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Abstract 

Background: The incidence of lung adenocarcinoma (LUAD) increased substantially in recent years. A 
systematic investigation of the metabolic genomics pattern is critical to improve the treatment and 
prognosis of LUAD. This study aimed to analyze the relationship between tumor microenvironment 
(TME) and metabolism-related genes of LUAD.  
Methods: The data was extracted from TCGA and GEO datasets. The metabolism-related gene 
expression profile and the corresponding clinical data of LUAD patients were then integrated. The 
survival-related genes were screened out using univariate COX regression and lasso regression analysis. 
The latent properties and molecular mechanisms of these LUAD-specific metabolism-related genes were 
investigated by computational biology.  
Results: A novel prognostic model was established based on 8 metabolism-related genes, including 
TYMS, ALDH2, PKM, GNPNAT1, LDHA, ENTPD2, NT5E, and MAOB. The immune infiltration of LUAD 
was also analyzed using CIBERSORT algorithms and TIMER database. In addition, the high- and low-risk 
groups exhibited distinct layout modes in the principal component analysis.  
Conclusions: In summary, our studies identified clinically significant metabolism-related genes, which 
were potential signature for LUAD diagnosis, monitoring, and prognosis. 

Key words: lung adenocarcinoma, metabolic landscape, prognostic index, bioinformatics, tumor immune 
microenvironment 

Introduction 
Lung cancer as one of the tumors with high 

prevalence, leads to 1.7 million deaths worldwide 
annually [1]. The deaths of lung cancer are more than 
the sum of the breast, colorectal and cervical cancers 
[2]. Non-small cell lung cancer (NSCLC) accounts 
roughly for 85% lung cancer cases [3], and lung 
adenocarcinoma (LUAD) accounts for approximately 

50% of NSCLC [4]. Although the technologies in early 
detection, targeted therapy, and chemotherapy were 
substantially improved during last decades, the 
overall survival (OS) of LUAD patients remains poor 
[5]. The research of target genes through RNA 
expression profiles became a hot topic in the 
prognosis of LUAD patients recently [6]. 
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Identification of metabolism-related genes is urgent 
and highly required to improve clinical outcomes of 
LUAD. 

 Cell metabolism is central to the survival and 
development of cells. Tumor cells have abnormal cell 
metabolism owing to the loss function of tumor 
suppressor genes or the activation of oncogenes. 
Increased glycolysis in tumor cells, manifested by 
increased glucose acquisition and lactic acid 
synthesis, is an important feature, called the Warburg 
effect [7, 8]. It provided tumor cells with more 
selective advantages with limited resources [9]. 
Meanwhile, aerobic glycolysis produces fewer 
reactive oxygen species (ROS), which enabled cells to 
better resist oxidative stress and adapted to hypoxic 
environments [10]. Different cancers had different 
metabolic phenotypes [11]. Lactic acid was 
metabolized in lung tumors and contributed more to 
tricarboxylic acid cycle than glucose [12]. An animal 
study illustrated that inhibition of lactate 
dehydrogenase-A (LDH-A) controlled tumor survival 
and proliferation, as a feasible therapeutic target [13]. 
The study of metabolism-related phenotypes of 
different cancers provided clues to the diagnosis and 
treatment of tumors. The metabolism of tumor cells 
would not only affect the proliferation, but also 
influence survival. Moreover, the alterations in TME 
resulted from the metabolic changes in tumor cells 
affected the metabolic levels and the activity of 
immune cells [14, 15]. Therefore, regulating the 
metabolism of tumor cells and enhancing the activity 
of immune cells are important directions for the 
treatment of tumors. 

 We combined clinical information with 
metabolism-related genes expression profiles to 
evaluate the OS of LUAD patients. The prognostic 
landscape and expression status of 
metabolism-related genes were systematically 
analyzed, and individual prognostic characteristics 
for patients with LUAD were developed. We 
identified 8 metabolism-related genes significantly 
correlated with prognosis, and established a novel 
independent prognostic model based on these genes. 
This model also well predicted the infiltration of 
immune cells in LUAD. Our study provided a 
potential model and biomarkers for further 
metabolism-related work and personalized medicine 
for LUAD treatment. 

