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Abstract

We assembled three complete mitochondrial genomes (mitogenomes), two of Solanum

lycopersicum and one of Solanum pennellii, and analyzed their intra- and interspecific varia-

tions. The mitogenomes were 423,596–446,257 bp in length. Despite numerous rearrange-

ments between the S. lycopersicum and S. pennellii mitogenomes, over 97% of the

mitogenomes were similar to each other. These mitogenomes were compared with plastid

and nuclear genomes to investigate genetic material transfers among DNA-containing

organelles in tomato. In all mitogenomes, 9,598 bp of plastome sequences were found.

Numerous nuclear copies of mitochondrial DNA (NUMTs) and plastid DNA (NUPTs) were

observed in the S. lycopersicum and S. pennellii nuclear genomes. Several long organellar

DNA fragments were tightly clustered in the nuclear genome; however, the NUMT and

NUPT locations differed between the two species. Our results demonstrate the recent

occurrence of frequent endosymbiotic gene transfers in tomato genomes.

Introduction

The plant cell organelles, the plastid and mitochondrion, are known to have originated from

prokaryotes via endosymbiosis, and it is possible that the origin of the mitochondrion was con-

temporaneous with that of the eukaryotic cell, because there is no evidence of an amito-

chondriate phase in eukaryotic evolution [1]. Although both organelles exist together in the

plant cell, the evolutionary histories of the two organellar genomes in land plants differ slightly.

Plastid genomes (plastomes) from bryophytes to angiosperms are normally 120–170 kb in

length [2–5], excluding certain contracted or expanded genomes [6, 7]. They are highly con-

served in terms of gene content and arrangement, which is typically circular [4]. Mitochon-

drial genomes (mitogenomes) in land plants are more complex than plastomes. The moss

mitogenome is approximately 100 kb long, and its structure has been constant for 350 My [8].

However, seed-plant mitogenomes changed rapidly [9–11]. Ribosomal protein genes and sdh
genes were frequently lost in angiosperm mitogenomes during evolution, and are thought to

have been transferred to the nuclear genome [12, 13]. Large [10, 14] and small [15–17]

repeated sequences increased the size of mitogenomes in seed plants and changed their struc-

ture via reversible and non-reversible recombination, respectively [15]. Horizontal gene trans-

fers of mitogenome sequences have been frequently observed in terrestrial plant species [18];

consequently, mitogenomes in land plants vary between 100 kb [8] and 11.3 Mb long [19]. In

addition, certain plant species contain multichromosomal mitogenomes [19, 20].
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Six types of gene transfer have been observed among three genome-containing organelles

in plants [21]: from the plastid to the nucleus [22–24], from the mitochondrion to the nucleus

and vice versa [25–27], and from the plastid to the mitochondrion [28–35]. Gene transfer from

mitochondria to plastids has been reported recently [36–40], but gene transfer from the nucleus

to plastids appears to rarely occur [21]. Nuclear copies of mitochondrial DNA (NUMTs) as a

result of endosymbiotic gene transfer (EGT) have been widely found from protists to animals

[26]. Certain NUMTs are associated with human diseases [41] and make DNA barcoding and

phylogenetic analysis using mitogenomes difficult [42, 43]. Data from 85 genomes of protists,

fungi, plants, and animals have revealed a correlation between genome size and the total num-

ber of NUMTs, and eukaryotes that have only one mitochondrion contain fewer NUMTs than

those that have multiple mitochondria [26]. Less than 0.1% of the nuclear genomes of mam-

mals, insects, yeasts, and some plants contain NUMTs [26], but NUMTs in Oryza sativa and

Arabidopsis thaliana account for 0.1–0.2% of their nuclear genomes [44]. The integration of

mitochondrial segments into the nuclear chromosome occurs by NUMTs being inserted into

double-strand breaks by non-homologous end-joining machinery [45].

Similarly, nuclear copies of plastid DNA (NUPTs) have also been found in many organ-

isms, including land plants, algae, apicomplexans, and haplophytes. The cumulative lengths of

NUPTs in polyplastidic organisms are greater than those in monoplastidic organisms, except

for certain species of green algae and apicomplexans [46]. However, few comprehensive stud-

ies of gene transfers among the three genomes have been conducted, because few complete

land plant nuclear genomic sequences are available.

Solanum is one of the most economically important plant genera because it includes many

valuable crops, such as the tomato, potato, and chili pepper [47]. These species are used as

plant models, and their complete nuclear genomes provide insights into many aspects of

plant biology [48–50]. The organellar genomes of Solanum have also been studied, and the

plastomes of 15 Solanum species have been sequenced [51–57]. These complete plastome

sequences increase our understanding of the evolution and phylogenetic relationships of

Solanum species. In contrast to the plastome, complete mitogenome sequences of Solanum
have not been completely analyzed. The first physical map of the tomato mitogenome was

constructed for a male-sterile tomato that was generated via cell fusion between the tomato

and potato [58]; subsequently, draft mitogenome sequences of the tomato and potato, con-

taining numerous gaps and unordered contigs, have been generated [49] (http://www.

mitochondrialgenome.org/). Therefore, if tomato mitogenome sequences are available, it

would be useful to investigate EGTs among the three DNA-containing organelles because

of the availability of two sets of complete nuclear genome sequences of S. lycopersicum
‘Heinz1706’ and S. pennellii ‘LA0716’ [48, 54] and plastome sequences, and the expectation of

more frequent nuclear copies of organellar DNA than those of previously studied land plants

owing to their larger genome sizes [26, 46].

