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Objective: To clarify the role and mechanism of miR-17-92 cluster in islet beta-cell repair

after streptozotocin intervention.

Methods: Genetically engineered mice (miR-17-92βKO) and control RIP-Cre mice were

intraperitoneally injected with multiple low dose streptozotocin. Body weight, random

blood glucose (RBG), fasting blood glucose, and intraperitoneal glucose tolerance

test (IPGTT) were monitored regularly. Mice were sacrificed for histological analysis 8

weeks later. Morphological changes of pancreas islets, quantity, quality, apoptosis, and

proliferation of beta-cells were measured. Islets from four groups were isolated. MiRNA

and mRNA were extracted and quantified.

Results: MiR-17-92βKO mice showed dramatically elevated fasting blood glucose and

impaired glucose tolerance after streptozotocin treatment in contrast to control mice,

the reason of which is reduced beta-cell number and total mass resulting from reduced

proliferation, enhanced apoptosis of beta-cells. Genes related to cell proliferation and

insulin transcription repression were significantly elevated inmiR-17-92βKOmice treated

with streptozotocin. Furthermore, genes involved in DNA biosynthesis and damage repair

were dramatically increased in miR-17-92βKO mice with streptozotocin treatment.

Conclusion: Collectively, our results demonstrate that homozygous deletion of

miR-17-92 cluster in mouse pancreatic beta-cells promotes the development of

experimental diabetes, indicating that miR-17-92 cluster may be positively related to

beta-cells restoration and adaptation after streptozotocin-induced damage.

Keywords: miR-17-92 cluster, pancreatic beta-cells, streptozotocin, restoration, Cdkn1a, ATM kinase

INTRODUCTION

Defective beta-cell function is one of the key reasons underlying the pathological process of both
type 1 and 2 diabetes mellitus. Normal insulin-producing pancreatic beta-cells possess the powerful
ability of adaptation and proliferation in response to chronic metabolic challenges such as obesity
and gestation. For example, at the end of pregnancy, the beta-cell mass in normal rodents is
increased by about 50% compared with non-pregnant female rodents (1, 2). Long-term high-fat
diet feeding for 4 months also leads to a threefold increase in beta-cell mass and more insulin
secretion in response to glucose stimulation (3). Individuals with the failed beta-cell function will
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gradually develop diabetes. Therefore, exploring the molecular
and cellular mechanisms underlying the beta-cell adaptation and
proliferation is critical for the intervention of diabetes.

Several studies have reported that microRNAs (miRNAs) were
involved in the regulation of pancreatic beta-cell development,
differentiation and insulin secretion (4–7). For example, Dicer1
governs the maturation of miRNAs, conditional deletion of
which in mouse pancreas leads to abnormal development
and differentiation of pancreatic cell lineages (8), indicating
miRNAs are important for mouse pancreatic organogenesis.
MiR-21, miR-29, miR-34a, miR-146, and miR-200a have been
shown to be related to beta-cell apoptosis, whereas miR-7,
miR-124a, miR-375, and miR-184 control insulin secretion (9–
11). Furthermore, researchers have unveiled that the promoter
region of miR-375 contains the binding domain of Pdx-1,
Ngn3, and NeuroD1 which are pivotal transcriptional factors
involved in beta-cell differentiation (12–15). Downregulation
of miR-375 results in dedifferentiation of insulin secreting
cells (16), whereas overexpression of miR-375 promotes the
differentiation of pluripotent stem cells into beta-cell-like
clusters (17). Intriguingly, overexpression of miR-375 together
with downregulation of miR-9 show synergistic effects on the
differentiation of human mesenchymal stem cells (hMSCs) into
functional insulin-producing cells (18). Besides, miR-338-3p
plays a key role in beta-cell adaptation to pregnancy and obesity,
which is dramatically downregulated in rats islets at the 14th day
of gestation (19). MiR-15a/b, miR-16, and miR-195 also show
important roles in beta-cell development and specification (20).
Moreover, overexpression of miR-124a2 leads to a decrease in
several target genes such as Pdx-1, Kir6.2, and Sur-1, which are
involved in glucose metabolism and insulin secretion (21).