Materials and Methods 
Data collection and processing 

The RNA-seq FPKM data of LUAD, containing 
corresponding clinical data, were downloaded from 
the TCGA, including 497 LUAD tissues and 54 normal 

tissues. Patients whose follow-up data were 
incomplete or followed for less than 30 days were 
excluded, because these patients might die of 
non-tumor factors [16]. A total of 454 patients were 
included in the following investigation. The 
demographic and clinical characteristics of the patient 
were listed in Table 1. The criteria of validation set 
selection were as follows: (1) Lung adenocarcinoma 
related; (2) Including complete follow-up data; (3) 
Sample size greater than 30; (4) Expression profiling 
by array; (5) Homo sapiens. The dataset (GSE31210) 
on NSCLC with survival data was also downloaded 
from the GEO database as a validation set. This 
dataset contained 20 normal samples and 226 tumor 
samples. We obtained the KEGG pathway gene sets 
from the Molecular Signatures Database and extracted 
all the metabolism-related genes. There were 863 
metabolism-related genes shared by GEO and TCGA 
datasets. The analysis processes were shown in Figure 
1. 

 

Table 1. Clinicopathologic characteristics of patients in different 
risk groups. 

Characteristics Whole cohort Low risk High risk P 
Case 454 223 222  
Age    0.8409 
≤ 60 152 (33.5) 76 (34.1) 73 (32.9)  
> 60 302 (66.5) 147 (65.9) 149 (67.1)  
Gender    0.0173 
Female 248 (54.6) 135 (60.5) 109 (49.1)  
Male 206 (45.4) 88 (39.5) 113 (50.9)  
Stage    0.002548 
Stage I 243 (53.5) 140 (62.8) 98 (44.1)  
Stage Ⅱ 105 (23.1) 45 (20.2) 57 (25.6)  
Stage Ⅲ 74 (16.3) 26 (11.7) 47 (21.2)  
Stage Ⅳ 24 (5.3) 7 (3.1) 17 (7.7)  
T (Tumor)     
T1 156 (34.4) 96 (43.0) 56 (25.2) 0.000415 
T2 240 (52.9) 103 (46.2) 132 (59.5)  
T3 37 (8.1) 17 (7.6) 20 (9.0)  
T4 18 (4.0) 5 (2.2) 13 (5.9)  
N (Lymph Node)   0.005335 
N0 291 (64.1) 157 (70.4) 129 (58.1)  
N1 86 (18.9) 36 (16.1) 47 (21.2)  
N2 64 (14.1) 22 (9.9) 41 (18.5)  
N3 2 (0.4) 0 (0) 2 (0.9)  
M (Metastasis)   0.03075 
M0 305 (67.2) 148 (66.4) 148 (66.7)  
M1 23 (5.1) 6 (2.7) 17 (7.7)  

 

Differential expression analysis 
To obtain differential metabolism-related genes 

in TCGA LUAD dataset, the limma package of R 
software was used to explore the genes in LUAD and 
its adjacent normal tissues. The log2 (fold-change) > 1 
and false discovery rate (FDR) < 0. 05 were set as the 
cut-off values. 

Gene ontology and KEGG pathway analysis 
To verify whether the differentially expressed 

genes were related to metabolism, GO and KEGG 
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enrichment analysis were used. First, the org.Hs.eg.db 
package was used to convert the gene symbol into 
entrezID. Then, GO and KEGG enrichment analysis 
were performed using the clusterProfiler package. P < 
0.05 was considered as statistical significance. Finally, 
the GOplot package was used to draw the circle 
diagram of GO and KEGG. 

Univariate COX analysis and LASSO analysis 
To get survival- and metabolism-related genes, 

we integrated the expression of metabolism-related 
genes with the OS of LUAD patients. 
Metabolism-related genes were then analyzed by 
univariate COX regression analysis with continuous 
variables (P < 0.05). These metabolism-related genes 
were integrated into least absolute shrinkage and 
selection operator (LASSO) regression, which was 
calculated by the glmnet package of R software with 
1,000 runs. Finally, the prognostic model of LUAD 
was established based on the LASSO regression 
co-efficiency multiplied by expression data. The 
formula was as follows: 

Risk score=αgene(a)×gene 
expression(a)+αgene(b)×gene expression(b)+⋯

+αgene(n)×gene expression(n) 

Survival analysis 
The survminer package of R software was used 

to apply the Kaplan-Meier curve to investigate the 
connection amid metabolism-related genes and 
prognosis. Univariate analysis and multivariate 
analysis were used to explore independent prognostic 
factors of LUAD patients. Survival ROC R Software 

package was used to calculate the area under the 
curve (AUC) to verify the manifestation of prognostic 
characteristics. In addition, we drew a nomogram 
including the clinical factors and risk scores. The 
calibration curve and decision curve were painted to 
illustrate the accurateness of this model in predicting 
the survival of LUAD patients. 

