neuroscience). Data were re-referenced to
common average (retrieving the reference channel Fz or FCz). Four
trials from three datasets containing artefact were completely discarded
which resulted in a total of 436 trials being analysed. There was no
statistically significant difference in the number of trials analysed per
stimulation train between the GM-IVH and control groups (hands:
p==.081, feet: p==.371, unpaired t tests). Up to two bad channels
(poor contact with the scalp) from two datasets were removed. Missing
and discarded recordings were estimated with spherical interpolation as
implemented in EEGLAB. Data were bandpass filtered at 0.5–40 Hz
(2nd order Butterworth filter) with a 50 Hz notch filter (4th order
Butterworth filter) and then epoched from -300 until +1300 ms around
the stimulus. All EEG epochs were baseline corrected by subtracting the
mean baseline signal and averaged across repetitions (i.e. single
average response per limb stimulated). Traces from each stimulation
train were aligned to correct for intra-subject latency jitter with Woody
filtering (Woody, 1967) (alignment window: 160–210 ms at midline
central (foot stimulation) or contralateral central (hand stimulation)
electrode; maximum allowed jitter -40 to +40 ms). The degree to
which trials were aligned did not statistically differ between groups
(feet: mean 20 (SD: 13) vs. 21 (SD: 13) ms, and hands: mean 19 (SD: 14)
vs. 18 (SD: 12) ms, for GM-IVH vs. controls respectively (p ≥ .450,

unpaired t tests). EEG recordings following stimulation of the left hemi-
body were ‘side-swapped’ so that recordings contralateral to the sti-
mulation site appear on the ‘same side’ of the scalp (left in Figs. 1 and 2,
which is then labelled as ‘contralateral to stimulation’).

2.5. Analysis: intra-group characterisation of somatosensory cortical
response

Data analysis was carried out using Ragu (Koenig et al., 2011),
which identifies the presence of, and then inter-group differences be-
tween, somatosensory cortical events using non-parametric permuta-
tion statistics timepoint by timepoint (n = 1000 randomization runs
among channels). The presence and timing of somatosensory cortical
events was established separately for infants with and without GM-IVH
using the topographic consistency test (Koenig and Melie-
García, 2010). This test examines if and at what latencies a stimulus
consistently elicits the same scalp field distribution across subjects
using Global Field Power (GFP) measurements (Koenig and Melie-
García, 2010). To account for multiple comparisons, the presence of
somatosensory cortical events was considered significant if the time
period in which the test resulted in p < .05 was at least 5% of the
analysis window. Unlike methods to control for multiple comparisons
such as false discovery rate, this considers the probability that con-
secutive samples differ (Guthrie and Buchwald, 1991).

2.6. Analysis: inter-group comparison of somatosensory cortical response

If the stimulus elicited somatosensory cortical events at the same
latencies for the two groups, the neuronal activation could still differ in
source configuration or magnitude between the groups. To test for
inter-group differences in source configuration, we compared scalp field
maps normalised to their GFP (i.e. magnitude independent, ‘topo-
graphic analysis of variance’ (TANOVA) (Wirth et al., 2008)) for those
periods when both groups had a somatosensory cortical event. To test
for differences in magnitude, we compared GFP for those periods when
both groups had a somatosensory cortical event which did not differ
significantly in source configuration (Habermann et al., 2018). For
display purposes we plotted the GFP of the grand average EEG response
for each group (Figs. 1 and 2 and Supplementary Fig. 1) (the statistical
comparison of GFP between groups uses each infant's GFP data).