Recent studies suggest that miR-17-92 cluster is also involved
in islet beta-cell differentiation and development. Patients with
gestational diabetes mellitus showed a high level of miR-17-
92 cluster in plasma (22). In addition, the miR-17-92 cluster
especially miR-17 was dramatically up-regulated in MIN6
cells and mouse islets after high glucose stimulation (23).
When the nutrient substance was transited from fatty milk
to full of carbohydrate diet at weaning, miR-17-92 cluster
was down-regulated in rodent islets (24). MiR-18a inhibits
pancreatic progenitor proliferation by suppressing the activation
of proliferation-related signaling pathways phosphatidylinositol
3-kinase-protein kinase B (PI3K/AKT) and extracellular signal-
regulated kinase (ERK) (25). MiR-19a promotes beta-cell
proliferation and insulin secretion, while suppresses pancreatic
beta-cell apoptosis through suppressor of cytokine signaling 3
(SOCS3), a direct target gene of miR-19a (26). Furthermore,
the expression of miR-19b-1 in pancreatic progenitor cells
is high, miR-19b-1 directly binds to the 3′UTR of NeuroD1
mRNA to downregulate its transcription, thus reduces the
expression of insulin 1 gene, and consequently alters beta-cell
differentiation and function (27). MiR-20a is upregulated in
the peripheral blood mononuclear cells from type 1 diabetes
patients (28). Overexpression of miR-92a-1 reduced insulin
expression, in contrast, down-regulation of miR-92a-1 promoted
insulin expression and ultimately enhanced glucose-induced
insulin secretion (29). In addition, our previous studies have

demonstrated the highest expression levels of miR-17 and miR-
92a-1 in mouse pancreatic beta-cells, followed by miR-19b-1,
miR-19a, miR-18a, and miR-20a (30). Furthermore, our studies
suggested conditional knockout of miR-17-92 cluster in mouse
pancreatic beta-cells impaired glucose tolerance and the first
phase insulin secretion during intraperitoneal glucose tolerance
test (IPGTT), which was further deteriorated by chronic high-
fat diet feeding (30), suggesting that miR-17-92 cluster may
be involved in the adaptation and proliferation of pancreatic
beta-cells in response to chronic metabolic challenges.

Previous researches have shown that miR-17-92 was
involved in regulation of development of multiple organs
including heart, lung, lymphatic system, and reproductive
system through targeting transcription factors that regulate
cell proliferation and cell cycle and inhibiting the expression
of apoptosis-related proteins (31, 32). However, little research
has been done on its modulation of pancreatic beta-cell
function. Because the function of beta-cell determines
the development of diabetes, it is important to determine
whether homozygous deletion of miR-17-92 cluster aggravates
beta-cell dysfunction after streptozotocin treatment. In the
current study, we used mice with conditional deletion
of miR-17-92 cluster in islet beta-cells to investigate the
role of miR-17-92 cluster in beta-cell adaptation as well
as regeneration.

MATERIALS AND METHODS

Experimental Animals
All animal procedures were approved by the Institute’s Animal
Care and Use Committee of the West China Hospital and
followed the Guide for the care and use of laboratory
animals. The rat insulin promoter Cre mice (RIP-Cre) (33) and
the miR-17-92flox/flox mice (34) both derived from C57BL/6J
backgrounds, were acquired from the Jackson Laboratory (Bar
Harbor, Maine, USA). RIP-Cre mice were mated with miR-17-
92flox/flox mice to generate experimental male mice with miR-17-
92 cluster conditional deletion in pancreatic beta-cells (miR-17-
92βKO mice). The RIP-Cre male mice were used as the control.
All mice were maintained in a standard light-dark cycle and
provided with free access to water and a standard diet.

Streptozotocin Treatment
Male miR-17-92βKO and RIP-Cre mice at 12–16-week-old
were injected with STZ (Sigma, Lot# WXBC2544V, P-Code:
101809717, USA) intraperitoneally for 5 consecutive days. The
control mice of both genotypes were injected with citrate buffer.
The STZ was dissolved in citrate buffer (PH = 4.5) at a dose
of 50 mg/kg body weight. Random blood glucose (RBG) was
measured at the third, seventh, and ninth day after the last STZ
intervention. The mouse with RBG exceeding 16.7 mmol/l was
recognized as a successful diabetic model, or the mouse was
excluded from the diabetic groups. Body weight was measured
once per week. The blood glucose levels after 16 h of fasting were
recognized as fast blood glucose (FBG) and were tested once per
week. RBG was monitored twice per week at 9 a.m. or 2 p.m.
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Intraperitoneal Glucose Tolerance Test
IPGTT was performed every week after STZ intervention, and
total eight times were performed for each group. Glucose (2.0
g/kg body weight) was intraperitoneally injected after 16 h
fasting. Blood was collected from the tail vein and blood
glucose was measured with the Accu-Check glucometer (Roche,
Indianapolis, IN) at 0, 15, 30, 60, and 120 min post-injection.