Validation of the metabolism-related genes 
To investigate the expression of 

metabolism-related genes in distinct cancers, the 
oncomine database was utilized to analyze the 
expression levels of the hub gene in tumor tissues and 
normal tissues. The Human Protein Atlas database 
was used to verify the protein function of 
metabolism-related genes by immunohistochemistry. 
The correlations between metabolism-related genes 
and clinical factors were also analyzed. 

Analysis of the relationship between immune 
cell infiltration and metabolism-related genes 

The numbers of tumor-infiltrating immune cells 
were analyzed and visualized by TIMER database. 
TIMER reanalyzed gene expression data to assess the 
infiltrating levels of 6 immune cell subtypes, 
including CD4+ T cells, B cells, CD8+ T cells, 
neutrophils, macrophages, and dendritic cells. 
Therefore, it could be utilized to confirm the 
connections between hub metabolism-related genes 
and immune cell infiltration. We downloaded the 
levels of immune infiltration in LUAD patients and 
calculated the connection of immune cell infiltration 
and metabolism-related genes. 

 

 
Figure 1. Flow chart of data processing in this study. 
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Analysis of the difference between the high- 
and low-risk patients 

With the median PI value, the patients were 
classified into 2 groups (low- and high-risk). PCA was 
utilized to analyze the grouped samples and 
expression patterns, and GSEA was used to estimate 
distinct function phenotypes of the 2 groups. 
CIBERSORT software package was used to evaluate 
the proportion of 22 leukocyte subtypes. The perm 
was set to 1000. The samples with P < 0. 05 in the 
results of CIBERSORT analysis were delivered for 
further investigation.  

Single sample gene set enrichment analysis 
We obtained 29 immune-related gene sets that 

represented diverse immune cell types, functions, and 
pathways from Yin et al [17]. Then we calculated the 
immune-related enrichment scores, which contained 
immune cell or immune function and the activity of 
the immune pathway, of each sample through the 
ssGSEA algorithm. Based on the enrichment scores, 
we performed hierarchical clustering of LUAD. In 
addition, the ESTIMATE algorithm was used to 
calculate the immune scores, which allowed specific 
and sensitive differentiation of immune cells and 
calculated the ESTIMATE scores to represent the 
proportion of tumor-infiltrating lymphocytes (TILs) in 
tumor tissues. 

Weighted gene co-expression network analysis 
(WGCNA) 

To obtain metabolism- and immune-related 
genes, the WGCNA algorithm was applied to build 
the co-expression network of gene module and 
immune scores through the "WGCNA" package. Due 
to the small number of differential metabolic genes, 
we selected all metabolism-related genes for WGCNA 
analysis. First, we clustered the samples, eliminated 
the outlier, processed the data, and matched the 
samples with the expression matrix. Then, we selected 
the appropriate soft threshold to build a scale-free 
network and analyzed the module partition to acquire 
gene co-expression modules. Through the dynamic 
tree-cutting algorithm, we used dissimilarity matrices 
to detect gene modules. To get moderate-sized 
modules, the least count of genes was limited to 30 
and modules with similar expression patterns were 
merged. Finally, we calculated the correlation 
between modulus feature genes and immune scores. 
We extracted the modules most relevant to immunity 
for GO and KEGG analysis through metascape and 
omicshare and plots the regulatory network by 
Cytoscape. 

Results 
Acquisition of differentially expressed 
metabolism-related genes 

Using the limma package of R software, the 
differences of 863 metabolism-related genes shared by 
TCGA and GEO were analyzed [18]. We obtained 116 
differentially expressed metabolism-related genes 
between LUAD tissues and neighboring normal 
tissues, containing 31 downregulated and 85 
upregulated genes (Figure 2A and B). The results of 
GO analysis and KEGG analysis confirmed that the 
differential genes were related to metabolism (Figure 
2C and D). 

