
nanomaterials

Article

Effective Poly
(Cyclotriphosphazene-Co-4,4′-Sulfonyldiphenol)@rGO Sheets
for Tetracycline Adsorption: Fabrication, Characterization,
Adsorption Kinetics and Thermodynamics

Muhammad Ahmad 1,2,†, Tehseen Nawaz 3,†, Mohammad Mujahid Alam 4, Yasir Abbas 1, Shafqat Ali 5 ,
Muhammad Imran 4 , Shuangkun Zhang 1 and Zhanpeng Wu 1,*

����������
�������

Citation: Ahmad, M.; Nawaz, T.;

Alam, M.M.; Abbas, Y.; Ali, S.; Imran,

M.; Zhang, S.; Wu, Z. Effective Poly

(Cyclotriphosphazene-Co-4,4′-

Sulfonyldiphenol)@rGO Sheets for

Tetracycline Adsorption: Fabrication,

Characterization, Adsorption Kinetics

and Thermodynamics. Nanomaterials

2021, 11, 1540. https://doi.org/

10.3390/nano11061540

Academic Editor:

Abdelhamid Elaissari

Received: 20 May 2021

Accepted: 5 June 2021

Published: 11 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology,
Beijing 100029, China; muhaahmad2-c@my.cityu.edu.hk (M.A.); ayasir@ymail.com (Y.A.);
Zhangsk1988@sina.com (S.Z.)

2 Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
3 Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China;

tehsinshino@gmail.com
4 Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia;

malm@kku.edu.sa (M.M.A.); imranchemist@gmail.com (M.I.)
5 Guangdong Provincial Key Laboratory of Soil and Ground Water Pollution Control, School of Environmental

Science and Technology, Southern University of Science and Technology, Shenzhen 518055, China;
shafqat@sustech.edu.cn

* Correspondence: wuzp@mail.buct.edu.cn
† Muhammad Ahmad and Tehseen Nawaz contributed equally in this work.

Abstract: The development of excellent drug adsorbents and clarifying the interaction mechanisms
between adsorbents and adsorbates are greatly desired for a clean environment. Herein, we report
that a reduced graphene oxide modified sheeted polyphosphazene (rGO/poly (cyclotriphosphazene-
co-4,4′-sulfonyldiphenol)) defined as PZS on rGO was used to remove the tetracycline (TC) drug from
an aqueous solution. Compared to PZS microspheres, the adsorption capacity of sheeted PZS@rGO
exhibited a high adsorption capacity of 496 mg/g. The adsorption equilibrium data well obeyed the
Langmuir isotherm model, and the kinetics isotherm was fitted to the pseudo-second-order model.
Thermodynamic analysis showed that the adsorption of TC was an exothermic, spontaneous process.
Furthermore, we highlighted the importance of the surface modification of PZS by the introduction
of rGO, which tremendously increased the surface area necessary for high adsorption. Along with
high surface area, electrostatic attractions, H-bonding, π-π stacking and Lewis acid-base interactions
were involved in the high adsorption capacity of PZS@rGO. Furthermore, we also proposed the
mechanism of TC adsorption via PZS@rGO.

