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A B S T R A C T

This study evaluated the antimicrobial potency of the combination of isepamicin (ISP) for Mycobacterium
abscessus species (MABS). 34 clinical MABS strains were isolated from clinical samples. Of them, 11 (32.4 %)
were M. abscessus subsp. abscessus (Mab), 22 (64.7 %) were M. abscessus subsp. massiliense (Mma), and one (2.9
%) was M. abscessus subsp. bolletii (Mbo). We compared susceptibility to sitafloxacin (STFX)-ISP and clari-
thromycin (CLR)-ISP combinations with those of the antimicrobial agents alone, and synergistic effects were
observed in 41.2 % and 17.6 % when treated with STFX-ISP and CLR-ISP. By hierarchical cluster analysis, the
isolates divided into treatment-sensitive and treatment-resistant groups. Non-Mma or rough colony isolates were
significantly likely to belong to the treatment-sensitive group (p = 0.024, p < 0.001, respectively). These results
suggest that the ISP-containing combination could be a new therapeutic strategy for MABS, especially in cases of
non-Mma: treatment-refractory subspecies, and rough morphotypes: high-virulence morphotypes.

1. Introduction

Mycobacterium abscessus species (MABS) is a rapidly growing myco-
bacteria (RGM) that grows within 7 days on agar media. MABS is
resistant to various antibiotics, including antitubercular drugs [1,2];
therefore, it is considered one of the most treatment-refractory non-
tuberculous mycobacteria (NTM). Some RGMs, such as M. abscessus,
M. chelonae, and M. smegmatis, have rough and smooth colony pheno-
types depending on glycopeptidolipids (GPLs) expression levels [3].
Notably, smooth morphotypes form biofilms that protect from the sur-
rounding factors, including antibiotics. However, rough morphotypes
are generally more virulent than smooth morphotypes. In 2020, new
NTM treatment guidelines were developed, and the strategies for MABS

treatment have dramatically advanced by increasing the number of
novel treatment options, such as clofazimine, linezolid, tigecycline, and
inhaled amikacin (AMK) [4]. However, treatment benefits are limited to
negative culture conversion, and a complete cure by antimicrobial
treatment remains extremely rare. Therefore, it is necessary to develop
more effective treatments. Several studies have revealed that high sus-
ceptibility to macrolides is associated with good treatment outcomes;
therefore, macrolides play a critical role in treating MABS [4,5]. Ami-
noglycosides, especially AMK, have been proposed as second-choice
agents for MABS because of the diversity of administration routes
(parenteral or inhaled) and low MIC levels. Moreover, Sitafloxacin
(STFX) is an oral fluoroquinolone with higher antimicrobial potency
than previous quinolones, such as levofloxacin and ciprofloxacin [6].
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Importantly, several previous studies have suggested that STFX may be
effective in MABS treatment [7,8]. Isepamicin (ISP), a derivative of
gentamicin B, is one of the latest aminoglycosides introduced into
clinical practice (in 1988 in Japan) [9,10] and is less affected by
aminoglycoside-inactivating enzymes than AMK [11]. In in vitro sus-
ceptibility testing of 117 MABS, ISP showed lower MIC levels than did
AMK [12]. Therefore, ISP combination therapy is a promising thera-
peutic option. We previously demonstrated the synergistic antimicrobial
effect of the STFX-arbekacin combination on rough morphotypes [13].
Here, we investigated the synergistic antimicrobial effect of ISP, STFX,
and clarithromycin (CLR) on the same isolates used in our previous
study.

2. Methods

2.1. Isolated strains used in the study

In the present study, 34 identical isolates of MABS strains from our
previous studies [13,14] at Juntendo University Hospital from 2011 to
2020 were analyzed for susceptibility to various antimicrobials. Among
these 34 strains, 11 (32.4 %), 22 (64.7 %), and one (2.9 %) were iden-
tified as M. abscessus subsp. abscessus (Mab), M. abscessus subsp. massi-
liense (Mma), and M. abscessus subsp. bolletii (Mbo), respectively. The
details of the characteristics of the patients from whom MABS was iso-
lated have been described in our previous paper [13].

2.2. Determination of MABS

We identified three subspecies of MABS by analyzing the combina-
tion of 16S rRNA, rpoB, hsp65, and erm gene sequence data as in pre-
viously described methods [15,16].

Additional methodological information is provided in Supplemen-
tary Methods.