Evaluation of clinical outcomes 
A prognostic model was established based on 

these metabolism-related genes with univariate 
regression analysis and LASSO analysis. Through 
univariate COX regression analysis, 27 genes related 
to survival and metabolism (P value filter = 0.05) were 
obtained, of which the hazard ratio of 7 genes was less 
than 1 and the other 20 genes were greater than 1 
(Figure 3A). Then we established the prognostic 
model by LASSO regression analysis. Eight 
metabolism-related genes were screened out to build 
the risk signature for LUAD (Table 2). The calculation 
formula of the risk score was shown as follows: 

Risk score = [TYMS * (0.012119445)] + [ALDH2 * 
(-0.000559052)] + [PKM * (0.000501064)] + [GNPNAT1 

* (0.022240778)] + [LDHA * (0.002514) + [ENTPD2 * 
(0.061360665)] + [NT5E * (0.00016529)] + [MAOB * 

(-0.004029927)]  

The results showed that ALDH2 and MAOB 
were protective factors for OS, and the rest were risk 
factors. With the risk values, the patients were 
classified into 2 groups (low- and high-risk). In the 
genetic mutations of these risk genes, deep deletion 
and amplification were the most common forms 
(Figure 3B). MAOB had the most genetic alternations. 
The survival status, survival time and 
metabolism-related genes expression levels of the 
LUAD patients were shown in Figure 3C and D. With 
the increase in the risk scores, the numbers of deaths 
were also increased. The results of survival analysis 
showed that the clinical outcome of high- and 
low-risk groups was well distinguished according to 
these metabolism-related biomarkers in training and 
validation sets (Figure 4A and B). We compared our 
metabolism-related prognostic model with a similar 
model [19, 20]. The result showed that the clinical 
outcome of high- and low-risk groups could also be 
well distinguished (Figure 4C). The AUC values of 
risk genes were 0.709, 0.739, 0.717, 0.705, 0.703 and 
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0.748, 0.702, 0.623, 0.696, 0.700 in training set, and 
validation set, respectively (Figure 4D and E). 
However, the AUC values of the other model were 
0.587, 0.559, 0.535, 0.567, and 0.587, which illustrated 
that their model was less accurate in predicting the 
survival rate of LUAD patients compared with our 
model (Figure 4F). 

Analysis of subgroup and independent 
prognosis 

The risk scores calculated by prognostic markers 
were helpful for the prediction of OS in different 
subgroups, containing stages I-II, stages III-Ⅳ, age > 
60 years, age ≤ 60 years, N0-1, N2-3, T1-2 and T3-4 in 
the training set, and age > 60 years, age ≤ 60 years, 
female and male in the validation set (Figure S1). 

 The results of the univariate COX regression 
analysis showed the P values of stage and risk scores 
were less than 0.05 in the training and validation sets 
(Figure S2A and C). In addition, multivariate COX 
regression analysis verified that risk score (HR = 
7.809; 95% CI [2.101–29.029]; P < 0.001; training set; 
HR = 4.361; 95% CI [1.020–28.642]; P < 0.001; 
validation set; Figure S2B and D) and stage (HR = 
4.232, 95% CI [2.175–8.236]; P < 0.001; training set; HR 
= 3.405, 95% CI [1.690–6.862]; P < 0.001; validation set; 
Figure S2B and D) were independent risk factors in 
the training and validation sets. These results 
suggested that our signature could be utilized as an 
independent predictor for LUAD outcome. 

 

 
Figure 2. Acquisition of differentially expressed metabolism-related genes and gene functional enrichment analysis. A. Heatmap of differentially expressed genes. B. Volcano plot 
of differentially expressed genes. C. GO analysis. D. KEGG analysis. 
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Figure 3. Establishment of Prognostic Indexes based on 8 metabolism-related genes A. Forest plot of hazard ratios exhibiting the prognostic worth of metabolism-related genes. 
B. Heatmap of expression profiles of included metabolism-related genes. Survival conditions of LUAD patients in C. training set and D. validation set. 

 

Table 2. General characteristics of LUAD metabolism-related 
genes.  