Islets Isolation and Beta-Cell Sorting
The mice were sacrificed for histologic analysis 8 weeks after
STZ intervention. The pancreatic islets isolation was performed
as previously reported (35, 36). In short, collagenase P (Roche,
Lot# 11036922, Germany) was dissolved in pre-cooling Hank’s
balanced salt solution without magnesium and calcium (Solarbio,
Cat. No. H1045-500, Beijing, China) at a concentration of 1
mg/ml, and then the solution was retrogradely poured into
the common bile duct. Subsequently, the pancreas was excised
and digested in the 37◦C water bath for 15min. Finally, the
islets were purified by density gradient along with hand sorting
using an islet-specific coloring agent-dithizone (DTZ) (Shanghai
Ryon Biological Technology CO., Ltd, Lot. RS31081B032,
Shanghai, China).

RNA Extraction and Quantitative RT-PCR
Analysis
Total RNA was extracted from mice islets using Trizol
reagent (Invitrogen, Bleiswijk, Netherlands), and both miRNA
and mRNA were reversely transcribed into cDNA with
PrimeScriptTM RT reagent kit (TaKaRa Biotechnology Co., Ltd.,
Dalian, China). Following reverse transcription, the cDNA was
amplified and quantified with SYBR Green premix kit (TaKaRa
Biotechnology Co., Ltd., Dalian, China) on Light Cycler 96
system (Roche, Basel, Switzerland). GAPDH and U6 were used
as endogenous control for mRNA andmiRNA, respectively. Each
sample was conducted in triplicate and was analyzed with the
2−11CT method.

Pancreatic Histology and
Immunofluorescent Staining
Mice pancreatic tissues were fixed in 10% paraformaldehyde
solution and then embedded in paraffin. Pancreatic tissue blocks
were further sectioned into 5mm slices as previously reported
(37). H&E (hematoxylin-eosin) staining was performed for
histomorphological analysis.

Immunofluorescent staining was performed to evaluate the
expression and location of insulin and glucagon using anti-
insulin (cat# 8138, Cell Signaling Technology) and anti-glucagon
(cat# sc-13091, Santa Cruz) antibodies. For BrdU labeling, mice
were subcutaneously injected with BrdU (cat# B8010, Solarbo)
dissolved in saline at a dose of 50 mg/kg body weight once
a day for 4 days before sacrifice. The slices were successively
incubated with anti-insulin and anti-BrdU (cat# sc-32323, Santa
Cruz) antibodies then counterstained with DAPI (cat# 4083, Cell
Signaling Technology) (38). The TUNEL assay kit (cat# G3250,
Promega) was used to detect the apoptosis of pancreatic beta-
cells. The LCA software was used to calculate pancreatic alpha-
cell and beta-cell fraction automatically. The beta-cell mass per

pancreas was calculated by multiplying the beta-cell fraction by
the initial wet pancreatic weight. All data were obtained from at
least three mice in each genotype as previously reported (15, 39).

Statistical Analysis
SPSS 22.0 was used for data analysis. All data were shown as
the mean ± standard error of the mean (SEM). The mRNA
data were normalized to control conditions and presented as the
relative expression. Multiple groups’ comparison was achieved
by one-way ANOVA. The Fisher’s PLSD post hoc test was
further conducted if there was a significant difference. Two-way
ANOVA was used to detect the interactions between genotype
and STZ treatment. The significant difference was set at P < 0.05
(two tails).

RESULTS

The miR-17-92 Cluster Is Induced by
Streptozotocin
As reported before, all members of the miR-17-92 cluster
especially miR-17 and miR-92a-1 were highly expressed in
mouse pancreatic islets and beta-cell line (30). We further
studied the effect of STZ intervention on the expression of
the miR-17-92 cluster in mouse islets. When compared to
control mice treated with citrate buffer, control mice treated
with STZ exhibited an increase in miR-17 expression by
116%, in miR-18a by 81%, in miR-19a by 89%, in miR-19b-
1 by 76%, in miR-20a by 85%, in miR-92a-1 by 99% in
pancreatic islets, respectively (Figure 1), suggesting that miR-
17-92 cluster might play a key role in STZ-induced beta-
cell damage and repair. However, miR-17-92βKO mice given
either intervention (citrate buffer or STZ) showed similar few
expression levels of miR-17-92 cluster in islets (Figure 1),
indicating successful miR-17-92 cluster deletion in mouse
pancreatic beta-cells.