Keywords: reduced graphene oxide; adsorption; tetracycline; thermodynamics

1. Introduction

Antibiotics have been used worldwide for the treatment of various diseases related to
humans and animals [1]. Tetracycline (TC) is one of the most extensively used antibiotics,
owing to its low toxicity with a broad spectrum of activity [2]. However, in recent years,
increasing concern has been raised due to poor degradation through the metabolism. Con-
sequently, residual TC is discharged to the environment through urine and feces, causing
non-point pollution [2–4]. It also causes chronic toxicity, lower immunity, dysbacteriosis,
liver damage and gastrointestinal reactions in human bodies; and also affects the aquatic
photosynthetic species and indigenous microbial growth, which ultimately damages the
food chain [5,6]. Therefore, it is the need of the hour to remove TC from the environment
for a green future [7,8].
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In this regard, various techniques such as electrochemical degradation, photochemi-
cal degradation, chemical oxidation, biodegradation and adsorption have been applied
to remove TC [9–13]. Among these techniques, adsorption is a promising approach to
eliminate the residual TC due to its efficiency and cost-effectiveness [14]. The adsorbents
that have been successfully used for this purpose including polymeric materials [14], mont-
morillonite [7], smectite clay [15], alumina [16], diatomite [8] and carbon materials [17,18].
Polyphosphazenes are an important class of organic-inorganic hybrid polymers, compris-
ing nitrogen and phosphorus atoms in a conjugated binding owing to their backbone
stability, structural diversity, biocompatibility, biodegradability and ability to form hybrid
molecules [19–27]. Poly (cyclotriphosphazene-co-4,4-sulfonyldiphenol) (PZS) is a copoly-
mer of hybrid phosphazenes [28] containing an organic-inorganic structure, which makes
it a promising candidate with an extensive range of potential applications, e.g., encapsula-
tion [29], catalyst support [30], carbon material precursor [31], electrochemical features [32]
and bio-medicinal applications [33]. Fu et al. [34] and Wei et al. [35] successfully adsorbed
different toxic materials from aqueous media using PZS microspheres. The excellent ad-
sorption capacity of these microspheres is related to their various binding modes such as
H-bonding, electrostatic interactions, π-π stacking and group bindings. However, they
exhibited less surface area while the adsorption process demands a high surface area of
adsorbents. To overcome this issue, various carbon-based substrates such as multi-walled
carbon nanotubes and graphene sheets were introduced to enhance the surface area [36].

Herein, for the first time, PZS@rGO (4–12%) was used to investigate the adsorption
of TC. We further investigated the effect of various parameters such as pH, temperature,
initial concentration of adsorbate and adsorbent dosage on its adsorption. The main
objectives of the present study are as follows: (1) controlling the growth of the PZS sheet
on rGO; (2) examine the adsorption performance of these materials for TC and find out
the optimum adsorption measurements; (3) describe their kinetic and thermodynamic
models; and (4) explore the possible adsorption mechanism of TC. The structure-property
relationship was investigated, which included the H-bonding, electrostatic interactions,
π-π stacking, and Lewis-acid base interactions between adsorbent and adsorbate.

2. Experimental Details
2.1. Materials

All reagents such as methanol, triethylamine (TEA), acetonitrile, ethanol, 4,4′-sulfonyldiphenol
(BPS), octadecylamine (ODA), graphite oxide (GO) and petroleum ether were purchased
from Beijing Chemical Co., Ltd (Beijing, China). Tetracycline was acquired from Macklin
Biochemical Co., Ltd (Shanghai, China). Hexachlorocyclotriphosphazene (HCCP) was
recrystallized from petroleum ether from sublimation. However, the remaining chemicals
were used without further treatment.

2.2. Synthesis of PZS@rGO

The scheme for the synthesis of the PZS@rGO is shown in Figure 1. We dispersed the
prepared rGO (4%, 8% and 12%) [37] in 100 mL methanol under ultrasonication (150 W,
40 kHz) for 2 h. A total of 40 mg of HCCP and 80 mg of BPS solution in 10 mL methanol was
mixed with the rGO solution. Afterward, 100 µL TEA was added dropwise, and magnetic
stirring occurred for 7 h. The solution was washed with ethanol and then dried overnight
under a vacuum. The PZS microspheres were prepared through analogous conditions
reported elsewhere [19].
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Figure 1. Scheme for the formation of PZS@rGO.

2.3. Adsorption of PZS@rGO Materials for Tetracycline Hydrochloride

Adsorption of Tetracycline hydrochloride was performed through the as-fabricated
layered PZS@rGO by adding them into a conical flask containing 100 mL of TC solution
(100 ppm). The conical flask was ultrasonically agitated for 40 s and placed in a thermostat
at 30 ◦C with a rotation rate of 120 rpm (round per minute). In order to calculate the residual
concentration of TC, we subsequently pipetted out 3 mL of suspension after a specific
time interval, filtered it through a membrane (pore size: 0.22 µm) and finally, adsorption
was measured at λmax = 357 nm. Afterward, the adsorption capacity was calculated using
Equation (1)

qt =
(C0 − Ct)V

m
(1)

where qt is the adsorption capacity, C0 and Ct are the TC concentrations before and after
adsorption (ppm), respectively, V is the volume of the solution (L), and m is the mass of
adsorbent (g).