ID coef HR HR.95L HR.95H pvalue logFC FDR 
TYMS 0.012119 1.02969 1.014094 1.045526 0.000172 1.531233 5.49E-26 
ALDH2 -0.00056 0.978645 0.964734 0.992756 0.003123 -1.07487 8.27E-23 
PKM 0.000501 1.004606 1.002274 1.006944 0.000106 1.342386 1.17E-23 
GNPNAT1 0.022241 1.046756 1.029999 1.063786 2.86E-08 1.208602 4.34E-26 
LDHA 0.002514 1.005066 1.003374 1.006762 4.20E-09 1.923462 4.44E-27 
ENTPD2 0.061361 1.124384 1.065047 1.187026 2.25E-05 1.121139 1.45E-10 
NT5E 0.000165 1.010262 1.00277 1.017811 0.007184 1.921271 5.87E-09 
MAOB -0.00403 0.966209 0.935137 0.998312 0.03928 -1.20903 1.17E-23 

 

Clinic correlation and nomogram of 
metabolism-related genes 

The ggpubr package was applied to explore the 
connection of metabolism-related genes and clinical 
factors (Table 3). GNPNAT1, LDHA, MAOB, NT5E, 
PKM were associated with clinical factors. At the 
same time, we utilized metabolism-related genes 
together with clinical factors to draw a nomogram 
(Figure 5A) and the calibration curve was drawn to 
verify the accuracy of the prediction model (Figure 
5B-D). The predicted value fit well with the real value, 

suggesting that our model might be applied to 
prophesy the prognosis of LUAD patients. DCA was 
performed to measure the clinical effectiveness of the 
nomogram. For the 1- and 3-years OS probability, the 
decision curve showed that the net benefits backed by 
the nomogram were better than those of the 
alternatives (Figure 5E and F). 

Validation of the metabolism-related genes 
Based on the HPA database, the function of 

metabolism-related genes was verified at the protein 
levels by immunohistochemistry (Figure S3A). The 
results were accordant with our preceding research. 
Except for MAOB and ALDH2, the expression levels 
of other metabolism-related genes in LUAD was all in 
the tumor tissues. Oncomine analysis of tumor and 
normal tissues (Figure S3B) showed that the 
expression patterns of metabolism-related genes were 
similar in LUAD and other cancers. 

Immunocyte infiltration in the TME 
To understand whether the immune metabolic 

genome was related to the condition of the LUAD 
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immune microenvironment, the TIMER database was 
applied to investigate the connection of the 
metabolism-related genes and immune cell 
infiltration. B cells, CD4+ T cells, dendritic cells, and 
macrophages were negatively related to 
metabolism-related genes (Figure 6A-F). The 
proportion of 22 immune cells in LUAD was shown in 

Figure 6G. Pearson correlation analysis illustrated the 
co-expression mode among different immune cells. 
There was a significant correlation between activated 
memory CD4+ T cells and CD8+ T cells, and a 
negative correlation between M2 macrophages and 
plasma cells (Figure 6H). 

 

Table 3. Relationships between the expressions of the metabolism-related genes and the clinicopathological factors in LUAD.  

Gene symbol Age (≥65/<65) Gender (male / female) Stage (I & II / III & IV) T stage (T1–T2 / T3–T4) N stage (N0 / N1-3) 
t P t P t P t P t P 

TYMS -0.048 0.962 -1.628 0.105 -1.534 0.128 1.242 0.218 -0.271 0.787 
ALDH2 -1.829 0.069 -0.762 0.447 1.032 0.304 0.348 0.729 1.326 0.186 
PKM -0.081 0.935 -0.544 0.587 -2.908 0.004 -1.822 0.075 -3.051 0.003 
GNPNAT1 0.517 0.605 -2.552 0.011 -2.357 0.021 -1.415 0.165 -1.418 0.157 
LDHA 0.72 0.472 -0.976 0.33 -2.647 0.01 -1.884 0.066 -2.508 0.013 
ENTPD2 0.581 0.562 0.236 0.813 -1.402 0.164 -0.896 0.375 -0.463 0.644 
NT5E -0.702 0.483 1.995 0.047 -1.282 0.203 -1.285 0.205 -0.434 0.665 
MAOB -1.79 0.075 0.629 0.53 3.918 1.14E-04 1.99 0.05 1.09 0.277 
riskScore 0.916 0.361 -2.006 0.046 -3.761 2.99E-04 -2.137 0.038 -2.503 0.013 