FIGURE 1 | MiR-17-92 changes after streptozotocin treatment. Quantitative

RT-PCR revealed that expression levels of miR-17-92 cluster significantly

up-regulated in the isolated pancreatic islets from control mice but not

miR-17-92βKO mice after STZ intervention. Statistical significance was shown

as *P < 0.05, ***P < 0.001 compared to the same genotype, ###P < 0.001

compared to the same treatment. N = 16–20 mice/group.
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FIGURE 2 | MiR-17-92 homozygous deletion in mouse pancreatic beta-cells promotes streptozotocin-induced metabolic abnormities. (A–D) Metabolic profiles of

RIP-Cre and miR-17-92βKO mice treated with citrate buffer or STZ. Differences between control and miR-17-92βKO mice, including body weight (A), fat-pad weight

(B), RBG (C), and blood glucose levels of IPGTT (D). Significant differences were shown as *P < 0.05, **P < 0.01, ***P < 0.001 compared to the same genotype, #P
< 0.05, ##P < 0.01, ###P < 0.001 compared to the same treatment. N = 6–8 mice/group. “D00” and “D0” in (A) indicated the initial body weight of all mice and the

body weight of mice after 5 consecutive day intraperitoneal STZ injection, respectively. The “D3” indicated the body weight of the third day of mice after 5 consecutive

day intraperitoneal STZ intervention, so did the other related labels.

MiR-17-92 Homozygous Deletion in Mouse
Pancreatic Beta-Cells Promotes
Streptozotocin-Induced Metabolic
Abnormities
To investigate the pathophysiologic roles of the miR-17-92

cluster during type 1 diabetes development, we treated RIP-
Cre and miR-17-92βKO mice with MLD-STZ. The MLD-STZ

is proved to induce hyperglycemia through direct beta-cell DNA

damage or indirect inflammatory response that leads to beta-cell

dysfunction even death (40). In the present study, we treated 12 to

16-week-old male RIP-Cre and miR-17-92βKO mice with MLD-
STZ and then performed metabolic and histological analysis on

various time points after STZ intervention. Data showed that

intraperitoneal injection of STZ for 5 consecutive days resulted

in gradually body weight reduction in both RIP-Cre and miR-
17-92βKO mice with the progress of the study. Especially, miR-

17-92βKO mice injected with STZ exhibited more serious body

weight loss than counterpart RIP-Cre-STZ mice, and at the end

of the observation, the body weight of mice in RIP-Cre-STZ

and miR-17-92βKO-STZ group reduced by 3.6 ± 0.3 g (13%)
and 5.7 ± 0.5 g (22%) compared to RIP-Cre-CON and miR-17-
92βKO-CON group, respectively (Figure 2A). The epididymal
fat of miR-17-92βKO-CON group mice was higher than that

of RIP-Cre-CON group. However, the epididymal fat pad of
both genotypes was significantly reduced by 0.05 ± 0.02 g (17%)
and 0.216 ± 0.03 g (38%), respectively, after STZ intervention
(Figure 2B).

Additionally, before STZ intervention, the levels of RBG in
four groups were similar. Whereas, the levels of RBG in both
genotypes began to increase significantly since the third day after
STZ injection. At the end of the experimental observation, the
levels of RBG in RIP-Cre-STZ and miR-17-92βKO-STZ group
increased by 206 ± 9.6 mg/dl (121%) and 242 ± 2.4 mg/dl
(146%), respectively (Figure 2C). Meanwhile, miR-17-92βKO-
STZ mice exhibited fasting hyperglycemia in contrast to RIP-
Cre-STZ mice (121 ± 14.4 mg/dl vs. 90 ± 2.7 mg/dl; P < 0.05).
When challenged with IPGTT, the changes in blood glucose
in the miR-17-92βKO-CON group was similar as those in the
RIP-Cre-CON group, which increased at 15, 30, and 60min,
but recovered to the fasting level at 120min (Figure 2D, result
at the sixth week; similar to other weeks, data not shown),
indicating the glucose tolerance in the miR-17-92βKO-CON
group was still in the compensatory state. Nevertheless, after
STZ treatment, both genotypes of mice showed remarkable
glucose intolerance. At the first IPGTT test, RIP-Cre-STZ group
and miR-17-92βKO-STZ group began to exhibit elevated blood
glucose levels at all time points (data not shown), the most
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FIGURE 3 | Reduced proliferation and elevated apoptosis of beta-cells in miR-17-92βKO mice treated with streptozotocin. (A) Microscopic photographs of islets

from control and miR-17-92βKO mice after citrate buffer or STZ intervention, H&E staining, and original magnification 200×. Black arrows represent the abnormal islet

morphology in mice treated with STZ. (B) Immunofluorescence staining for insulin (green), glucagon (red), and DNA (DAPI-blue) of islets from two genotypes, and

original magnification 200×. (C,D) Quantitation of pancreatic islets beta-cell mass (C) and insulin positive cells per mm2 pancreas (D) of control and miR-17-92βKO
mice after different treatments. (E–H) Analysis of BrdU positive cells (% of insulin-positive beta-cells) (E,F) and TUNEL positive beta-cells ratio (%) (G,H) by

immunofluorescence staining of insulin-positive beta-cells in pancreatic islets from both genotypes. The pictures on the right are the corresponding enlarged pictures

of the red/green box in the left pictures. Significant differences were shown as *P < 0.05, **P < 0.01, ***P < 0.001 compared to the same genotype, ##P < 0.01,

###P < 0.001 compared to the same treatment. N = 16–20 mice/group. Scale Bar = 50µm.
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obvious of which were in miR-17-92βKO-STZ group at the sixth
IPGTT test with an 35, 13, 10, 13, and 17% elevation in 0,
15, 30, 60, and 120min in contrast to the RIP-Cre-STZ group
(Figure 2D).