2.4. Characterization

UV-visible absorption spectra were obtained through a Lambda 3600 UV-vis spec-
trophotometer (PerkinElmer, Inc., Waltham, MA, USA). Further, X-ray photoelectron
spectroscopy (XPS) analyses were performed via VG-ESCALAB 250 under a high vacuum
(2 × 10−9 Pa), at a standard Al Kα source (1486.6 eV). The C 1s peak at 284.9 eV was taken
as a reference for the binding energy. Fourier transform infrared (30 co-added) spectra were
collected through a Bruker Vector-22 while implying KBr as a carrier to fix the samples.
The surface morphology of the samples was examined via JEOL JSM-7610F field emission
scanning electron microscope (SEM) (Tokyo, Japan). Transmission electron microscopy
(TEM) images were obtained from the Hitachi-H-800 transmission electron microscope
(TEM) (Tokyo, Japan). The surface area was calculated from nitrogen adsorption-desorption
isotherms at 77 K through Micrometrics ASAP 2460 using the Brunauer−Emmett−Teller
method. Prior to N2 adsorption-desorption, samples were subjected to 300 ◦C under
vacuum for 6 h.
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3. Results and Discussion

FTIR spectra of the PZS microsphere and PZS@rGO8% are shown in Figure 2. The
characteristic peaks for hydroxylic (Phenolic group) could be observed at 3431 and 3093
cm−1 of the PZS microsphere (Figure 2a). The peaks at 1292 and 1152 cm−1 were attributed
to O = S = O and P = N peaks, respectively. A new peak at 942 cm−1 can be attributed
to P-O-(Ph), which was evidence to prove the successful condensation of HCCP and
BPS. FTIR spectra of PZS@rGO8% (Figure 2b) followed the characteristic peaks of PZS
microspheres and rGO. The new peaks emerged at 2920 and 2850 cm−1 due to the C-H
stretching vibration, which belonged to rGO. The peaks at 1564 and 1466 cm−1 represented
the N-H amide stretching and C-N bonding, respectively. The wide stretching of the peak
at 3410 cm−1 is evidence of the presence of the abundant –OH group, which later proved
to be the key site for adsorption.
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Figure 2. FTIR spectrum of (a) PZS and (b) PZS@rGO.

The morphology of PZS@rGO was examined through SEM (Figure 3) and TEM
(Figure 4). SEM images of the PZS microspheres (Figure S1) show the spherical morphology,
while the introduction of rGO in the PZS, shown in Figure 3a–d, exhibited the layered
morphology. Moreover, PZS@rGO8% exhibited the fabrication of a smooth PZS layer over
rGO sheets, while PZS@rGO4% showed the aggregation of PZS over rGO more likely in
the form of microspheres, possibly due to less surface being offered by rGO due to its
lower content. Meanwhile, the PZS@rGO12% morphology was more wrinkled due to the
aggregation of rGO sheets. The TEM images of PZS@rGO (4%, 8% and 12%), Figure 4b–d,
respectively, were consistent with the SEM results. The light grey area was attributed to
the rGO sheets, while the dark area was indexed to PZS layers. PZS@rGO8% exhibited
the thin layer of PZS equally spreading over rGO sheets. Meanwhile, PZS@rGO4% was
aggregated in a bulk form, and PZS@rGO12% had excessive rGO that was aggregated.



Nanomaterials 2021, 11, 1540 5 of 16Nanomaterials 2021, 11, x FOR PEER REVIEW 5 of 16 
 

 

 

Figure 3. SEM images of (a) rGO, (b) PZS@rGO4%, (c) PZS@rGO8% and (d) PZS@rGO12%. 