In this study, we assembled three complete mitogenomes (two of S. lycopersicum and one of

S. pennellii) and analyzed their intra- and interspecific variations. In addition, EGTs among

three genomes, including two organellar genomes and the nuclear genome, were comprehen-

sively investigated.

Materials and methods

Assembly and confirmation of complete mitogenome and plastome

sequences

Paired-end sequencing data [59] for S. lycopersicum ‘LA1479’ (SRA accession number:

ERR418122), S. lycopersicum ‘LA1421’ (SRA accession number: ERR418120), and S. pennellii

Tomato mitochondrial genome analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0202279 September 5, 2018 2 / 23

Competing interests: The authors have declared

that no competing interests exist.

http://www.mitochondrialgenome.org/
http://www.mitochondrialgenome.org/
https://doi.org/10.1371/journal.pone.0202279


‘LA0716’ (SRA accession number: ERR418107) were obtained using the Illumina HiSeq 2000

system. Both ends of the reads were trimmed using Geneious [60] with an error probability of

0.01, and only paired-end reads longer than 50 bp were extracted. The mitogenomes were

assembled using previously developed strategies, a baiting and iterations [61, 62]. Firstly, reads

were mapped to the Solanaceae mitogenomes (S1 Table). The assembled reads on the reference

sequences were distributed at genes excluding noncoding regions. Secondly, mapped reads

were assembled de novo with zero mismatch and gap to generate reference contigs, before we

annotated the reference contigs using Geneious [60] to confirm whether all of the ribosomal

RNAs (rRNAs), transfer RNAs (tRNAs), and protein-coding regions included in the other

Solanaceae mitogenomes were included in these contigs. Thirdly, reads were realigned with

the reference contigs with zero mismatch and gap among reads. Consensus sequences of these

mapping reads were used as new, extended reference contigs. Subsequently, reads were itera-

tively mapped to the new extended reference contigs generated in the previous iteration. Con-

tig length increased in each iteration, and few of the contigs overlapped with each other.

Finally, the sequence of one circular mitogenome was obtained using each raw dataset; how-

ever, the coverage depth for certain regions was higher than that for other mitogenome

regions. The sequences of these high-depth regions were almost identical to the tomato plas-

tome sequence. We designed primer sets based on these regions, and showed that these regions

belonged to the mitogenome using the genomic DNA of S. pennellii ‘LA0716’. To verify the

coverage depths of the mitogenomes and plastomes of the three tomato genomes, raw reads

were mapped to six mitogenome and plastome sequences using the Burrows-Wheeler align-

ment tool (S1 Fig and S2 Table) [63].

In addition, three plastome sequences from each raw dataset were assembled to identify

EGTs among the three tomato genomes. The plastome assembly strategy followed that of Kim

et al. [64].

Annotation of genes and repeat regions

All of the genes in the three tomato mitogenome sequences were annotated and compared

with other mitogenome sequences of Solanaceae using Geneious [60], and protein-coding and

tRNA genes were re-examined using blastp [65] and tRNAscan-SE [66], respectively. Open

reading frames (ORFs) with a minimum length of 303 bp and the start codon “ATG” were

annotated using Geneious [60].

Duplicated regions with a minimum repeat length of 100 bp and zero maximum mismatch

were identified using Geneious [60], and 56 mitogenome sequences of core eudicots (ftp://ftp.

ncbi.nlm.nih.gov/genomes/refseq/mitochondrion) were downloaded to investigate the rela-

tionship between repeat region length and total mitogenome length (S1 Table).

Analysis of the structural evolution of tomato mitogenomes

To analyze the structural evolution of tomato mitogenomes, the three tomato mitogenome

sequences were compared using Circoletto [67] and blastn with an e-value of<1 x 10−10 [65].

Syntenic blocks that were longer than 1 kb and contained at least one gene are summarized in

S3 Table.

Gene transfer among the three tomato genomes

Whole-genome sequences of S. lycopersicum ‘Heinz1706’ (version SL2.50) [48] and S. pennellii
‘LA0716’ (version SPENNV200) [54] were used to investigate gene transfers among the three

genomes (nuclear genome, plastome, and mitogenome). Sequences of the three genomes of S.

lycopersicum and S. pennellii were compared using blastn with a word size of 11, an e-value of

Tomato mitochondrial genome analysis
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<1 x 10−5, and 50,000 maximum hits. Multiple hits for the same nuclear genomic locus caused

by repetitive regions of the query sequence (duplicated regions in organellar genomes) were

eliminated to avoid overestimating the migration of nuclear copies of organellar DNA [46].

Nevertheless, integration of organellar DNA into the nuclear genome can be overestimated,

because nuclear organellar copies could have become fragmented during evolution.

Origin of nuclear-transferred organellar DNA

NUPTs and NUMTs that were over 3,000 bp long from S. pennellii ‘LA0716’ were used to

investigate 1) whether tightly clustered organelle copies in the nuclear genome originated

from a single, large original sequence of nuclear-transferred organellar DNA and 2) whether

they degenerated during evolution in hotspot regions of the nuclear genome [22]. Among the

regions selected, we extracted those containing more than two large organellar DNA fragments

and compared them with their equivalent organellar DNA.

Statistical analysis and graphics

All of the statistical analyses were performed using R v3.3.3 [68], and most of the figures were

generated using ggplot2 [69], gridExtra [70], and genoPlotR [71] in R, excluding the mitogen-

ome maps, which were generated using OGDRAW [72].

