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Peptide based nano-assemblies with their self-organizing ability has shown lot of promise due to their 
high degree of thermal and chemical stability, for biomaterial fabrication. Developing an effective 
way to control the organization of these structures is important for fabricating application-oriented 
materials at the molecular level. The present study reports the impact of electric and magnetic field-
mediated perturbation of the self-assembly phenomenon, upon the chemical and structural properties 
of diphenylalanine assembly. Our studies show that, electric field effectively arrests aggregation 
and self-assembly formation, while the molecule is allowed to anneal in the presence of applied 
electric fields of varying magnitudes, both AC and DC. The electric field exposure also modulated the 
morphology of the self-assembled structures without affecting the overall chemical constitution of 
the material. Our results on the modulatory effect of the electric field are in good agreement with 
theoretical studies based on molecular dynamics reported earlier on amyloid forming molecular 
systems. Furthermore, we demonstrate that the self-assemblies formed post electric-field exposure, 
showed difference in their crystal habit. Modulation of nano-level architecture of peptide based model 
systems with external stimulus, points to a potentially rewarding strategy to re-work proven nano-
materials to expand their application spectrum.

Ability to design, control morphology, and tune up physical and chemical properties at nanoscale characterize the 
heart of nanotechnology. Generation of nano-level architecture should ideally have a design phase at molecular 
scale. Morphology of such systems can be better controlled, if they assemble further-on to micro dimensions. 
Nanotechnology research mostly focuses on the latter half by way of their imminent utility while fabricating 
materials at larger dimensions. Application of physical agents for tailoring the nanostructure morphology can be 
very useful for nanostructure fabrication.

In last decade, there has been an increased focus on organic and bio-organic nano-assemblies. Peptide nano-
tubes, their physical properties, and assembly morphologies are extensively studied due to their excellent bio-
compatibility as well as functional and structural diversity. Many ordered supramolecular structures have been 
constructed using peptides as the building blocks. The most extensively utilized peptide-based building block is 
diphenylalanine (Phe-Phe or FF), which is the shortest bio-molecule known to self-assemble into ordered nano-
structures. FF incidentally is also the core recognition motif of the β-amyloid polypeptide, a peptide associated 
with Alzheimer’s disease1. It can self-assemble into a variety of structures like microtubes, nanotubes2, microcrys-
tals, nanofibers3, nanorods4, 5 and nanowires6.

The potential of these supramolecular structures have been utilized in diverse fields including nanofabrication, 
drug delivery vehicles7, bio-sensing8, energy storage devices, and hydrogels for tissue engineering9, 10. The crystal 
structure of FF exhibits a non-centrosymmetric hexagonal space group (P61)1, 11, which allows it to possess prop-
erties like piezoelectricity12, 13, optical activity14, 15 and ferroelectricity16. Due to its low dimensional highly ordered 
structure it also exhibits quantum confinement17, forming quantum dots18. Self-assembled structures formed 
by analogues of FF such as Ac-Phe-Phe-NH2, NH2-Phe-Phe- NH2, NH2-(p-nitro-Phe)-(p-nitro-Phe)-COOH, 
NH2(4-phenyl-Phe)-(4-phenyl-Phe)-COOH, PEGylated tetra-phenylalanine (L6-F4), β-AspFF etc. have also 
resulted in tubular, fibrillar and squared plate structures respectively10, 19, 20.
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One of the key challenges in the field of supramolecular chemistry has been controlling the self-assembly of 
molecules into ordered functional units. Previously, a number of strategies including pH mediated control21, 22, 
solvent mediated control23, covalent modifications24, vapour deposition25, 26, temperature27, surface28, 29, relative 
humidity30, symmetry31 and magnetite coating on the surface of nanotubes32 have been employed to regulate the 
architecture of diphenylalanine self-assemblies. But studies with fairly high magnetic fields have not yielded the 
level of response as expected, though a response was forced, at a magnetic field range of 12 T or more33. Recent 
theoretical investigations, predict measurable response to applied electric field but practical demonstration has 
not been reported so far, with the best of our knowledge. The present study aims to investigate the impact of elec-
tric and magnetic field mediated perturbation, upon the chemical and physical properties of peptide nano assem-
blies, with diphenylalanine as the model molecular system. Electric field studies on biomolecules (like DNA and 
proteins) have shown permanent or induced dipole formation along the direction of applied field, indicating that 
electric field interaction could modulate their dipole moments34, 35. Molecular dynamics studies in the presence 
of external electric fields on Aβ amyloid peptides and insulin have conclusively predicted the effect of an external 
field in modulating structure formation12, 36. Martin Garcia and Ojeda May have predicted that an external con-
stant electric field can even modify the secondary structure of a protein, by inducing a transition from β-sheet 
to α-helical like conformation37. Andrij Baumketner in a recent study, explored the feasibility of using external 
electric field to disaggregate amyloid fibrils, by inducing folding into an α-helical state reducing their β sheet 
conformation38. This is especially important because FF is the core recognition motif of β-amyloid segment. Here 
in this study, we attempt to confirm the effect of AC (Alternating Current) and DC (Direct Current) electric field 
on diphenylalanine self-assembly using experimental approach.