 

Figure 4. TEM images of (a) rGO, (b) PZS@rGO4%, (c) PZS@rGO8% and (d) PZS@rGO12%. 

Furthermore, the successful fabrication of PZS over rGO was evidenced by XPS (Fig-

ure 5). Figure 5a shows the complete XPS spectra of PZS@rGO8%, which revealed the all-

necessary peaks of aforementioned adsorbent. The high-resolution C 1s XPS spectra of 

PZS@rGO (Figure 5b) was further deconvoluted into three components, C = C sp2 hybrid-

ized peak at 284.55 eV, C sp3 peak at 285.22 eV and the π-π stacking peak at 289.59 eV due 

to the conjugated system and aromatic structure [38]. The π-π stacking peak at 289.59 eV 

suggested the successful fabrication of PZS to rGO. Figure 5c shows the N 1s XPS spectra 

distributed into types of N species. Peaks at 397.94 and 401.1 eV were assigned to pyridinic 

N of PZS and graphitic N, respectively [39–41]. The XPS spectra of P 2p and S 2p were 

displayed in Figure 5d,e. Peaks at 133.52 and 167.5 eV were assigned to oxidized P 2p and 

S 2p, respectively [42,43]. The XPS spectra of O 1s (532.48 eV) shown in Figure 5f con-

firmed the presence of −OH species. Meanwhile, it was noticed from the XPS atomic con-

tent (Table S1) that PZS@rGO8% has 93.25% rGO content. 

Figure 3. SEM images of (a) rGO, (b) PZS@rGO4%, (c) PZS@rGO8% and (d) PZS@rGO12%.

Nanomaterials 2021, 11, x FOR PEER REVIEW 5 of 16 
 

 

 

Figure 3. SEM images of (a) rGO, (b) PZS@rGO4%, (c) PZS@rGO8% and (d) PZS@rGO12%. 

 

Figure 4. TEM images of (a) rGO, (b) PZS@rGO4%, (c) PZS@rGO8% and (d) PZS@rGO12%. 

Furthermore, the successful fabrication of PZS over rGO was evidenced by XPS (Fig-

ure 5). Figure 5a shows the complete XPS spectra of PZS@rGO8%, which revealed the all-

necessary peaks of aforementioned adsorbent. The high-resolution C 1s XPS spectra of 

PZS@rGO (Figure 5b) was further deconvoluted into three components, C = C sp2 hybrid-

ized peak at 284.55 eV, C sp3 peak at 285.22 eV and the π-π stacking peak at 289.59 eV due 

to the conjugated system and aromatic structure [38]. The π-π stacking peak at 289.59 eV 

suggested the successful fabrication of PZS to rGO. Figure 5c shows the N 1s XPS spectra 

distributed into types of N species. Peaks at 397.94 and 401.1 eV were assigned to pyridinic 

N of PZS and graphitic N, respectively [39–41]. The XPS spectra of P 2p and S 2p were 

displayed in Figure 5d,e. Peaks at 133.52 and 167.5 eV were assigned to oxidized P 2p and 

S 2p, respectively [42,43]. The XPS spectra of O 1s (532.48 eV) shown in Figure 5f con-

firmed the presence of −OH species. Meanwhile, it was noticed from the XPS atomic con-

tent (Table S1) that PZS@rGO8% has 93.25% rGO content. 

Figure 4. TEM images of (a) rGO, (b) PZS@rGO4%, (c) PZS@rGO8% and (d) PZS@rGO12%.