Results

Structure of tomato mitogenomes

The three mitogenome sequences were 423,596–446,257 bp in length (Fig 1 and Table 1).

Their lengths were similar to the length of the MSA1 mitogenome which were generated by

cell fusion between the tomato and potato [58] but were longer than that of the first draft of

the tomato mitogenome [73]. Structurally, their GC content (45.0–45.2%) was similar to that

of Nicotiana sylvestris, N. tabacum (45%), and Capsicum annuum (44.5%) (Table 1). The dupli-

cated regions of the tomato mitogenome were 42,193–76,436 bp in length, and longer than

those of other Solanales mitogenomes (Table 1). Thirty-seven coding genes, three rRNAs, and

20 tRNAs were identified in the three tomato mitogenomes (Fig 2). Among them, 5–8 genes

were duplicated, excluding ORFs and tRNAs (Fig 2), whereas only 0–3 genes were duplicated

in the mitogenomes of other plants belonging to the Solanales. Specifically, rpl16, rps3, rps19,

rrn5, and rrn18 were duplicated in the tomato mitogenomes, and rps7 and rps14 were deleted

from the mitogenomes of tomato and other Solanaceae plants.

Over 97% of the mitogenome sequences were conserved among the three tomato mitogen-

omes (Fig 3). The sequences of the two S. lycopersicum mitogenomes shared similarity with

that of S. pennellii ‘LA0716,’ excluding a 43-bp region, whereas only four regions (223-, 460-,

1,013-, and 6,328-bp regions) were observed in the S. pennellii ‘LA0716’ mitogenome. Among

them, the 6,328-bp region was almost identical to the nuclear genome sequence of S. pennellii
‘LA0716,’ with certain insertions and deletions. In addition to the identical part to the S. pen-
nellii nuclear genome, the 6,328-bp region comprised three segments (Fig 4A). The first seg-

ment was almost identical to the S. lycopersicum nuclear genome, the second was identical to

the mitogenome and nuclear genome of Nicotiana, and half of it was similar to the nuclear

genomes of S. lycopersicum and C. annuum. The third segment comprised five plastome-like

regions that corresponded with the tomato plastome (Fig 4B).

There were numerous inter- and intraspecific mitogenome rearrangements; however, most

of the mitogenome sequence regions in the three tomatoes were shared (Fig 5). Interestingly,

the maximum syntenic region between S. pennellii ‘LA0716’ and S. lycopersicum ‘LA1479’ was

Tomato mitochondrial genome analysis
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higher than that between S. lycopersicum ‘LA1421’ and ‘LA1479’. Nineteen syntenic blocks

were conserved among the three mitogenomes (S3 Table). The longest syntenic block was

61,213 bp in length and contained five genes, and the shortest was 5,815 bp in length and con-

tained sdh3 and exon1 and 2 of nad2.

Fig 1. Maps of the three mitogenomes of the two tomato species.

https://doi.org/10.1371/journal.pone.0202279.g001
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Duplicated regions in the tomato mitogenomes

The duplicated regions in the tomato mitogenomes ranged from 42,193 bp (S. pennellii
‘LA0716’) to 76,436 bp (S. lycopersicum ‘LA1421’) in length, and were longer than those of

other Solanaceae species (Table 1). Compared with the other 56 core eudicot mitogenomes

[74], the total duplicated regions of the three tomato mitogenomes were the 6th, 10th, and 12th

longest (S2 Fig). The correlation between the total duplicated region length and total mitogen-

ome length was not significant according to the Pearson’s correlation coefficient (p = 0.2831).

However, the total duplicated region length was significantly correlated with the maximum

duplicated region length (p< 2.2e−16) with R2 = 0.72 (S2 Fig).

Intracellular gene transfer from the plastome to the mitogenome

In total, 9,598 bp [large single copy of 2,558 bp, small single copy (SSC) of 32 bp, and an

inverted repeat of 7,008 bp] of plastome sequences were detected in the three tomato mitogen-

omes, and a few of them were duplicated in each mitogenome. Mitochondrial plastid DNAs

(MTPTs) in the tomato mitogenomes were 9,750–12,983 bp in length, constituting 2.2–3.1%

of each mitogenome (Table 2). Compared with other Solanales species, the percentage of

MTPTs in the tomato mitogenomes was more similar to that in Nicotiana and Hyoscyamus
than in Capsicum, which is phylogenetically closer to Solanum [75]. However, most of the

tomato MTPTs, excluding the partial sequences of rps20, rps12, and ycf2, were similar to the C.

annuum MTPTs [34]. The SSC regions of the Solanaceae plastomes were highly conserved for

transfer to mitogenomes, whereas the mitogenome of Ipomoea nil, belonging to the Solanales

and the Solanaceae, contained a large SSC region.

As mentioned above, only five MTPTs were observed in the S. pennellii ‘LA0716’ mitogen-

ome among the three tomato mitogenomes, and the plastome counterparts of the five MTPTs

were located nearby, excluding the partial psbB region (Fig 4B). To further analyze these five

MTPTs, they were grouped into sequence A, which included two small plastome regions, and

sequence B, which included three large plastome regions (S3 Fig). Sequence A was observed in

the C. annuum mitogenome, whereas sequence B was only partly observed in certain angio-

sperm mitogenomes (S3 Fig). Interestingly, the mitogenome of Hesperelaea palmeri [76],

Table 1. Characteristics of the mitogenome sequences of tomato species and related species belonging to the Solanales.