2.3. Antimicrobial susceptibility testing

Susceptibility testing was performed following the Clinical and
Laboratory Standard Institute (CLSI) guideline M24-A2 [17]. The bac-
terial suspension was diluted to a concentration of 1–5 × 105 colony-
forming units (CFU)/mL in cation-adjusted Mueller-Hinton broth
(CAMHB). The final suspension was inoculated onto a customized
breakpoint checkerboard plate (Eiken Chemical Co., Ltd., Japan). Sub-
sequently, the concentrations of the antibiotics tested ranged as follows:
CLR from 0.06 to 64 μg/mL, ISP from 0.25 to 64 μg/mL, and STFX from
0.12 to 32 μg/mL. MICs for each antimicrobial agent were determined
using the CLSI-recommended broth microdilution method. The panels
were set up with a 96-channel dispenser, and each well was introduced
at a concentration of 1 × 105 CFU/mL. After 7 d of incubation at 35 ◦C,
the MICs were determined. The effect of each combination was assessed
using fractional inhibitory concentration index (FICI) analysis [18]. FICI
was calculated as follows: Σ (FIC A+FIC B), where FIC A is the MIC of
compound A in combination / MIC of compound A alone, and FIC B is
the MIC of compound B in combination / MIC of compound B alone. The
combination is considered synergistic when the Σ FIC is ≤ 0.5, additive

Table 1
MICs of each antimicrobial, subspecies, colony morphotypes, and the characteristics of patients isolated from each strain.

The characteristics of patients Alone Combination Combination

Mab Colony Age (year) Sex Smoking Comorbidity ISP STFX CLR STFX ISP CLR ISP

Strain 1 Smooth 79 Male No BE, IS 4 4 4 0.5 2 8 0.5
Strain 2 Rough 54 Female Yes BE 4 4 4 0.5 2 2 0.5
Strain 3 Smooth 83 Male No BE 8 2 128 1 2 128 8
Strain 4 Smooth 67 Male No DM, IS 4 1 1 0.25 2 1 0.5
Strain 5 Rough 65 Male No BE, DM, IS 2 2 1 0.12 2 1 0.5
Strain 6 Rough 38 Female Yes − 2 0.5 0.12 0.12 2 0.12 0.5
Strain 7 Rough 56 Female No IS 1 1 4 0.12 1 4 0.5
Strain 8 Smooth 65 Male No IS 4 2 128 0.5 2 4 0.5
Strain 9 Rough 53 Male No − 2 0.5 8 0.12 2 8 4
Strain 10 Smooth 75 Female No DM, IS 8 2 0.5 1 2 0.5 0.5
Strain 11 Smooth 79 Male Yes DM, IS 4 2 0.25 4 4 0.25 0.5
Mma
Strain 12 Rough 79 Male Yes BE 8 2 128 0.5 2 128 8
Strain 13 Rough 74 Female No − 4 1 0.12 0.25 2 16 2
Strain 14 Smooth 67 Female No IS 8 8 1 8 8 1 0.5
Strain 15 Rough 66 Male Yes − 4 2 0.06 0.5 2 0.06 0.5
Strain 16 Smooth 44 Female No BE, IS 4 2 0.12 1 2 0.25 0.5
Strain 17 Smooth 62 Female No BE 8 8 0.25 8 8 0.5 0.5
Strain 18 Smooth 65 Female No BE, IS 8 4 128 4 8 128 8
Strain 19 Smooth 41 Female No IS 8 8 0.5 8 8 0.5 0.5
Strain 20 Smooth 53 Female No − 4 8 0.5 8 4 0.5 0.5
Strain 21 Rough 59 Female No IS 2 1 0.06 0.12 2 0.06 0.5
Strain 22 Smooth 50 Male No − 4 1 0.12 0.25 2 0.12 0.5
Strain 23 Smooth 69 Male Yes IS 8 4 0.5 4 8 0.5 0.5
Strain 24 Rough 78 Male Yes − 4 1 0.06 0.25 2 0.06 0.5
Strain 25 Smooth 40 Female No IS 8 4 0.25 4 8 0.5 0.5
Strain 26 Smooth 52 Female No BE, IS 4 2 0.25 4 4 0.25 0.5
Strain 27 Rough 72 Female Yes BE 4 1 0.06 0.12 2 0.06 0.5
Strain 28 Smooth 72 Female Yes BE 8 4 0.25 4 8 0.5 0.5
Strain 29 Smooth 58 Male Yes − 8 2 0.25 4 8 0.25 0.5
Strain 30 Smooth 73 Male Yes − 8 2 0.25 4 8 0.5 0.5
Strain 31 Rough 78 Female No BE 2 2 0.25 0.12 2 0.12 0.5
Strain 32 Rough 30 Female No BE, IS 8 1 0.25 1 0.5 0.06 0.5
Strain 33 Rough 83 Male Yes BE 8 2 0.25 1 2 0.06 0.5
Mbo
Strain 34 Rough 78 Male Yes − 2 1 64 0.12 2 64 4

Abbreviations: Mab, Mycobacterium abscessus subsp. abscessus; Mma, Mycobacterium abscessus subsp. massiliense; Mbo, Mycobacterium abscessus subsp. bolletii; BE,
bronchiectasis; DM; diabetes mellitus, IS; immunosuppression
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when the Σ FIC is > 0.5 to ≤ 1, indifferent when the Σ FIC is > 1 to ≤ 2,
and antagonistic when the Σ FIC is > 2. Inducible CLR resistance is
defined as having a MIC of ≤ 2 μg/mL on day 3 and a MIC of ≥ 8 μg/mL
on day 14 (Table S2).