Along with the research, the blood glucose levels of two
genotypes of mice with STZ treatment restored slightly, but at
the end of the experiment, the blood glucose levels were still
higher than that of the CON mice, and the highest was in the
miR-17-92βKO-STZ group. Taken together, these results suggest
that mice with conditional deletion of the miR-17-92 cluster
in islet beta-cells can physiologically maintain normal glucose
metabolism homeostasis through the compensatory mechanism.
However, when given exogenous stimulation (such as IPGTT or
STZ-induced pancreatic beta-cell damage), the mice will lose its
compensation, displaying beta-cell dysfunction, which indicates
that the miR-17-92 cluster is required for the beta-cell function to
STZ-induced damage.

Reduced Proliferation and Elevated
Apoptosis of Beta-Cells in miR-17-92βKO
Mice Treated With Streptozotocin
In order to further confirm whether the miR-17-92 cluster
modulates beta-cell regeneration after MLD-STZ intervention,
we performed histomorphological analyses of pancreatic islets

from the four groups. The pancreatic islets from four groups
were first analyzed by H&E staining. Compared with RIP-Cre-
CON mice, the islets of miR-17-92βKO-CON mice showed
normal morphology, complete structure, and distinct division
of cytoplasm and nucleus (Figure 3A), while the islets of both
genotypes were significantly impaired after STZ intervention,
manifested by abnormal islet morphology, scattered structure,
and increased peri-islet neovascularization, which was more
serious inmiR-17-92βKO-STZ mice (Figure 3A).

Then, the pancreatic islets were analyzed by
immunofluorescent staining. Compared to mice treated
with citrate buffer, mice treated with STZ showed dramatically
reduced insulin-positive and total mass of pancreatic beta-cells,
and the distribution of alpha-cells changing from peripheral to

scattered, among which the total mass of beta-cells declined by

38%, and the insulin-positive beta-cells decreased by 51% in islets

from miR-17-92βKO-STZ mice in contrast to the RIP-Cre-STZ

mice, suggesting damaged beta-cell regeneration in mice with

miR-17-92 homozygous deletion in beta-cells after MLD-STZ
treatment (Figures 3B–D). To clarify whether the damaged

regeneration resulted from impaired beta-cell proliferation, we

further conducted BrdU-insulin immunofluorescent staining to

access beta-cell mitotic rate. Data showed that the proliferation of
beta-cells diminished inmiR-17-92βKO-CONmice compared to

FIGURE 4 | Impaired signaling pathways of pancreatic beta-cells’ proliferation and insulin gene transcription. (A) Quantitative RT-PCR demonstrated that expression

level of Pten significantly up-regulated in isolated islets from miR-17-92βKO mice treated with STZ. (B,C) Expression levels of Sox6 and Crem dramatically elevated in

islets from miR-17-92βKO-STZ mice. (D,E) Expression levels of MafA and Glut2 remarkably decreased in islets from miR-17-92βKO mice given STZ treatment.

Significant differences were shown as *P < 0.05, **P < 0.01, ***P < 0.001 compared to the same genotype, #P < 0.05, ##P < 0.01, ###P < 0.001 compared to the

same treatment. N = 16–20 mice/group.
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RIP-Cre-CONmice (Figures 3E,F). In addition, the proliferation
of islet beta-cells further decreased by 47% in miR-17-92βKO-
STZ group compared with RIP-Cre-STZ group (Figure 3F).
Interestingly, we carried out TUNEL-insulin immunofluorescent
staining to evaluate the apoptosis of the beta-cells and found
that the apoptosis increased by 71% in the miR-17-92βKO-STZ
group on contrast to the RIP-Cre-STZ mice (Figures 3G,H).
Collectively, the decreased proliferation and elevated apoptosis
reflect declining regeneration and conversion capacity of islet
beta-cells in response to STZ-induced damage.