Species SRA Accession number GenBank Accession number GC content

(%)

Total length

(bp)

Length of duplicated regions (bp)

Solanum lycopersicum
‘LA1479’

ERR418122a MF034193 45.20 424,423 52,195

Solanum lycopersicum
‘LA1421’

ERR418120 a MF034192 45.10 446,257 76,436

Solanum pennellii
‘LA0716’

ERR418107 a MF034194 45.00 423,596 42,193

Capsicum annuum
‘Jeju’

NC_024624 44.50 511,530 35,356

Capsicum annuum
CMS line FS4401

KJ865409 44.50 507,452 21,770

Nicotiana sylvestris NC_029805 45.00 430,597 35,890

Nicotiana tabacum NC_006581 45.00 430,597 36,209

Hyoscyamus niger NC_026515 45.10 501,401 41,500

Ipomoea nil NC_031158 44.40 265,768 4,492

aThese data were submitted by the 100 Tomato Genome Sequencing Consortium [59].

https://doi.org/10.1371/journal.pone.0202279.t001
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which is an extinct Oleaceae species, shared four MTPTs with that of S. pennellii ‘LA0716’,

although the similarity in MTPTs between the S. pennellii ‘LA0716’ and H. palmeri mitogen-

omes was weaker than that between the S. pennellii ‘LA0716’ and Nicotiana mitogenomes.

By comparing the nuclear genomes of Solanum and Capsicum using blastn [65], numerous

sequence-A-similar regions were observed in the nuclear genomes of Solanum and C. annuum,

excluding that of S. lycopersicum ‘Heinz1706,’ which had only one region (S4 Fig). Although

the phylogenetic tree constructed using Bayesian inference did not completely determine the

relationship among sequence-A-similar regions in the Solanum and C. annuum genomes (data

not shown), sequence-A-similar regions in the C. annuum genome were distinguished from

those in the Solanum genomes by two deletions (4 bp and 2 bp) (S4 Fig). Sequence-B-similar

regions were not observed in the nuclear genomes of S. lycopersicum, S. tuberosum, or C.

annuum.

Gene transfer between the mitogenome and nuclear genome

Most of the sequences shared between the tomato mitogenome and nuclear genome were not

coding regions, and noncoding regions in mitogenomes vary among land plant species. There-

fore, it was difficult to determine the direction of gene transfer between the mitogenome and

nuclear genome. Consequently, all of the sequences shared between the tomato mitogenome

and nuclear genome were considered NUMTs.

In total, 15,670–16,844 NUMTs were observed in the nuclear genomes of S. pennellii
‘LA0716’ and S. lycopersicum ‘Heinz1706’ (Table 3). The total length of NUMTs in the S. pen-
nellii ‘LA0716’ nuclear genome (3,412 kb) was greater than that in the S. lycopersicum
‘Heinz1706’ (2,944 kb) nuclear genome, representing 0.37% of the total nuclear genome. Most

of the NUMTs in the two tomato species were observed on chromosome 1; however, they

occupied less than 0.29–0.32% of it. In contrast, 0.72% and 0.74% of chromosome 11 in the

two species was homologous to their mitogenomes.

NUMTs were evenly distributed among the chromosomes (S5–S7 Figs). However, NUMTs

longer than 1,000 bp were tightly clustered, and regions containing numerous large NUMTs

were not identical between the two nuclear genomes of S. pennellii ‘LA0716’ and S. lycopersi-
cum ‘Heinz1706’. Specifically, the number of NUMTs longer than 5,000 bp in S. pennellii
‘LA0716’ was nearly twice that in S. lycopersicum ‘Heinz1706’ (Fig 6). Half of the large NUMTs

in S. pennellii ‘LA0716’ were on chromosomes 5 and 11. Consequently, the median length of

the NUMTs on chromosomes 5 and 11 in S. pennellii ‘LA0716’ was similar to that in S. lycoper-
sicum; however, the mean length of the NUMTs on chromosomes 5 and 11 in S. pennellii
‘LA0716’ was greater than that in S. lycopersicum ‘Heinz1706’ (Table 3).

Gene transfer from the plastome to the nuclear genome

There were 7,445 and 7,805 NUPTs in the nuclear genomes of S. lycopersicum ‘Heinz1706’ and

S. pennellii ‘LA0716,’ respectively (S4 Table). The cumulative NUPT length was 1,533,904–

1,739,535 bp, constituting 0.189–0.191% of the nuclear genome. The cumulative NUPT

lengths of chromosome 1 in S. lycopersicum ‘Heinz1706’ and chromosome 10 in S. pennellii
‘LA0716’ were the longest among the chromosomes, and occupied 0.28% and 0.40% of each

chromosome in S. lycopersicum and S. pennellii, respectively. Similar to the NUMTs, large

NUPTs were tightly clustered; however, their locations were not identical in the two tomato

nuclear genomes (S8 and S9 Figs).

Fig 2. Genes present in the mitogenomes of tomato species and related species belonging to the Solanales.

https://doi.org/10.1371/journal.pone.0202279.g002
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Fig 3. Conserved regions among the three tomato mitogenomes. Black circles represent the three tomato mitogenomes. Because of duplicated regions, conserved

region lengths were not identical to that of each mitogenome. Colored circles indicate conserved region lengths for each mitogenome: green for Solanum lycopersicum
‘LA1479,’ red for Solanum lycopersicum ‘LA1421,’ and blue for Solanum pennellii ‘LA0716’.

https://doi.org/10.1371/journal.pone.0202279.g003
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Similarity and structural mutations in nuclear-transferred organellar DNA

and counterparts

To determine why large organellar copies were clustered in certain nuclear genome loci, two

assumptions were made. The first was that NUPTs and NUMTs that were tightly clustered

originated from the DNA of a single organelle, and the second was that the occurrence of

structural mutations, such as rearrangements and insertions/deletions, and base substitutions

had increased with time after EGT from organellar genomes to the nuclear genome.