Protein crystals have been reported to show alignment in the presence of strong magnetic field. This alignment 
was believed to be the result of diamagnetic anisotropy of the peptide bonds and aromatic amino acids in pro-
tein molecules39. These aromatic side chains play an important role in directing the amyloid fibril self-assembly 
through π-π stacking interactions40. Magnetic field has been previously employed to align β-amyloid fibrils for 
X-ray fiber diffraction studies41–44. So far various groups have reported studies involving magnetic field exposure 
of self-assembled diphenylalanine assemblies post formation32, 33. We, however use electric or magnetic field, 
concurrently while formation of nano-assemblies. This is achieved by starting the experiment at a temperature 
(95 °C) that do not support assembly. The system is then cooled to facilitate assembly under electric or mag-
netic field of chosen strength at desired optimum concentrations for assembly. Our results indicate that field 
induced perturbation approach can be a promising tool for controlling nano-assembly, thus generating novel 
architectures.

Results and Discussion
Electric and magnetic field effects on nano-assembly.  The experimental system containing the pep-
tide sample was allowed to cool in the presence of electric (150 Vcm−1/50 Hz, 300 Vcm−1/50 Hz AC electric field, 
and 150 Vcm−1, 300 Vcm−1 DC) fields, magnetic field and ambient conditions continuously for 5 hours till the 
system cools and gets equilibrated at room temperature (25 °C) completely (Fig. 1). Interestingly, there was no 
visible self-assembly as long as the sample was under electric field exposure. The control sample with no field, and 
the sample cooled under magnetic field (0.6 T), showed visible nano-assemblies, which was further confirmed by 
light scattering and FE-SEM experiment. These observations suggest that both AC as well DC electric fields could 
inhibit an undirected aggregation process and a directed self-assembly process.

Previously, it has been shown that FF tubes align in the presence of a very high magnetic field (12 T)33, per-
haps magnetic fields as low as 0.6 T was not robust enough to perturb the forces involved in the self-assembly 
process. Static light scattering was recorded at right angles for each of the sample to quantify the aggregation 
in FF annealed under an electric and magnetic field in comparison to the control sample, immediately after an 

Figure 1.  Schematic representation of experimental setup. (A) Dissolved peptide was allowed to cool down 
from 95 °C to room temperature while incubating in the presence of electric field. (B) Electric field set up and 
(C) magnetic field setup.
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incubation of 5 hours (Fig. 2). Time axis shown in Fig. 2 represents the time period for which static light scattering 
measurements were made.

The right angled static light scatter of the samples exposed to AC and DC electric field showed an increase in 
scattering intensity with time, indicating spontaneous initiation of peptide self-assembly (Fig. 2A). In contrast, 
the control and magnetic field exposed samples showed very high scattering intensity at zero time signifying the 
presence of pre-formed self-assemblies (or aggregates) at appreciable dimensions (Fig. 2B,C). For comparing this 
phenomenon, peptide solution was cooled from 95 to 25 °C and its right angled static light scatter was recorded 
as a control experiment. This experiment also showed a pattern similar to electric field exposed samples, and the 
right-angled static light scattering showed an increase with time, as a result of the spontaneous initiation of pep-
tide self-assembly upon cooling (Supplementary Fig. S1).

Effect of the electric field in modulating nanotube morphologies.  The samples were analyzed using 
FE-SEM to gain an insight into the effect of electric field on the peptide self-assemblies, (Fig. 3 and Supplementary 
Fig. S2). Morphologically the self-assemblies formed post AC, and DC electric field exposures were more aligned 
with the presence of branched structures. They also showed a morphological shift to rod-like structures, though 
tubes were also observed. The self-assemblies formed in the control sample (0 Vcm−1) formed an exclusive 
tube-like morphology and were randomly oriented in comparison to the field samples. The results indicate the 
possibility that electric field exposure modulates the formation of the peptide self-assemblies, though the magni-
tude of this influence may vary with sample molecular systems.