Furthermore, the successful fabrication of PZS over rGO was evidenced by XPS
(Figure 5). Figure 5a shows the complete XPS spectra of PZS@rGO8%, which revealed the
all-necessary peaks of aforementioned adsorbent. The high-resolution C 1s XPS spectra
of PZS@rGO (Figure 5b) was further deconvoluted into three components, C = C sp2

hybridized peak at 284.55 eV, C sp3 peak at 285.22 eV and the π-π stacking peak at 289.59 eV
due to the conjugated system and aromatic structure [38]. The π-π stacking peak at
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289.59 eV suggested the successful fabrication of PZS to rGO. Figure 5c shows the N 1s
XPS spectra distributed into types of N species. Peaks at 397.94 and 401.1 eV were assigned
to pyridinic N of PZS and graphitic N, respectively [39–41]. The XPS spectra of P 2p and S
2p were displayed in Figure 5d,e. Peaks at 133.52 and 167.5 eV were assigned to oxidized P
2p and S 2p, respectively [42,43]. The XPS spectra of O 1s (532.48 eV) shown in Figure 5f
confirmed the presence of −OH species. Meanwhile, it was noticed from the XPS atomic
content (Table S1) that PZS@rGO8% has 93.25% rGO content.
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The surface area and structure of the PZS@rGO8% were explored by N2 absorption-
desorption isotherms (Figure S2). PZS@rGO8% showed the type IV isotherms with H3-
shaped hysteresis loops [44], which is a characteristic of mesoporous materials. The relative
pressure of 0.451–1.0 is indexed to the mesoporous structure and the slit-shaped hole
in the material [45]. The adsorbent exhibited a high surface area of 443 m2/g, which is
considerably higher than the surface area of the PZS microsphere, 10.5 m2/g [35].
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3.1. Adsorption Kinetics and Adsorption Capacity

Adsorption kinetics is a very important tool to probe adsorption behavior and elu-
cidate the rate of adsorption. Kinetics data also describes significant information that
might be helpful for the evaluation and understanding of adsorption mechanisms [46]. The
adsorption capacity of the as-prepared PZS@rGOx (x = 4%, 8% 12%) and PZS microsphere
versus time is disclosed in Figure 6. PZS@rGO8% exhibited the highest adsorption capacity
of 496 mg/g, and equilibrium was attained in 40 minutes, which was higher than many
reported studies Table S1. However, there were descending trends of 265 and 156 mg/g for
PZS@rGO12% and PZS@rGO4%, respectively. Although the PZS microsphere contains all
the elemental components required to perform adsorption at the same rate as its composites
with rGO, it was the surface area that played a significant role in the adsorption capacity.
The PZS@rGO8% adsorbent shows a higher surface area of 443 m2/g, which is a lot higher
than the reported surface area of 10.5 m2/g of the PZS microsphere [35]. However, in the
case of PZS@rGO4%, the PZS turned into an agglomerated morphology due to fewer rGO
contents, and the rGO sheets tend to agglomerate in PZS@rGO12% (Figure 4).
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The pseudo-first-order and pseudo-second-order kinetic models were used to explore
the kinetic mechanisms of TC adsorption, and the linear forms of these models are shown
in Equations (2) and (3), respectively.

log(qe − qt) = log qe −
k1t

2.303
(2)

t
qt

=
1

k2q2
e
+

t
qe

(3)

where qe and qt (mg g−1) are the adsorption capacity at equilibrium and at any time (t; min),
respectively. k1 (min−1) is the pseudo-first-order rate constant and k2 (g mg−1 min−1) is the
pseudo-second-order rate constant. The kinetic parameters and the correlation coefficients
(R2) obtained by linear regression are listed in Table 1.
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Table 1. Adsorption parameters for pseudo-first-order and pseudo-second-order models.

Adsorbents C0 (ppm)

qe,exp Pseudo-First-Order Model Pseudo-Second-Order Model

(mg g−1) qe,cal k1 R2 qe,cal k2 R2

(mg g−1) (min−1) (mg g−1) (g mg−1 min−1)

PZS@rGO4% 100 155 223.87 0.12 0.685 175.13 9.4 × 10−4 0.998
PZS@rGO8% 100 496 761.18 0.13 0.711 565.97 2.77 × 10−4 0.998
PZS@rGO12% 100 265 282.87 0.107 0.769 297.61 5.161 × 10−4 0.998