Large NUPTs (longer than 1 kb) were tightly clustered in 11 regions of the S. pennellii
‘LA0716’ nuclear genome (S10 Fig). In these 11 regions, certain NUPTs that appeared to be

more structurally mutated because of large inversions, rearrangements, or insertions/deletions

had less similarity with their counterparts than those that appeared to be less structurally

mutated because of small insertions/deletions or duplications. However, certain NUPTs that

appeared to be more structurally mutated had stronger similarity than those that appeared to

be less structurally mutated.

Large, tightly clustered NUMTs (longer than 1 kb) were observed in 24 regions of the S.

pennellii ‘LA0716’ nuclear genome (S11 Fig). Similar to the large NUPTs, certain NUMTs that

appeared to be more structurally mutated had a lower similarity to their counterparts than

those that appeared to be less structurally mutated. However, certain regions with numerous

large insertions/deletions or inversions had over 99.4% similarity compared with their

Fig 4. A 6,328-bp region specific to the Solanum pennellii mitogenome and plastome counterparts of five mitochondrial plastid DNAs (MTPTs). A) The 6,328-bp

region comprised three parts: five MTPTs (green boxes), a region similar to the tomato nuclear genomic region (blue box), and regions similar to the mitogenome and

nuclear genome of Nicotiana tabacum (red box). Numbers within parenthesis represent the query cover and identity, respectively, of a similar taxon using blastn analysis.

B) Five MTPTs assembled in a plastome sequence (black bar). The green and yellow boxes indicate plastome genes and plastome-like regions, respectively.

https://doi.org/10.1371/journal.pone.0202279.g004
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counterparts. In particular, the similarities of large NUMTs on chromosome 5 in S. pennellii
‘LA0716’ were over 96.1%, although large deletions and rearrangements appeared to have

occurred.

Discussion

Structural variations in tomato mitogenomes

Considering the slow evolutionary rates of sequence [11] and gene [77] conservation in plant

mitogenomes, the low similarity between plant mitogenomes of closely related genera [9, 78,

79] and foreign DNA causing variation in plant mitogenome length [80–82] suggest that the

mitogenomes of land plants appear to comprise syntenic blocks containing coding genes and

Fig 5. Map of rearrangements among the three tomato mitogenomes. Colors refer to the score/max bits core ratio, with blue�0.25, green�0.50, orange�0.75, and

red>0.75.

https://doi.org/10.1371/journal.pone.0202279.g005
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unique regions that contain noncoding regions, and these unique regions appear to be related

to foreign DNA. In addition, 59 eudicot mitogenome sequences, including the three tomato

mitogenomes, showed that there was no correlation between total duplicated region length

and mitogenome sequence length (S2 Fig). Therefore, it appears that foreign DNA has more

effect than duplicated regions on length variations at high taxonomic levels (family and

above).

However, duplication appears to be a cause of mitogenome expansion at low taxonomic

levels, such as inter- and intraspecific levels. Except for the duplicated regions, 97.1–99.3% of

the mitogenome sequences of Brassica juncea (219,766 bp) and Brassica oleracea (360,271

bp) could be aligned together [14]. The lengths of the tomato mitogenomes were strongly

related to the duplicated regions. The duplicated regions in the S. lycopersicum ‘LA1421’

mitogenome were the largest among the three tomato mitogenomes (Table 1). The total

length of the duplicated regions in the S. lycopersicum ‘LA1479’ mitogenome was 23% greater

than that in the S. pennellii ‘LA0716’ mitogenome. Consequently, the two S. lycopersicum
mitogenomes were larger than that of S. pennellii ‘LA0716,’ although the S. pennellii
‘LA0716’ mitogenome contained a unique 8,024-bp sequence compared with the two S. lyco-
persicum mitogenomes. Because the maximum duplicated region length was significantly

correlated with the total duplicated region length (S2 Fig), the total length difference

between mitogenomes of closely related taxa seem to be more affected by the maximum

duplicated region than by short duplicated regions. In contrast to plastomes, the structures

of mitogenomes in land plants have evolved rapidly [11], and direct repeats and inverted

repeats have facilitated rearrangements [77, 83]. Therefore, the mitogenomes of land plants

probably evolved to be able to produce duplications frequently and easily in order to rapidly

alter their structures.

Rearrangement is a major issue in studies on mitogenomes, because it can result in the gen-

eration of novel chimeric ORFs, which is a new, related phenomenon [78, 84]. Many previous

studies have demonstrated great intraspecific [78, 85–87] and interspecific [10, 14] variability

in mitogenome structure. Numerous repeat regions support the possibility of a greater number

of rearrangements in tomato mitogenomes, because recombination via inverted repeats and

direct repeats induces the inversion of intervening sequences and subgenomic molecules,

respectively [17, 83, 88].

Table 2. Regions transferred from the plastome to the mitogenome in the Solanales.