The miR-17-92 Cluster Regulates Beta-Cell
Number and Function
In order to further clarify the molecular mechanisms, we focused
on the validated target genes of the miR-17-92 cluster involved in
beta-cell proliferation and apoptosis. Compared with RIP-Cre-
CON mice, mRNA expression of Pten (phosphatase and tensin
homolog deleted on chromosome ten) in islets from miR-17-
92βKO-CON mice was up-regulated by 44% (Figure 4A). After
STZ intervention, mRNA expression of Pten was up-regulated
by 36% in RIP-Cre-STZ group and 70% in the miR-17-92βKO-
STZ group, respectively (Figure 4A), which may be the reason
for the declining number and total mass of islet beta-cells in
miR-17-92βKO-STZ mice.

Furthermore, the expression of genes related to insulin
biosynthesis and secretion was further studied in islets from
four groups of mice. Compared to RIP-Cre-CON mice, mRNA
expressions of Sox6 (Sex-determination region Y-box 6) and
Crem (cAMP response element modulator), genes related to
insulin synthesis inhibition, up-regulated by 60 and 35% in islets
of miR-17-92βKO-CON mice. The mRNA expressions of MafA
(Mus musculus v-maf musculoapontic fibrocoma oncogene
protein A) and Glut2 (Glucose transporter 2), genes related to
insulin synthesis activation, in islets of miR-17-92βKO-CON
mice were also up-regulated by 48 and 21% (Figures 4B–E).
The mRNA expressions of Sox6 and Crem up-regulated by 32
and 44%, while mRNA expressions of MafA and Glut2 down-
regulated by 45 and 32%, respectively in RIP-Cre-STZ mice
(Figures 4B–E). At the same time, mRNA expression levels of

Sox6 and Crem dramatically elevated by 171 and 86%, while
mRNA expressions of MafA and Glut2 down-regulated by 76
and 75% separately in islets from miR-17-92βKO mice treated
with STZ, resulting in inhibition of insulin transcription pathway
in miR-17-92βKO-STZ mice (Figures 4B–E). Collectively, these
results suggest that the miR-17-92 cluster is crucial for the
quantity maintenance and insulin-producing function of the
beta-cells during STZ treatment.

Homozygous Deletion of the miR-17-92
Cluster in Beta-Cells Suppresses DNA
Biosynthesis but Promotes DNA Damage
Repair
As mentioned above, MLD-STZ intervention leads to both
impaired glucose tolerance and hyperglycemia and simulates
human type 1 diabetes partially through direct beta-cell DNA
damage. To determine whether miR-17-92 is involved in beta-
cell DNA damage repair, we explored the expression profiles
of some identified target genes of STZ and related to DNA
synthesis and damage repair in islets from four groups of mice.
Compared with RIP-Cre-CON mice, the expression of Cdkn1a
which inhibit DNA synthesis while promoting DNA damage
repair and ATM (ataxia telangiectasia mutated) kinase that is
the key enzyme of DNA damage repair up-regulated by 29 and
46%, respectively, inmiR-17-92βKO-CON mice (Figures 5A,B).
Furthermore, the expression levels of Cdkn1a and ATM kinase
upregulated by 24 and 59% in RIP-Cre-STZ mice, the same
as previous studies (41–43), and 2,144 and 631% in islets of
miR-17-92βKO-STZ mice (Figures 5A,B), leading to cell cycle
arrest and DNA synthesis inhibition, but at the same time
promotes the repair of damaged DNA, improves the effectiveness
of homologous recombinant DNA repair, renovates STZ-induced
beta-cell damage, restores the function of damaged beta-cells,
and regulates the regeneration and compensation of islet beta-
cells for STZ-induced damage. Taken together, these results imply
that the miR-17-92 cluster is pivotal for beta-cell adaptation to
STZ treatment.

FIGURE 5 | Different expression profiles of genes-related to DNA biosynthesis and damage repair in islets from two genotypes of mice after STZ intervention. (A,B)

Quantitative RT-PCR illustrated high expression levels of Cdkn1a and ATM kinase in isolated islets of miR-17-92βKO mice treated with STZ. Significant differences

were shown as *P < 0.05, **P < 0.01, ***P < 0.001 compared to the same genotype, #P < 0.05, ##P < 0.01 compared to the same treatment. N = 16–20

mice/group.
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DISCUSSION

In the present study, the RBG levels of the two genotypes were
higher than 300 mg/dl (16.7 mmol/l) after STZ intervention,
indicating the diabetic model was successful. Our previous study
has revealed high expression levels of miR-17-92 cluster in mouse
islets and beta-cell line (30), indicating a significant role of miR-
17-92 cluster in normal beta-cell function. In the current study,
we found the expression levels of miR-17-92 cluster were elevated
to different extent in islets from RIP-Cre-STZ mice, suggesting
that the miR-17-92 cluster may be involved in the adaptive
response of islet beta-cells to STZ-induced injury.