According to Figure 7, a pseudo-second-order kinetic model better explains the adsorp-
tion of TC on PZS@rGO with a correlation coefficient approaching one (Table 1). Term qe,exp
is defined as the adsorption capacity at the equilibrium of any adsorbent from real-time
experiments. While qe,cal is known as the adsorption capacity at equilibrium calculated
through different kinetic models, we may also refer to the latter term as theoretical ad-
sorption. The theoretical adsorption capacity value differs with different applied kinetic
models. The closer the theoretical adsorption capacity with real-time experimental results
are, the more probable the adsorption system follows that particular kinetic model. In
this case, theoretical adsorption capacity values suggest the adsorption system follows the
pseudo-second-order reaction. Furthermore, the correlation R2 values of pseudo-second-
order reaction are close to unity. The fact that the adsorption of TC through PZS@rGO
followed the pseudo-second-order reaction confirms that there are different kinds of in-
teractions between adsorbent and adsorbate due to the microporosity of PZS@rGO and
surface functional groups of both adsorbent and adsorbate [47].
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3.2. Adsorption Isotherms

The Langmuir and Freundlich isotherm models were applied to reveal insights into
the adsorption phenomena. The Langmuir isotherm model assumes that the molecules
are adsorbed in a monolayer configuration on the adsorbent surface where all the ad-
sorption sites possess the same energy, so the adsorption of a species is identical [48–50].
In comparison, the Freundlich isotherm model states multilayer, non-ideal adsorption, and
the adsorption sites are unevenly distributed, involving a different affinity for adsorbing
molecules. Equations (4) and (5) illustrated linear forms of Langmuir and Freundlich
isotherm models, respectively.

Ce

qe
=

1
bqm

+
Ce

qm
(4)
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log qe = log Kf +
1
n

log Ce (5)

where b is the adsorption energy constant (L mg−1), qm is the theoretically calculated maxi-
mum Langmuir adsorption capacity (mg g−1), Ce is related to the equilibrium adsorption
concentration (mg L−1) and Kf is associated to the Freundlich constant [(mg/g)·(L/mg) 1/n]
while 1/n is the adsorption strength.

The adsorption of TC on PZS@rGO followed the Langmuir isotherm in comparison to
Freundlich isotherm (Figure 8). At 303 K, the R2 value of adsorption of TC on PZS@rGOx
was almost equal for the Langmuir and Freundlich equations, Table 2. This indicated that
the adsorption of TC is more consistent with the Langmuir isotherm in comparison to the
Freundlich isotherm and the adsorption of TC was monolayered.
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Table 2. Adsorption parameters for Langmuir and Freundlich isotherms.

Adsorbents
Langmuir Freundlich

b (L mg−1) qm (mg g−1) R2 Kf n R2

PZS@rGO8% 2.08 480 0.998 295 3.1 0.956
PZS@rGO12% 2.81 336 0.998 234 2.9 0.951
PZS@rGO4% 5.20 205.7 0.997 165.95 4.34 0.942

3.3. Batch Experiments

For further experiments, PZS@rGO8% is used as the adsorbent as it has the maximum
adsorption capacity, as shown in Figure 6.

3.3.1. Effect of pH

The pH of a solution is an important factor that greatly influences the adsorption
process because pH influences the surface charge and ionization behavior of materials.
Figure 9a illustrates the effect of the initial pH of the solution on the adsorption capacity of
PZS@rGO. The adsorption of TC was immensely lowered at pH = 2.0, and it could be related
to the ion competition between H+ and TC+ for the adsorption sites of PZS@rGO [51]. The
adsorption of TC increased with the increasing pH of the solution. The adsorption capacity
reaches a maximum point at pH = 6.0. The ionization and hydration of TC may reduce,
which is advantageous to the adsorption process via H-bonding and π–π stacking effect.
TC may exist in a zwitter-ion formation at pH = 6–7. However, a further increase in pH
slightly reduced the adsorption of TC. An increase in pH above a neutral value may affect
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H-bonding via OH- generation [52]. Further experiments are conducted at the optimized
pH = 6.
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Figure 9. Effect of initial pH (10 mg PZS@rGO8% adsorbent, 100 ppm TC, volume of solution 100 mL, Temperature 30 ◦C)
(a), effect of Temperature (10 mg PZS@rGO8% adsorbent, 100 ppm TC, volume of solution 100 mL, pH = 6) (b), effect of
PZS@rGO8% adsorbent dosage (100 ppm TC, volume of solution 100 mL, pH = 6, temperature 30 ◦C) (c), effect of initial
concentration (10 mg PZS@rGO8% adsorbent, volume of solution 100 mL, pH = 6, temperature 30 ◦C) (d).