 

 
Figure 4. Overall survival of the low- and high-risk groups. A, B, and C. The prognostic worth of the biomarkers. Patients in the high‐risk groups sustained a shorter survival 
time in both the training set, validation set, and the other metabolism-related prognosis model. D. ROC curve verifies the accuracy of the model in predicting the 1-, 2- , 3- ,4-, 
5-year survival rates of LUAD patients in the validation set. E. ROC curve verifies the accuracy of the model in predicting the 0.5-, 1-, 2- , 3- ,4-year survival rates of LUAD 
patients in the training set. F. ROC curve verifies the accuracy of the other model in predicting the 0.5-, 1-, 2-, 3-, and 4-years survival rates of LUAD patients. 
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Figure 5. Metabolism-related genes combined with other clinical factors to predict the prognosis of patients with LUAD. A. Nomogram. B, C and D. The calibration curve was 
drawn to verify the accuracy of the prediction model for predicting 1-, 3-, and 5-years survival rates. E and F. Decision curve analysis of the nomogram. 
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Figure 6. Analysis of the correlation between metabolism-related genes and immune cells. A. B cells. B. CD4+ T cells. C. CD8+ T cells. D. Dendritic cells. E. Macrophages. F. 
Neutrophils. G. The bar chart shows the proportion of immune cells in each patient. H. Correlation analysis of immune cells. 
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Analysis of the difference between the high- 
and low-risk patients 

To explore whether the LUAD patients could be 
distinguished properly based on our prognosis 
model, PCA was utilized to explore the distinct 
distribution modes between the 2 groups (lows and 
high-risk). According to the risk genes, these 2 groups 
were divided into 2 aspects in the training and 
validation set (Figure 7A and B). Based on either the 
whole-genome sets or the whole metabolism-related 
genes, high- and low-risk groups showed significant 
separation distribution (Figure 7C and D). The GSEA 
further validated the functional annotations and 
found that the high-risk group was concentrated in 
mitosis and proliferation, while the low-risk group 
was mainly correlated with immunity and 
metabolism (Figure 7E and F), which was accordant 
with the preceding consequence of TIMER. Moreover, 
our results suggested that patients in the high-risk 
group were more likely to be male and at an advanced 
clinical stage (Fisher’s exact test, p < 0.05, Table 1). 

WGCNA 
Based on the enrichment values, patients were 

classified into 3 groups: high-, moderate-, and 
low-immunity groups (Figure S4A). The ESTIMATE 
algorithm was utilized to calculate the immune 
values. The immune scores of the high-, middle- and 
low-immunity groups decreased in turn (Figure S4B).  

To build a co-expression network of metabolism- 
and immune-related genes, we used WGCNA 
analysis. The power of β = 5 (scale-free R2 = 0.91) was 
chosen as the soft threshold parameter (Figure S5A), 
ensuring a network of no scale. The module eigengene 
(ME) was then used to represent the whole gene 
expression levels of the corresponding modules and 
to investigate the co-expression resemblance of these 
modules (Figure S5B). Five modules were recognized 
by the average linkage hierarchical clustering (Figure 
S5C). The correlations between ME and the immune 
scores were calculated to explore the relationship 
between gene modules and immune characteristics. 
The yellow module had the most powerful correlation 
with the immune scores. These 5 modules were 
divided into 2 clusters, among which the yellow 
module was the closest to the immune scores (Figure 
S5D).  

All the genes of the yellow module were 
extracted for functional enrichment analysis. GO and 
KEGG enrichment analysis showed the genes in the 
yellow module were not only related to metabolism 
but also immune system (Figure 8A and B). To screen 
out the hub genes in the yellow module, we calculated 
the topological overlap between these genes. The 
regulation network diagram was drawn using 

Cytoscape. AOC3, PLA2G7, LCAT, GPX3, and 
GSTM5 were the top 5 hub genes in the yellow 
module (Figure 8C). 