Consistent with our previous study, the body weight, RBG,
and fasting blood glucose of miR-17-92βKO-CON mice were
similar to those in the RIP-Cre-CON mice (30), implying
that there might be other mechanisms in islet beta-cells that
coordinated with the miR-17-92 signaling pathway to regulate
glucose metabolism, which could partially rectify the abnormal
glucose metabolism induced by the homozygous deletion of
miR-17-92 cluster. However, after STZ treatment, the miR-17-
92βKO mice showed more pronounced metabolic disturbance
characterized with more obvious body weight loss, higher
random and fasting blood glucose levels and more serious
glucose intolerance. Histomorphological analysis showed that
STZ intervention impaired the morphology and structure of
islets in two genotypes of mice. Meanwhile, insulin-glucagon
immunofluorescent staining revealed that both RIP-Cre-STZ and
miR-17-92βKO-STZ mice showed reduced number and total
mass of islet beta-cells, which is more severe in islets from the
latter group, suggesting the islet beta-cells in two genotypes
of mice were in decompensation stage. Taken together, the
above results suggest that conditional deletion of miR-17-92
cluster in islet beta-cells reduces their adaptation ability to stress
stimulation, and MLD-STZ intervention further deteriorates the
function of islet beta-cells, so as to result in disturbance of glucose
homeostasis. Our data indicate that miR-17-92 cluster is involved
in the adaptive response of islet beta-cells to STZ treatment.

Additionally, previous studies have shown that the number

of islet beta-cell fluctuates. Physiologically, the body can adjust

the number of islet beta-cells according to the changes of the

internal and external environment along with the functional
status of beta-cells, so as to maintain a relatively stable blood
glucose levels to adapt to the environmental variation (44).
The pancreatic insulin-producing beta-cells are derived from
the differentiation process during embryo development or from
replication which appears postnatally (45, 46), and it is essential
to maintain sufficient beta-cell number to respond to aging and
metabolic stresses. Limited beta-cell proliferation is extensive
in human type 1 and type 2 diabetes. Studies have shown that
miR-17-92 targets a series of cell proliferation-related genes,
such as Cdkn1a, p57 (47), and apoptosis-related genes including
Pten, Bcl2L11 (48) to modulate cell proliferation and apoptosis.
Nevertheless, the regulation of proliferation and apoptosis of
islet beta-cells by miR-17-92 cluster remains largely unclear.
Recent studies have found that lipid phosphatase encoded by
Pten, is a potent negative regulator of phosphoinositide 3-kinase
(PI3K)-Akt signaling pathway, which plays an important role

in cell proliferation and insulin biosynthesis and secretion (49).
Importantly, Pten is known to be the target gene of miR-19a and
miR-19b-1 (50). Pten is also a critical determinant of body size
and glucose metabolism in mice (51). Studies have demonstrated
that conditional deletion of Pten in insulin-producing cells
during mouse pancreatic embryonic development (E17.5) or in
adult beta-cells significantly increased islet mass and beta-cell
proliferation (49), and exerted protective effects against high-
fat diet feeding and STZ-induced diabetes (52, 53). In short,
Pten is a critical negative effector of both beta-cell mass and
function, and its expression was up-regulated in diabetic animal
models (53). Previous studies have suggested that deletion of
miR-17-92 cluster in beta-cells led to impaired glucose tolerance
and reduced first-phase insulin secretion, which may be partly
mediated by Pten-Akt signaling pathway (24, 30). Moreover, in
the present study we found higher expression level of Pten in
beta-cells from both genotypes of mice given STZ intervention,
which was obvious in the miR-17-92βKO-STZ mice as the
synergistic effect of conditional deletion of miR-17-92 cluster and
the STZ treatment. Further studies showed that STZ treatment
reduced proliferation and increased apoptosis in islet beta-
cells in two genotypes of mice, which may be achieved by
regulating the expression of Pten. It also indicates that STZ
intervention decompensated islet beta-cells of two genotypes of
mice and resulted in a low transformation status of the beta-cells
particularly in themiR-17-92βKO-STZ group.