To investigate the effect of electric field exposure upon the physical properties of peptide self-assemblies, 
melting points of each sample were measured. The samples showed the difference in their melting points, further 
confirming a modulation in the assembly architecture of FF nanostructures (Table 1).

Effect of an external stimulus on the chemical constitution.  High-resolution micro-Raman spec-
troscopy is a non-invasive technique that can be employed to examine the functional group composition of the 
material. This technique was performed on dried diphenylalanine self-assemblies, from each of the experimental 
conditions to probe the impact of field exposure on the chemical composition of the peptide. The Raman spectra 
of the self-assemblies formed in control and field exposed samples are shown in Fig. 4.

The Raman bands correspond to aromatic rings of FF are at 1004 cm−1, 1034 cm−1, 1590 cm−1, 1429 cm−1 and 
1608 cm−1 45, 46 Peak at 1688 cm−1 band can be attributed to C=O stretching while small peaks detected between 
1154 to 1300 cm−1 can be assigned to the acyclic C-C stretching45, 46. Supplementary Table S1 lists the Raman 
shifts of chemical functional groups of diphenylalanine. Similar characteristic bands were observed in each of 
the samples, and there was no remarkable difference molecule is not affected by the field induced perturbation. 
Therefore, the difference in assembly, morphology and melting points may be attributed to the modulatory effect 
of electric field on assembly formation.

Figure 2.  Effect of the electric and magnetic field on FF nano-assembly. The graphs represent static right angle 
scatter plots post 5 hours’ incubation at (A) electric field, (B) magnetic field, (C) no field mentioned conditions 
in arbitrary units (a.u.) and (D) post annealing under various field conditions: Images were taken after 
cooling the FF solution for 5 hours. Electric field (150 Vcm−1 and 300 Vcm−1 clearly has a prohibitive effect on 
aggregation and nano-assembly of FF; whereas magnetic fields at 0.6 T and 0 V (no field) show a dense growth 
of visible self-assembled FF aggregates.

http://S1).
http://S2
http://S1
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Figure 3.  Scanning electron micrographs of FF self-assemblies formed post annealing at room temperature 
conditions: The nanorods and nanotubes formed after five experimental conditions reported (0 V cm−1, 
150 V cm−1 DC and AC electric field; 300 Vcm−1 AC and DC electric field) are shown. Field induced assemblies 
have greater tendencies of alignment and a morphological shift to rod like structures (compared to tubes) in the 
overall population of nano-micro dimensional structures.

Sample Melting Point (°C)

0 Vcm−1 288–291

150 Vcm−1 284–285

300 Vcm−1 278–280

FF powder (sigma) 291–292

Table 1.  Melting points for diphenylalanine nano-assembled tubes/rods after a 5 hours exposure to specific DC 
electric fields in comparison to control.

Figure 4.  Chemical constitution from Raman spectra. Raman spectra were recorded at five different 
experimental conditions (0 Vcm−1, 150 V cm−1 DC and AC electric field; 300 Vcm−1 AC and DC electric field). 
Spectral analysis suggests that chemical constitution of all five samples are identical, indicating that field effect is 
modulating only the assembly formation at nano-level.
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To confirm the phase purity and examine any possible difference in crystal structure on the self-assemblies 
formed with and without electric field exposure, powder X-ray diffraction (PXRD) measurements were per-
formed with Cu-Kα radiation (λ = 1.54 Å). Le-Bail profile fitting has been performed by assuming hexagonal 
crystal structure symmetry with P61 space group47.

A pseudo-Voigt (P-V) function was used to fit the profile by using Full Prof Suite48. P-V is an approxima-
tion of Voigt function, which is a linear combination of the Gaussian profile and Lorentzian profile49, 50. This 
function allows to accommodate asymmetries in the X-ray diffraction peaks. The scattered points in Fig. 5 
shows the experimentally observed diffraction data and the red colour solid line represent the Le-Bail profile 
fitting of diphenylalanine polycrystalline samples exposed to electric field. These X-ray diffraction patterns are 
in-agreement with hexagonal structure proposed by Gorbitz and the resultant crystallographic data is consistent 
with the published FF crystal structure (CCDC 163340)1. No spurious peaks were observed in the X-ray diffrac-
tion pattern which confirms the formation of pure diphenylalanine.