Discussion 
The importance of differential genes in cancer 

deterioration and immunotherapy has been 
recognized, but the overall genome-wide analysis is 
still to be investigated to explore the molecular 
mechanism and clinical significance. Our studies 
revealed the effects of metabolism-related genes on 
LUAD clinical significance and elucidated the 
molecular characteristics. A total of 27 
metabolism-related genes were significantly related to 
the occurrence and development of LUAD, which 
might be valuable clinical indicators. Personalized 
metabolism-related prognostic characteristics on the 
basis of selective metabolism-related genes could be 
used to evaluate potential clinical outcomes and 
measure immune cell infiltration. 

To establish a suitable and simple scheme to 
observe the metabolic status of LUAD patients and 
imply clinical outcomes, we built a metabolism-based 
prognostic index. With the consequences of LASSO 
regression analysis, the prognostic indexes based on 8 
metabolism-related genes (TYMS, ALDH2, PKM, 
GNPNAT1, LDHA, ENTPD2, NT5E, MAOB) were 
established. Patients with high-risk values have a bad 
prognosis, whose survival time was shortened with 
increased risk values. Moreover, univariate COX and 
multivariate COX regression analysis illustrated that 
the prognostic signature based on these 
metabolism-related genes might be applied as 
independent prognostic factors. We also constructed a 
nomograph composed of metabolism-related genes 
and other clinical factors to predict the OS. Our 
studies suggested that metabolism-related genes 
could be used as prognostic markers and indexes of 
metabolic status. 

The mechanism and function of ENTPD2 in lung 
cancer were not reported previously. The other 7 
metabolism-related genes TYMS, ALDH2, PKM, 
GNPNAT1, LDHA, NT5E and MAOB have been 
reported. TYMS was involved in gene replication, 
which was highly related to the poor prognosis of 
NSCLC. Studies found that repressed TYMS 
expression improved the sensitivity of lung cancer 
cells to pemetrexed [21]. The main function of ALDH2 
was to detoxify acetaldehyde (ACE) into non-toxic 
acetic acid [22]. Li et al. found that inhibited ALDH 
expression not only led to poor prognosis of LUAD 
but also enhanced tumor cell proliferation, stemness, 
and migration, which was related to the increase of 
DNA damage caused by ACE accumulation [23].  
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Figure 7. The high‐ and low‐risk groups showed different distribution patterns and gene-set enrichment analysis. A. PCA of the high- and low-risk groups based on the 8 risk 
genes in the training set. B. PCA of the high- and low-risk groups based on 8 risk genes in the validation set. C. PCA of the high- and low-risk groups based on the whole genome 
set. D. PCA of the high- and low-risk groups based on the whole metabolism-related genes. E. KEGG and F. GO analysis by GSEA. The red font represents high-risk, while blue 
fonts represent low-risk. 
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Figure 8. Functional enrichment analysis of the yellow module and screening of hub genes. A. GO analysis. B. KEGG analysis. C. The regulation network diagram according to 
the topological overlap between the genes. 
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PKM was reported to involve in the process of 
glycolysis. Inhibited PKM2 expression decreased lung 
cancer cell proliferation [24]. PKM2 could form 
complexes with FGFR1 and RACK1 to participate in 
the occurrence and development of lung cancer [25]. 
Zhao et al. found that Abraxane, which was an 
albumin-bound nanoparticle drug for treating 
NSCLC, repressed GNPNAT1 expression, resulting in 
inhibited tumor cell proliferation [26]. LDHA was also 
involved in glycolysis, catalyzing the oxidation of 
lactic acid to pyruvate. LDHA was upregulated in 
most tumors and related to the poor prognosis of 
cancer [13]. Li et al. found that the radiosensitivity of 
NSCLC was enhanced by inhibiting LDHA [27]. It 
was reported that NT5E was overexpressed in NSCLC 
and inhibited by miR-30a-5p, involving in NSCLC cell 
migration, invasion, and proliferation [28]. Son et al. 
found that MAOB was repressed by Danshensu, 
resulting in the inhibited NF-κB signaling [29]. 
Although the function of ENTPD2 in NSCLC was not 
reported, it was proved to cause immune escape via 
inhibiting myeloid-derived suppressor cell (MDSC) 
differentiation in liver carcinoma [30]. 