Diabetes mellitus shows features of hyperglycemia because
of absolutely or relatively insufficient serum insulin secretion.
Pancreatic beta-cells have fundamental functions to modulate
insulin synthesis and secretion, which is regulated by various
transcriptional activators such as Pdx-1 (pancreas/duodenum
homeobox factor-1) (54), MafA (55, 56), and Glut2 (57–59)
and transcriptional repressors including Sox6 (60) and Crem
(61). Pdx-1 plays pivotal roles in the early differentiation,
maturation and regeneration of pancreatic islet cells (57). MafA
is highly expressed in pancreatic beta-cells, which activates the
transcription of the insulin gene by targeting RIPE3b1, a cis-
regulatory element (62–64). The expression of MafA gene is
down-regulated, thus inhibiting the transcription of insulin in
diabetes mellitus (55, 56). MafA can regulate the expression of
insulin gene as well as other related factors including Pdx-1 and
Glut2 (57). Glut2 is a glucose transporter in pancreatic beta-
cells, which can transport glucose and regulate ion channels
on cell membrane, thus promoting insulin secretion (57).
Sox6, a member of the high mobility group box superfamily,
acts as a co-repressor with Pdx-1 and plays critical roles in
pancreatic beta-cell replication and insulin gene transcription
(65). Over-expression of Sox6 is involved in decreased insulin
gene transcription through inhibition of the activation of insulin
gene promoter by Pdx-1 (60). In addition, Crem has also been
reported to directly repress the insulin gene promoter activation
in beta-cell (66). In the present study, the expression of MafA and
Glut2 in islets of RIP-Cre-STZ and miR-17-92βKO-STZ group
was down-regulated, which reduced insulin gene transcription
as previous studies (57–59, 67). Meanwhile, the upregulation of
Sox6 and Crem resulted in the decrease of insulin transcription.
In summary, the downregulation of MafA and Glut2 along
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with the upregulation of Sox6 and Crem may be related to the
decrease of the transcription of insulin gene and islet beta-cell
proliferation in the STZ group. Nevertheless, there is no literature
on the relationship between the miR-17-92 cluster and the above
factors, which needs further studies.

STZ is a kind of natural compounds produced by
streptococcus that specifically damages pancreatic islet beta-cells
in mammals. The underlying mechanism is to form isocyanate
compounds in vivo, which bind to nucleic acid proteins to inhibit
the activity of DNA polymerase, and interfere with the synthesis
and damage repair of DNA, thus to regulate pancreatic beta-cell
proliferation and apoptosis (68). Cdkn1a encodes a potential
cyclin-dependent kinase inhibitor which represses the activity of
cyclin-cyclin-dependent kinase 2/4, then modulates G1 cell cycle
progression. The encoded protein also can interact with PCNA
(proliferating cell nuclear antigen), a kind of cofactor of DNA
polymerase, and regulate DNA replication and damage repair in
S cell cycle. Additionally, mice lack of Cdkn1a have the ability
to regenerate damaged tissue. Besides, ATM kinase increases the
phosphorylation levels of H2AX and 53BP1, thus promoting
DNA damage repair, improving the effectiveness of homologous
recombinant DNA repair to inhibit beta-cell proliferation and
reduce their apoptosis. Conditional deletion of the master DNA
repair gene-ATM kinase in mouse pancreatic beta-cells protects
mice against STZ-induced diabetes (69). Importantly, it has been
reported that Cdkn1a and ATM kinase are involved in DNA
damage repair process in islet beta-cells induced by STZ, and
the expression of Cdkn1a and ATM kinase were up-regulated
after STZ intervention (42, 43, 70). Moreover, studies have
found that miR-17 and miR-92a-1 could inhibit Cdkn1a, and
miR-18a targets ATM kinase thus promoting DNA synthesis and
inhibiting DNA damage repair (71, 72). In the current study,
the expression of Cdkn1a and ATM kinase was up-regulated
in miR-17-92βKO-CON mice, which was similar as previous
studies (71, 72). Interestingly, the expression of Cdkn1a and
ATM kinase were further up-regulated after STZ intervention
in two genotypes of mice (42, 43, 70), which resulted in cell
cycle arrest and DNA synthesis repression. At the same time,
it promotes the repairment of damaged DNA induced by STZ,
restores the function of damaged beta-cells thereby modulating
the adaptation of islet beta-cells after STZ-induced injury.

Last but not least, our studies found high epididymal fat pad
content in miR-17-92βKO-CON mice compared with control
mice (30). However, STZ treatment led to the low epididymal

fat content in both genotypes of mice, possibly due to the more
deteriorated metabolic disturbance. Therefore, miR-17-92βKO
mice showed lower body weight, higher glucose levels, and more

epididymal fat content after STZ treatment, indicating miR-17-
92βKO mice may be a more suitable animal model to develop
diabetes induced by STZ treatment compared with control mice.

In conclusion, our results showed that mice with
conditional deletion of the miR-17-92 cluster in pancreatic
beta-cells exerted profound metabolic abnormalities
due to beta-cell dysfunction and reduced beta-cell
proliferation after STZ treatment, indicating that the
miR-17-92 cluster is essential for pancreatic beta-cell
restoration and adaptation in a chemical-induced diabetes
animal model.
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