3. Results

3.1. Results: brain activity in response to foot stimulation differed in infants
who had GM-IVH

Control infants had an early cortical event (151–257 ms), with
symmetrical vertex negativity, which was absent in infants who had
GM-IVH (Fig. 1, Supplementary Fig. 1). The response of both groups
then included a brief event starting at 487 ms (controls) and 512 ms
(GM-IVH) until 566 ms with a symmetrical distribution (Fig. 1). How-
ever, the responses then diverged, with that of infants who had GM-IVH
lacking the symmetrical vertex positivity observed in controls (p< 0.05
TANOVA for 154 ms) (Fig. 1, Supplementary Fig. 1). The responses of
the two groups then converged again in topography. Between 720 and
936 ms both had a bi-centro-temporal negativity, and between 1046
and 1202 ms a contralateral positivity and ipsilateral negativity. The
response in controls lasted very slightly longer than GM-IVH infants
(until 1295 ms) (Fig. 1). There was no statistically significant difference
in the magnitude of the response between the two groups (GFP during
those periods when both groups had a cortical event p≥ 0.12) (Fig. 1).

3.2. Results: brain activity in response to hand stimulation was similar
across infants who had GM-IVH and controls

In contrast to foot stimulation, the response to hand stimulation had
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almost exactly the same duration in infants who had GM-IVH and
controls (overlap: 167–1300 ms) (Fig. 2). Its mean topography com-
prised a negativity over the contralateral centro-temporal region, and
positivity maximal at the midline frontal and posterior areas, and did
not significantly differ between the two groups for its whole duration
(p ≥ 0.27 TANOVA) (Fig. 2). The magnitude of the response in infants
who had GM-IVH was greater than controls, but this did not reach
statistical significance (p < 0.10 GFP 411-448 ms) (Fig. 2).

4. Discussion

Here we show that in pre-term infants who had GM-IVH, brain re-
sponses to mechanical stimulation of the limbs, even if recovered, are
still significantly different from controls several weeks after the injury.
Consistent somatosensory activity following stimulation of the foot

starts only at 512 ms in infants who had GM-IVH, 361 ms later than
controls: infants who had GM-IVH lack a somatosensory event that
occurs at approximately 200 ms in controls and which resembles

Fig. 1. Brain activity in response to foot stimulation is different in infants who had germinal matrix-intraventricular haemorrhage (GM-IVH). Upper panel
left: grand average global field power (GFP) showing consistent neuronal activation in controls and in infants who had GM-IVH (somatosensory cortical events, green
shading, the height of the grey area indicates the p-value of the Topographic Consistency Test). Upper panel right: topoplots display mean topographies across time
points of intra-group topographic consistency (green shading) and time points in which both groups had consistent neuronal activation of the same topography (blue
shading) or different topography (grey shading) (normalised by GFP). Lower panel: Grand average of the EEG recordings and GFP. 2-column fitting image. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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previous reports (Cindro et al., 1985, 1985; Donadio et al., 2018;
Fabrizi et al., 2011; Minami et al., 1996; Pike et al., 1997; Slater et al.,
2010; Whitehead et al., 2019). This delay could arise from altered
thalamo-somatosensory cortical transmission: in infants who had a
large GM-IVH these tracts can be as extensively re-routed as to pass via

the insula (Arichi et al., 2014), and neonatal animal models of this
injury demonstrate disruption of structural thalamo-somatosensory
cortical maps (Quairiaux et al., 2010). As relatively early responses
with central scalp negativity in neurologically normal pre-term infants
have been attributed to the primary somatosensory cortex, and their

Fig. 2. Brain activity in response to hand stimulation is not significantly different in infants who had germinal matrix-intraventricular haemorrhage (GM-
IVH). Upper panel left: grand average global field power (GFP) showing consistent neuronal activation in controls and in infants who had GM-IVH (somatosensory
cortical events, green shading, the height of the grey area indicates the p-value of the Topographic Consistency Test). Upper panel right: topoplots display mean
topographies across time points in which both groups had consistent neuronal activation of the same topography (blue shading) (normalised by GFP). Lower panel:
Grand average of the EEG recordings and GFP. 2-column fitting image. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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topographic organisation interpreted as reflecting the neural map of
limb representation (Nevalainen et al., 2015, 2012; Whitehead et al.,
2019), our data suggest that infants who had GM-IVH have impaired
processing at this crucial first ‘rung’ of hierarchical sensory functioning.
When consistent somatosensory activity following foot stimulation