Regions transferred from plastome

to mitogenome

Total length of regions transferred from plastome

to mitogenome (bp)

Percentage of plastome regions

in mitogenome (%)

Species LSC (bp) SSC (bp) IR (bp)

Solanum lycopersicum ‘LA1421’ 2,558 32 7,008 9,774 2.2

Solanum lycopersicum ‘LA1479’ 2,558 32 7,008 9,750 2.3

Solanum pennellii ‘LA0716’ 5,936 32 7,008 12,983 3.1

Capsicum annum CMS 33,212 32 18,767 53,480 10.5

Capsicum annum non-CMS 33,398 32 21,238 57,215 11.2

Hyoscyamus niger 6,334 79 4,536 12,627 2.5

Nicotiana sylvestris 4,396 0 6,036 10,773 2.5

Nicotiana tabacum 4,396 0 6,306 10,772 2.5

Ipomoea nil 16,397 3,602 7,866 28,479 10.7

LSC, large single copy; SSC, small single copy; IR, inverted repeat.

https://doi.org/10.1371/journal.pone.0202279.t002
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Gene transfer from the plastome to the mitogenome via the nuclear

genome

Among the five MTPTs detected only in the S. pennellii ‘LA0716’ mitogenome among the

three tomato strains, the entire sequence A region was detected in the C. annuum mitogenome

(S3 Fig); however, the plastome counterparts were distant (Fig 4B). According to Wang et al.

[34], in 39 seed plants, MTPT gene clusters containing psbB did not contain psaJ. Therefore, it

is probable that two small plastome regions were integrated together in the ancestor of Sola-
num and Capsicum. Subsequently, the sequence A region might have transferred into the

Table 3. Nuclear copies of mitochondrial DNA (NUMTs) in the nuclear genomes of tomato (Solanum) species.

Comparison Position No. of NUMTs Mean length (bp) Median length (bp) Maximum length (bp) Minimum length (bp)

mitogenome of S. pennellii ‘LA0716’

vs
nuclear genome of S. pennellii ‘LA0716’

ch01 2,015 (233)a 175.4 (711.6) 102 (397) 13,387 36 (250)

ch02 1,211 (160) 193.5 (752.5) 108 (356) 8,035 36 (250)

ch03 1,245 (107) 137.5 (440.5) 103 (327) 2,985 36 (250)

ch04 1,886 (110) 131.8 (515.4) 96 (328.5) 3,531 36 (250)

ch05 1,327 (181) 292.5 (1,452.8) 108 (388) 18,135 37 (251)

ch06 1,107 (115) 204.2 (1,012) 106 (354) 14,969 36 (253)

ch07 1,298 (132) 163.5 (648.1) 105 (355.5) 6,483 37 (250)

ch08 1,199 (126) 203.3 (1,033.1) 98 (352.5) 15,852 36 (250)

ch09 1,317 (145) 183.2 (821.2) 98 (365) 8,261 36 (250)

ch10 1,366 (194) 231.6 (964.8) 107 (430) 10,180 36 (253)

ch11 1,487 (245) 330.6 (1,457.7) 111 (405) 22,940 36 (253)

ch12 1,386 (137) 205.8 (1,097) 103.5 (389) 23,276 36 (250)

mitogenome of S. lycopersicum ‘LA1479’

vs
nuclear genome of S. lycopersicum

‘Heinz1706’

ch01 1,694 (206) 169.7 (610.7) 105 (379.5) 6,628 36 (250)

ch02 1,099 (121) 165.2 (621.4) 107 (346) 4,128 36 (251)

ch03 1,417 (191) 198.7 (777.8) 107 (355) 7,242 36 (251)

ch04 1,452 (88) 130.7 (489.2) 96 (329.5) 3,226 36 (250)

ch05 1,330 (178) 216.1 (910.2) 105.5 (361) 12,271 36 (250)

ch06 1,090 (98) 132.3 (395.8) 100.5 (327) 1,720 36 (250)

ch07 1,203 (128) 162.8 (628.8) 104 (367) 5,091 36 (250)

ch08 1,157 (124) 177.2 (748.1) 104 (321.5) 8,393 36 (250)

ch09 1,341 (108) 177.3 (1,026.1) 97 (349) 11,571 36 (252)

ch10 1,243 (144) 212.2 (983.1) 107 (417) 12,227 37 (251)

ch11 1,395 (224) 291.8 (1,238.3) 111 (447) 29,977 36 (251)

ch12 1,296 (156) 202.6 (885.4) 106 (363.5) 19,816 36 (250)

mitogenome of S. lycopersicum ‘LA1421’

vs
nuclear genome of S. lycopersicum

‘Heinz1706’

ch01 1,688 (207) 169.9 (610.3) 105 (378) 6,950 36 (250)

ch02 1,095 (119) 165.6 (631.8) 107 (341) 7,167 36 (251)

ch03 1,417 (190) 199.2 (783.9) 107 (355) 7,340 36 (251)

ch04 1,449 (89) 130.9 (488.4) 96 (329) 3,226 36 (250)

ch05 1,324 (175) 218.3 (937.2) 105 (360) 12,271 36 (250)

ch06 1,085 (96) 132 (397) 101 (327) 1,720 36 (250)

ch07 1,204 (126) 163 (641) 104 (363) 5,091 36 (250)

ch08 1,147 (120) 178.3 (771.1) 104 (321.5) 8,884 36 (250)

ch09 1,340 (108) 177.4 (1,026.1) 98 (349) 11,571 36 (252)

ch10 1,247 (146) 212 (974.4) 107 (414) 12,227 37 (251)

ch11 1,382 (217) 277.3 (1,167.9) 111 (442) 31,315 36 (251)

ch12 1,292 (154) 203.9 (904) 106.5 (358.5) 19,816 36 (250)

aNumbers within parenthesis represent the respective values for NUMTs longer than 250 bp.