3.3.2. Effect of Temperature

The temperature has a significant impact on the adsorption of TC, as shown in
Figure 9b. We observe that at equilibrium, the adsorption capacity of PZS@rGO increases
from 365 to 455 mg/g when the temperature is raised from 293 to 298 K. The results explain
that the adsorption of TC is ideal at 303 K. As the temperature increases, the kinetic energy
of molecules increases resulting in a higher proportion of molecular collision, ultimately
increasing the amount of adsorption. According to Le Chateliar’s principle, when all the
other conditions are constant, an increase in temperature shifts the equilibrium in the
forward direction when the reaction is endothermic in nature, which was later confirmed
by the thermodynamic data (Table 3). An increase in temperature enhances the kinetic
energy of molecules, as the temperature is directly proportional to the kinetic energy, which
ultimately enhances the mobility of molecules, and therefore, adsorption is increased [53].
Therefore, these results facilitate to opt for the best conditions to pursue the adsorption of
TC via PZS@rGO for practical implications.
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Table 3. Thermodynamics parameters for Adsorbents.

Samples T/(K) ∆G0/(kJ mol−1) ∆S0/(kJ K−1 mol−1) ∆H0s/(kJ mol−1)

PZS@rGO8%
293 −2.07

15.2 2.64298 −1.95
303 −1.84

3.3.3. Effect of Dosage

At the initial concentration, the effects of dosage on the amount of adsorption were
studied, and the results are shown in Figure 9c. The removal of TC significantly increased
with an increase in dosage amount. When the dosage of the adsorbent increased from 2 to
10 mg for 100 ppm initial concentration, the removal efficiency of the adsorbent increased
from 90 to 496 mg/g, respectively. This is due to the adsorbent’s more active adsorption
sites at high dosage concentrations.

3.3.4. Effect of Initial Concentrations

The variation in adsorption capacity of PZS@rGO due to different initial concentrations
of tetracycline was examined at pH = 6.0, 303 K and dosage of 0.1 g L−1. Adsorption of TC
decreases with the increase in initial concentration of TC, as shown in Figure 9d. Typically,
this phenomenon is related to the saturation of available adsorption sites, and with the
increase in concentrate, PZS@rGO does not provide enough binding sites for TC adsorption.
As the initial concentration increases from 100 to 300 ppm, the removal percentage of TC
decreases from 98% to 77%, respectively, suggesting at lower initial concentrations of TC,
the removal percentage is higher.

3.4. Adsorption Thermodynamics

The thermodynamic parameters of PZS@rGO are determined at 20, 25 and 30 ◦C, and
adsorption isotherm constants were obtained. Gibbs free energy was used as a criterion to
determine the spontaneity of reaction and was calculated by Equation (6).

∆G = −RT ln KL (6)

where ∆G is the change in Gibbs free energy, R is the general gas constant (8.314 J/K mol),
T is the temperature (K) and KL is the distribution coefficient of Langmuir equilibrium
isotherm (L/mol). Change in Enthalpy (∆H) and entropy (∆S) were calculated using
Equation (7):

∆G = ∆H − T∆S (7)