begins in infants who had GM-IVH, they briefly share the same cortical
source configuration as controls (for 54 ms) but this source configura-
tion quickly diverges, indicating further differences in neural proces-
sing between groups. It is likely that the impaired early encoding of
tactile input disrupts the trajectory of subsequent processing steps,
limiting the GM-IVH infants’ ability to recruit the same hierarchical
processing pathways as controls (Thivierge and Marcus, 2007;
Whitehead et al., 2019). Indeed, animal models confirm that hier-
archical propagation of somatosensory-evoked cortical activity depends
upon the initial activation (Quairiaux et al., 2011), and a fMRI study of
infants who had GM-IVH demonstrated that they were unable to recruit
the supplementary motor area into their somatosensory cortical re-
sponse, unlike controls (Arichi et al., 2014). Nevertheless, despite the
early differences observed here between infants who had GM-IVH and
controls (until 720 ms), during the latter part of the cortical response
they again share the same source configuration. This could reflect the
ability of restructured somatosensory circuits in infants who had GM-
IVH to eventually realign the response with that observed in uninjured
infants.
Failure to recruit the same cortical source configuration as controls

in infants who had GM-IVH is specific to stimulation of the foot, and not
the hand. Greater impairment of somatosensory processing of lower
limb input, relative to the upper limbs, has been reported for the early
thalamo-cortical afferent volley in GM-IVH (Pierrat et al., 1997) and is
likely explained by the projections of those limbs being located closer to
the ventricular wall (Staudt et al., 2000). Here we show that relatively
greater differences in lower limb somatosensory functioning between
infants who had GM-IVH and controls extends also to the later pro-
cessing steps. All the same, following hand stimulation there was a
trend for infants who had GM-IVH to have an amplified somatosensory
cortical event. In line with this, comparable amplification of background
cortical activity has been reported in neonates following brain injury,
often termed ‘dysmaturity’ (Okumura et al., 2002; Watanabe et al.,
1999; Whitehead et al., 2016), to reflect that large cortical events are
typically associated with immature brain activity (Fabrizi et al., 2011;
Hrbek et al., 1973; Milh et al., 2007; Vanhatalo et al., 2009;
Whitehead et al., 2018b, 2018a). Future research should attempt to
distinguish whether such amplification is potentially adaptive (Antón-
Bolaños et al., 2019; Burbridge et al., 2014; Frank et al., 2001;
Jha et al., 2005; Shen and Colonnese, 2016; Tolner et al., 2012;
Xu et al., 2011; Zhang et al., 2012), or rather simply a marker of da-
mage (Furlong et al., 1993; Mauguière, 2005; Riquelme and
Montoya, 2010), by correlating this variable with neurodevelopmental
outcome.
Although both grade III GM-IVH and IPL originate from germinal

matrix haemorrhage, the exact pathophysiology of the injury will be
different between that associated with compressive ischemia but no
parenchymal damage (grade III) and secondary haemorrhagic venous
infarction resulting in IPL (de Vries, 2018; Luo et al., 2019;
Pierrat et al., 1997; Quairiaux et al., 2010; Volpe, 2009; Witte et al.,
2000). Future prospective studies should examine larger populations of
infants who had GM-IVH so that (i) grade III GM-IVH and IPL can be
studied separately, (ii) differences in processing of somatosensory input
contra- and ipsilateral to unilateral lesions can be dissociated, and (iii)
inter-individual differences in alternative somatosensory cortical de-
velopmental trajectories can be delineated. Nevertheless, here we show
that high-grade GM-IVH is associated with restructuring of somato-
sensory circuitry in the several weeks following injury resulting in in-
ability to recruit the same cortical source configuration as controls
following foot stimulation. This evidence provides insight into func-
tional reorganisation following one of the most commonly acquired

brain injuries of the pre-term period (Gale et al., 2018; Stoll et al.,
2015).
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