https://doi.org/10.1371/journal.pone.0202279.t003
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mitogenomes of both S. pennellii and C. annuum. If this scenario is correct, why was this region

only transferred to the S. pennellii and C. annuum mitogenomes and not to the S. lycopersicum
mitogenome? Because the sequence A region was observed in the nuclear genomes of Solanum
species and C. annuum (S4 Fig), this region might have initially infiltrated the nuclear genome

of the common ancestor of Solanum and Capsicum. Subsequently, the sequence A region was

duplicated in the nuclear genomes of both S. pennellii and C. annuum, but not in S. lycopersi-
cum, after the speciation of extant tomato species. According to a recent phylogenetic study on

the Solanaceae [89], the ancestor of Capsicum diverged from that of Solanum 19.13 Ma, and the

ancestor of S. pennellii diverged from that of S. lycopersicum 1.72 Ma. Therefore, it appears that

the first infiltration of integrated plastome sequences dates back at least to the Neogene, and

sequence A region duplications occurred during the Quaternary period. Because there were fre-

quent gene transfers between the mitogenome and nuclear genome during evolution [23, 26,

90, 91], the presence of multiple copies of sequence A in the nuclear genomes of S. pennellii and

C. annuum could have increased their chances of transfer into the mitogenome, compared with

one sequence A copy in the S. lycopersicum genome. Therefore, the sequence A region in the

mitogenomes of S. pennellii and C. annuum appears to have been independently transferred

from the nuclear genome, and this finding indicates that certain MTPTs are the result of two-

step gene transfers, i.e., plastome! nuclear genome!mitogenome.

Fig 6. Relationship between the length and number of nuclear copies of mitochondrial DNA (NUMTs) in 12 tomato chromosomes.

https://doi.org/10.1371/journal.pone.0202279.g006
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Recent EGTs from organellar genomes to the nuclear genome vs rapid

deletion of organellar copies from the nuclear genome

Original, large insertions appear to have been degraded during evolution into smaller frag-

ments [22]. Therefore, the total length of organellar DNA copies in the nuclear genome was

negatively correlated with the number of organellar DNA fragments, because of degradation

during evolution.

The total numbers of NUPTs and NUMTs in S. pennellii were similar to those in S. lycoper-
sicum; however, their cumulative lengths were 13% and 16% longer, respectively, in S. pennellii.
These variations in cumulative length were caused by large organellar copies in the nuclear

genome of S. pennellii. In addition, a discordance of NUPTs between two Oryza subspecies has

also been reported [46].

The lengths and numbers of large organellar DNA fragments in the S. lycopersicum nuclear

genome were lower than those in the S. pennellii nuclear genome. If the evolutionary rate of

the decrease and deletion of insertion fragments in S. lycopersicum was greater than that in S.

pennellii, it is clear why there were more, and larger, organellar copies in S. pennellii than in S.

lycopersicum.

However, if the difference in the number of large fragments was caused entirely by the dif-

ferent evolutionary rates of the decrease and deletion of insertion fragments between the two

tomatoes, a similar ratio of large fragments in each chromosome of S. pennellii and S. lycopersi-
cum might be achieved. However, the distribution of large NUMTs (longer than 3,000 bp) in

chromosome 3 differed to that in chromosome 6 in the two tomatoes. Therefore, the assump-

tion that recent EGTs occurred between organellar DNA and the nuclear genome can be

accepted.

Consequently, it appears that the evolutionary rates of the decrease and deletion of frag-

ments inserted in the nuclear genome were altered in the two tomatoes after they diverged,

and recent EGTs differentiated the distribution of organellar copies on certain chromosomes

to that on other chromosomes.

Clustered, large organellar DNA in the nuclear genome

Long NUPT and NUMT fragments were frequently found in different regions of the nuclear

genomes of the same tomato species. Few of these large organellar DNA fragments appeared

to have originated from long organellar genomic fragments, because they were derived from

closely located regions of the organellar genomes, and showed high similarity with their orga-

nellar genome counterparts. Michalovova et al. [90] suggested that new organellar DNA

sequences were inserted near centromeres, degraded by transposable elements, and then scat-

tered by structural mutations. However, certain nuclear regions with long organellar DNA

fragments were derived from different regions of the plastome or mitogenome, and did not

appear to be older than the long fragments derived from organellar DNA in terms of sequence

divergence (S10 and S11 Figs). These mosaic organellar DNA fragments cannot be explained

by the single organellar DNA origin hypothesis, which is based on the similarity between

organelle-derived nuclear DNA and organellar DNA without structural mutations [22].