Figure 5.  X-ray powder diffractogram of FF self-assemblies at (A) ambient conditions, post DC electric field 
incubations at (B) 150 Vcm−1 and (C) 300 Vcm−1. Hollow dots: measured powder diffraction pattern after 
background subtraction; solid red curve: simulated profile; green vertical tick marks: Bragg’s positions; and the 
solid blue curve: residual between the experimental and simulated profiles.



www.nature.com/scientificreports/

6Scientific Reports | 7: 2726  | DOI:10.1038/s41598-017-02609-z

The Le-Bail profile fitting of X-ray diffraction patterns also showed that all three samples differ with respect to 
their lattice parameters. Average crystallite size ‘P’ and micro strain ‘η’ play a significant role in the peak broad-
ening51. In order to estimate the individual contribution of ‘P’ and ‘η’ on peak broadening, the Williamson Hall 
(W-H) analysis was employed (Fig. 6).

The W-H analysis is governed by the following relation with which we can estimate the contribution of crys-
tallite size ‘P’ and lattice strain ‘η’ on X-ray peak broadening:

β θ λ η θ= +cos K
P

sin

where, β is the full-width half maximum of diffraction peak intensity, K (~0.89) is the shape factor, and λ is the 
wavelength of Cu-Kα X-ray radiation.

Crystallite size (P~ 322–342 Å) of the particles gives a rough estimation of the domain size which diffract 
coherently. It is mostly not the same as particle size due to the formation of polycrystalline aggregates52.

Lattice strain on the other hand quantifies the distribution of lattice constants originating from imperfec-
tions in the crystals, such as dislocations inside the lattice. Figure 6 shows the W-H plot (β cosθ versus sinθ) for 
FF under different electric fields. From the slope and intercept of these plots, the magnitude of ‘P’ and ‘η’ was 
estimated. The self-assemblies formed post-electric field exposure differ significantly on average crystallite size 
as well as lattice strain. All the crystallographic parameters for the FF obtained from the profile fitting are listed 
in Table 2.

Conclusion
We demonstrated that electric field could arrest the hierarchical self-assembly of diphenylalanine, and 
self-assembly was initiated only after (at least 10 minutes) the withdrawal of external electric field whereas mag-
netic field at the experimental (0.6 T) range has no significant effect on assembly formation. FF is the core recog-
nition motif of amyloid β polypeptide. Electric field effect is in agreement with the earlier observation made by 
Andrij Baumketner, that external electric field can disaggregate amyloid fibrils by inducing folding. Self-assembly 
of diphenylalanine peptide after annealing in the presence of electric field showed the distinct morphological 
difference. Hill and co-workers earlier studied the little effect of magnetic field, and the results are in full agree-
ment with our observation. The electric field exposure also modulated the stability of the self-assembled struc-
tures without affecting the overall chemical constitution of the material. Furthermore, we demonstrated that the 
self-assemblies formed post electric-field exposure showed the difference in their crystal habit. W-H analysis of 

Figure 6.  The Williamson-Hall plots (β cosθ versus sinθ) of FF self-assemblies formed at ambient conditions. 
The hollow blue, olive and red color symbols represent the post-DC electric field incubation of 0 Vcm−1, 
150 Vcm−1and 300 Vcm−1, respectively.

0 Vcm−1 150 Vcm−1 300 Vcm−1

a 24.069124 24.069912 24.052418

b 24.069124 24.069912 24.052418

c 5.407554 5.402272 5.454072

α 90° 90° 90°

β 90° 90° 90°

γ 120° 120° 1200

P 322 Å 403 Å 343 Å

η 2.2 × 10−3 6.2 × 10−3 4 × 10−3

Table 2.  Lattice parameters derived from Le-Bail profile fitting and W-H analysis of X-ray diffraction patterns 
of diphenylalanine self-assembled structures.
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the X-ray diffraction patterns revealed the differences in the peptide self-assemblies formed post electric field 
exposure of varying magnitudes, with respect to their lattice parameters as well as crystallite size. The microstrain 
associated with self-assembled structures also varied with changes in the magnitude of the electric field. We 
infer that our strategy in employing electric field mediated perturbation of electrostatic interactions directing 
the peptide self-assembly can be used to generate nanostructures with distinct morphologies from the same 
material. Further, in line with the theoretical investigations discussed in the earlier sections, this experiment 
suggests that electric field can modulate the physical properties of nanostructures and therefore has the potential 
to be deployed as a fabrication tool for a myriad of application-oriented materials without any chemical additives.