All the thermodynamics data are shown in Table 3. Negative values of ∆G suggest
the adsorption reaction is spontaneous while 30 ◦C is the most favorable temperature for
adsorption reaction. A rise in temperature increases the diffusion rate and a reduction in
the viscosity of the solution [54]. The low ∆S values exhibit no massive changes in the
structure of the adsorption system, suggesting that there might be physical interactions
more influential than chemical interactions [55]. Positive values of ∆H indicate that the ad-
sorption process has to be endothermic in nature, and these results suggest the probability
of bonding between adsorbent and dye [56]. If an endothermic reaction takes place, then
for the process to remain spontaneous, the entropy change should not only be positive,
but T∆S must exceed ∆H, numerically, so that the net Gibbs free energy change as a whole
is negative. The trend of fewer enthalpy changes than entropy has been noticed in TC
adsorption. Generally, the low enthalpy change is related to physisorption (<40 kJ/mol).
An increase in temperature accelerates the amount of TC adsorption, which is consistent
with the experimental results. The thermodynamics of TC adsorption suggests adsorption
may occur at mild conditions due to lesser enthalpy change, low entropy and negative
Gibbs free energy change.
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3.5. Mechanism

Based on these findings, we illustrated the adsorption mechanism of TC. The excel-
lent adsorption capacity of PZS@rGO is dedicated to its high surface area and unique
chemical composition. The BET surface area obtained by nitrogen adsorption-desorption
(443 m2/g) was ca. 42 times higher than its microsphere [35]. The high surface area is
the main difference between the PZS microsphere and PZS sheet’s adsorption capacity, as
the chemical composition of both microspheres and sheets is similar. The results suggest
that the introduction of rGO into PZS changed the morphology from microspheres into
sheets and improved the adsorption capacity of the adsorbent. Considering the structural
characterization of both PZS@rGO and TC, there were multiple factors involved during
adsorption. The PZS sheets prepared in our study contain abundant hydroxyl groups on
their surface, which was confirmed by FT-IR results (Figure 2). These hydroxyl groups
have a tendency to produce an H-bonding interaction and an electrostatic interaction with
TC. Further, it is a well-known electrostatic screening effect that the addition of salt inhibits
the electrostatic interactions. The addition of NaCl in the adsorbent-adsorbate solution
reduced the adsorption capacity shown in Figure 10. It is an obvious hint at the existence
of electrostatic attraction. Both adsorbent and adsorbate possess a benzene ring in their
structures, which enhances the π-π interaction [35].
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Another route for adsorption mechanisms might be on the basis of acid-base inter-
actions in Figure 11. TC contains a number of anionic, cationic and neutral groups in its
structure, e.g., organic ammonium cations as the Lewis acid, while the PZS sheets have
abundant nitrogen with a lone pair as the Lewis base. Later, it was confirmed by conducting
an experiment by treating adsorbent with ZnCl2. Cyclotriphosphazenes have the ability to
engage in chelation with Zn(II) [35]. Figure 10 showed the reduction in adsorption capacity
of PZS@rGO after treating with ZnCl2 due to the occupation of the nitrogen lone pair by
Zn (II) ions. Therefore, excellent adsorption of TC can be speculated to the high surface
area of PZS@rGO, which facilitates adsorption by providing more sites for electrostatic
interactions, π-π stacking and acid-base interactions.
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4. Conclusions

In conclusion, the PZS layers modified with reduced graphene (PZS@rGO) have
been successfully fabricated by simple co-precipitation methods under mild conditions.
PZS@rGO successfully removed the tetracycline antibiotic from an aqueous solution and
exhibited an excellent adsorption capacity of 496 mg/g in comparison to the PZS mi-
crosphere’s 102 mg/g. Further studies revealed that the adsorption of TC followed the
Langmuir isotherm model and pseudo-second-order kinetics. Moreover, the removal of
TC was spontaneous. The high adsorption capacity was attributed to a high surface area
of the adsorbent. Along with a high surface area, electrostatic attractions, H-bonding, π-π
stacking and Lewis acid-base interactions were involved for the high adsorption capacity
of PZS@rGO. This study not only provides efficient drug removal but also highlights the
effect of different parameters on the adsorption of TC over PZS@rGO.
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