Impressive progress in comprehending 
tumorigenesis and clinical treatment techniques was 
achieved in recent decades, but many aspects of the 
molecular mechanism related to LUAD metabolic are 
still unclear. Our studies focused on the changes in 
metabolic and genomic profiles to reveal the relation-
ship between metabolic status and these profiles. 

Due to the rapid growth of tumors, the 
imbalance between oxygen demand and supply led to 
tumor hypoxia. Hypoxia of tumor cells induces tumor 
cells to release immunosuppressive factors, resulting 
in immune escape [31, 32]. Meanwhile, the lack of 
energy and nutrients of immune cells caused by the 
rapid growth of tumors might also be the reason for 
immunosuppression [33]. The Warburg effect of 
tumor tissue could produce a considerable lactic acid, 
which was reported to induce M2 macrophage 
polarization [34]. M2 macrophages facilitated tumor 
developing, immune escape, and invasion [35-37]. 

Based on the 8 metabolism-related genes in 
LUAD, this prognostic indicator showed clinically 
satisfactory feasibility. B cells, CD4+ T cells, dendritic 
cells and macrophages were inversely related to the 
risk scores. Previous studies showed that the 
proportion of antibodies was related to the density of 
follicular B cells [38]. Follicular B cells and 
tumor-infiltrating plasma cells were associated with 
better prognosis of lung cancer patients [39]. CD4+ T 
cells emit multifarious cytokines with direct effects to 
activate other immune cells [40, 41]. Tumor- 
infiltrating CD4+ T cells were also associated with 
better prognosis of NSCLC patients [42]. As 

antigen-presenting cells, dendritic cells played a 
significant role in adaptive immune response, but 
their roles of antigen recognition, processing and 
presentation were usually destroyed or blocked 
during tumor development [43-45]. Kimura et al. 
found that the adoptive transfer of autologous 
activated killer T cells and dendritic cells increased 
the OS of lung cancer patients and the proportion of 
CD8+/CD4+ T cells [46]. Tumor-associated 
macrophages originated from peripheral monon 
uclear cells, whose tumor-promoting functions 
contained backing tumor-related angiogenesis and 
facilitating cancer cell invasion, migration, and 
vascular migration [37, 47, 48]. M1 macrophages 
located in islets of tumor cells were usually associated 
with better prognosis, while more abundant M2 
macrophages in tumor stroma were correlated with 
poor prognosis [49]. With the increase of risk values, 
the numbers of B cells, CD4+ T cells, dendritic cells, 
and macrophage decreased, resulting in poor 
prognosis of LUAD patients. Our studies suggested 
that metabolism-related genes had the capacity to be 
predictors of immune cell infiltration. 

In this study, we screened out genes related to 
metabolism and immunity by the WGCNA algorithm 
and obtained a total of 5 gene modules. Subsequently, 
we analyzed the functional enrichment of the gene 
module highly related to immune scores. The hub 
gene of this module were identified with Cytoscape. 
Except for GPX3 and GSTM5, there was no report on 
the other hub genes in LUAD [50, 51]. Our results 
combined metabolism with immunity to identify new 
therapeutic targets in LUAD. 

Our current study had some shortcomings, 
which should be taken into account when explaining 
our consequences. First, transcriptome analysis could 
only reflect certain aspects of the immune state, but 
not global changes. Secondly, the verification with 
another independent queue was lacked. At the last, 
our results also required validation of in vivo and in 
vitro experiments. 

The correlation between proteomics, metabolo-
mics, and immunogenomics ought to be investigated 
to characterize the overall immunological alternations 
in LUAD. Importantly, the latent correlation between 
the precancerous lesions and the disrupted 
metabolomic genome was to be further investigated. 
We predicted that this prognostic feature might have 
important clinical significance. Our studies offered 
novel understanding of the development of new 
therapeutic targets in LUAD. 

Conclusions 
Based on gene sets downloaded from the TCGA 

database, we utilized LASSO and univariate COX 
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regression analysis to screen metabolism-related 
genes correlated with the prognosis of LUAD 
patients. A prediction model was constructed based 
on 8 metabolism-related genes (TYMS, ALDH2, PKM, 
GNPNAT1, LDHA, ENTPD2, NT5E, MAOB). This 
model well predicted immune cell infiltration in 
LUAD. Our study provided a potential model and 
biomarkers for further metabolism-related work and 
personalized medicine for LUAD treatment. 
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