Materials and Methods
The FF peptide was purchased from Sigma-Aldrich. Deionized water was used for all the experiments.

Preparation of Peptide Solution.  Fresh solution of diphenylalanine peptide was prepared by dissolving 
the lyophilized form of the peptide in deionized water (at 95 °C) to a concentration of 2 mg/ml27. The vial con-
taining the sample was kept in a water bath (Grant sub aqua 26 plus) set at 95 °C, allowing peptide to dissolve 
completely. Fresh stock was prepared for each experiment to avoid any pre-aggregation. Peptide nano/micro 
tubes were formed while cooling to room temperature (25 °C).

Pre-aggregation test.  To ensure the absence of any pre-aggregation in peptide stock solution a right angle 
scatter was recorded using a spectrofluorometer (Jasco FP 8500) at 450 nm. The slit width was set at 2.5 nm53.

Electric Field Experiments.  The experiment was performed with FF at a concentration of 2 mg/ml at room 
temperature (25 °C) for a duration of 5 hours, at three different DC and AC electric fields: 0 Vcm−1 (control), 
150 Vcm−1 and 300 Vcm−1 (Fig. 1A). Two parallel aluminum electrodes separated by a distance of 1 cm were 
anchored to a plate to produce a horizontal DC electric field (Fig. 1B). These plates were connected to a full-wave 
bridge rectifier, and a single-phase variable autotransformer was used to regulate the voltage and to produce a 
horizontal AC electric field a similar setup was built without a full-wave bridge rectifier. A 2 ml of FF peptide 
solution (at 95 °C) was taken in a microcentrifuge tube and allowed to cool in the presence of electric field for 
a duration of 5 hours. No voltage was applied between the electrodes in the case of control experiment. All the 
experiments were done in parallel, to ensure that sample allowed to cool under electric field (AC as well as DC), 
magnetic field and control (no field) conditions cooled at same rate.

Magnetic Field Experiment.  Similar to electric field experiment, a magnetic field experiment was also 
performed with 2 mg/ml FF solution at room temperature for a duration of 5 hours. Peptide solution (95 °C) was 
taken in a microcentrifuge tube and allowed to cool in the presence of magnetic field measuring 0.6 T (Fig. 1C).

Static Right Angle Light Scattering Assay.  Static light scattering was recorded for each of the sample 
to quantify the aggregation in FF annealed under an electric and magnetic field in comparison to the control 
sample immediately after an incubation of 5 hours, using a spectrofluorometer (Jasco FP 8500) at 450 nm. The 
slit width was set at 2.5 nm53. Post electric annealing, field-exposed peptide solution was taken in a fluorescence 
cuvette (Helma, Sigma-Aldrich) of 1 cm path length, and its static light scattering was recorded immediately for 
12000 seconds. For control as well as magnetic field sample which already comprised dense FF aggregates, static 
light scattering was recorded only for 1000 seconds. The term “post incubation/annealing” refers to the time 
period after 5 hours, when both electric as well as magnetic field were switched off.

Field Emission Scanning Electron Microscopy (FE-SEM).  FE-SEM analyses were performed using a 
Zeiss Sigma FE-SEM at 2–3 kV. Field exposed peptide samples were loaded on a glass slide for analyses and air 
dried. Samples were coated with gold for enhancing conductivity.

Melting Point Estimation.  Melting points for the diphenylalanine self-assemblies formed under different 
experimental conditions were recorded using Optics Technology Digital Melting Point Apparatus. The solid sam-
ples (FF self-assemblies) were packed in thin glass capillaries and loaded in the apparatus. For each sample, the 
temperature at which the first drop of liquid appears was recorded as the melting point of that sample.

Raman Spectroscopy.  Raman measurements of dried FF self- assemblies were performed using a 
high-resolution micro-Raman spectrometer (Jobin Horiba, LabRam HR800); 514 nm laser was used for all the 
experiments.

Powder XRD.  X-Ray diffraction (XRD) patterns were obtained from a Rigaku X-ray diffractometer (Model: 
TRAX III) powder diffractometer operating at 50 kV and 100 mA using Ni-filtered Cu-Kα radiation (λ = 1.54 Å). 
The diffractograms were recorded in the 2θ range of 0–30°.
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