Noutsos et al. [24] suggested that mosaic organellar DNA fragments were generated by 1)

the random end-joining of different fragments before integration; 2) rapid rearrangements

after integration; or 3) by the ongoing integration of organellar DNA at the same locus. The

first and second scenarios explain the clustered, large NUPTs and NUMTs in tomato nuclear

genomes; however, why were the loci of the clustered NUPTs and NUMTs distantly located? If

the random end-joining of different fragments before integration occurred regardless of geno-

mic source (mitogenome or plastome), large fragments of the mitogenome and plastome

Tomato mitochondrial genome analysis
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could have merged, like five complex insertions of O. sativa containing rearranged DNA from

the mitogenome and plastome [24] and not like the tomato nuclear genome. The discordance

between nuclear genomic regions with long plastome fragments and those with long mitogen-

ome fragments could have been caused by very large, continuous integrants and consecutive

rearrangements [24]; however, this hypothesis cannot apply to all nuclear organellar DNA

copies, because certain organellar DNA copies that appear to be more structurally mutated

had a stronger similarity with their counterparts than those that appear to be less structurally

mutated. We could not identify hotspots of organellar DNA integration into the nuclear

genome with the data available; however, the hotspot hypothesis could explain the discordance

between nuclear genomic regions with long plastome fragments and those with long mitogen-

ome fragments.

Supporting information

S1 Fig. Coverage depths of the mitogenomes and plastomes used in this study. Raw reads

were mapped to mitogenomes and plastomes using Geneious aligner with zero mismatch and

gap among the reads, and the Burrows-Wheeler alignment tool with the default options set to

verify the coverage depths through the genome. Sharp peaks that were up to 20-fold higher

than base coverage indicate mitochondrial plastome regions. Coverages were higher than 200,

except for certain regions containing homopolymers or AT-rich regions, which had low cover-

age depth. However, these regions were also supported by numerous paired-end reads (blue

bar and red line indicate paired-end reads and intervals between paired-end reads, respec-

tively, in Solanum lycopersicum ‘LA1479’). The X-axis and Y-axis indicate positions and cover-

age depths, respectively.

(TIF)

S2 Fig. Duplicated regions in 59 core eudicot mitogenomes. (A) Total mitogenome length vs
total duplicated region length. (B) Maximum lengths of duplicated regions vs total lengths of

duplicated regions. Green triangles represent the three tomato mitogenomes.

(TIF)

S3 Fig. Mitogenomes aligned to a 6,328-bp region in Solanum pennellii. Species are divided

by dashed red lines. The yellow box on top represents mitochondrial plastid DNAs. The gray

regions on the other angiosperm chromosomes are more similar to the S. pennellii ‘LA0716’

mitogenome than the black regions.

(TIF)

S4 Fig. Alignment of sequence-A-similar regions in Solanum and Capsicum. Numerous

sequence-A-similar regions were observed in the S. pennellii, S. tuberosum, and C. annuum
nuclear genomes; however, one sequence A copy was also observed in the S. lycopersicum
‘Heinz1706’ nuclear genome.

(TIF)

S5 Fig. Nuclear copies of mitochondrial DNA (NUMTs) in Solanum pennellii ‘LA0716’.

The X-axis indicates the positions of the NUMTs and the Y-axis indicates the lengths of the

NUMTs on each chromosome of S. pennellii ‘LA0716’.

(TIF)

S6 Fig. Solanum lycopersicum ‘LA1479’ mitogenome-like nuclear copies of mitochondrial

DNA (NUMTs) in S. lycopersicum ‘Heinz1706’. The X-axis indicates the positions of the

NUMTs and the Y-axis indicates the lengths of the NUMTs on each chromosome of S.
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lycopersicum ‘Heinz1706’.

(TIF)

S7 Fig. Solanum lycopersicum ‘LA1421’ mitogenome-like nuclear copies of mitochondrial

DNA (NUMTs) in S. lycopersicum ‘Heinz1706’. The X-axis indicates the positions of the

NUMTs and the Y-axis indicates the lengths of the NUMTs on each chromosome of S. lycoper-
sicum ‘Heinz1706’.

(TIF)

S8 Fig. Nuclear copies of plastid DNA (NUPTs) in Solanum pennellii ‘LA0716’. The X-axis

indicates the positions of the NUPTs and the Y-axis indicates the lengths of the NUPTs on

each chromosome of S. pennellii ‘LA0716’.

(TIF)

S9 Fig. Solanum lycopersicum ‘LA1479’ plastome-like nuclear copies of plastid DNA

(NUPTs) in S. lycopersicum ‘Heinz1706’. The X-axis indicates the positions of the NUPTs

and the Y-axis indicates the lengths of the NUPTs on each chromosome of S. lycopersicum
‘Heinz1706’.

(TIF)

S10 Fig. Dot matrix analysis of the plastome (X-axis) and 11 nuclear regions including

long nuclear copies of plastid DNA (NUPTs) fragments (Y-axis) in Solanum pennellii. The

percentages located on the right-hand side of the boxes indicate the similarity between NUPTs

(�1,000 bp) and their counterparts in the plastome. The colored line at the bottom indicates

the positions of large single copy (LSC), inverted repeat (IR), and small single copy (SSC)

regions.

(TIF)

S11 Fig. Dot matrix analysis of the mitogenome (X-axis) and 24 nuclear regions including

long nuclear copies of mitochondrial DNA (NUMTs) fragments (Y-axis) in Solanum pen-
nellii. The percentages located on the right-hand side of the boxes indicate the similarity

between NUMTs (�1,000 bp) and their counterparts in the mitogenome. The colored arrow

below the bottom line indicates large repeat sequences (�5,000 bp) in the mitogenome.

(TIF)

S1 Table. Mitogenome sequences in core eudicots.

(DOCX)

S2 Table. Regions with less than 200 coverage depths in the three mitogenomes.

(DOCX)

S3 Table. Syntenic blocks in the three tomato mitogenomes.

(DOCX)

S4 Table. Nuclear copies of plastid DNA (NUPTs) in the nuclear genomes of tomato spe-

cies.
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