2.4. Statistical analysis

We performed hierarchical cluster analysis using Ward’s method on
the FICI of the two antimicrobial combinations. The results are pre-
sented visually using a dendrogram. Categorical variables were
compared using the chi-square test or Fisher’s exact test. Differences
were considered statistically significant at p < 0.05. All statistical ana-
lyses were performed using the JMP software, version 14.2.0 (SAS
Institute Japan, Japan).

3. Results

3.1. Cluster analysis of the FIC index of STFX-ISP and CLR-ISP in MABS
isolates

The MIC values of the combinations of STFX-ISP and CLR-ISP were
compared with those of the antimicrobial agents alone. The subspecies,
colony morphotypes, and characteristics of the patients isolated from
each strain are described in Table 1. Out of the 34 strains, 27 were
detected from sputum or bronchial lavage, 2 from gastric juice, 3 from
subcutaneous abscesses, 1 from blood, and 1 from stool. No case was
found where multiple species were detected from a single patient. The
FICI is divided into the following four categories: synergy, additive,
indifference, and antagonism. Moreover, four clusters were identified
using a hierarchical cluster analysis of the FICI of STFX-ISP and CLR-ISP
(Fig. 1). Of the 34 strains, 14 (41.2 %) treated with STFX-ISP and 6 (17.6
%) treated with CLR-ISP showed synergistic and addictive effects. Syn-
ergy and additive effects showed a trend of including clusters A and B
and indifference and antagonism effects in clusters C and D. The dis-
tribution map between the FICI of STFX-ISP and CLR-ISP revealed that
clusters A+B had low levels of the STFX-ISP FICI, while clusters C+D
had relatively high levels of the CLR-ISP FICI (Fig. 2).

Fig. 1. Hierarchical cluster analysis of the FICI of sitafloxacin-isepamicin and
clarithromycin-isepamicin. The strains were categorized into four groups
(clusters A, B, C, and D). Light green, green, yellow, and red signify synergy,
additivity, indifference, and antagonism, respectively. Abbreviations: FICI,
fractional inhibitory concentration index; STFX, sitafloxacin; ISP, isepamicin;
CLR, clarithromycin.

Fig. 2. Distribution map of the FICI of STFX-ISP and CLR-ISP. Each colored
circle indicates four clusters identified by hierarchical cluster analysis (red,
cluster A; green, cluster B; Blue, cluster C; orange, cluster D). Abbreviations:
FICI, fractional inhibitory concentration index; STFX, sitafloxacin; ISP, isepa-
micin; CLR, clarithromycin.
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3.2. Relationship between treatment response group and clinical patient
characteristics

We investigated the factors involved in the treatment response
groups and classified the four clusters into two groups: a treatment-
sensitive group (clusters A+B) and a treatment-resistant group (clus-
ters C+D). The Mma strains were likely to belong to the treatment-
resistant group (p = 0.024), and rough colony morphotypes were
included in the treatment-responsive group (p < 0.001) (Table 2).
Finally, differences in other clinical parameters such as age, sex,
smoking history, lesion area, treatment history of antibiotics, compli-
cations of bronchiectasis, immunosuppression, inducible CLR resistance,
and diabetes were not observed between the two groups.

4. Discussion

The present study investigated the potential efficacy of ISP combi-
nation treatment. Interestingly, isolates where both of STFX-ISP and
CLR-ISP are effective included Mab and Mbo, which are treatment-
refractor subspecies, and rough morphotypes, which are high-
virulence morphotypes. To our knowledge, this is the first study to
investigate the antimicrobial synergy of ISP combination regimens

against MABS.
MABS is one of the most treatment-refractory mycobacteria, and a

standard treatment for the complete cure has not yet been reported. The
2020 NTM treatment guidelines recommend new approaches for MABS
treatment, which depend on macrolide susceptibility and multidrug
therapy with at least two to three active antimicrobials [4]). In addition
to antimicrobial susceptibility analysis, we speculated that modification
of the colony morphotype is a more appropriate process. Importantly,
MABS presents two colonymorphotypes: smooth and rough. The smooth
morphotype has large amounts of surface GPLs, contributing to forming
biofilms, whereas the rough morphotype has fewer GPLs and is associ-
ated with cording, which may be responsible for the enhancement of
virulence [19]. In general, it has been thought that MABS first colonizes
the patient’s airway as a smooth morphotype because of the protective
efficacy of GPLs in the surrounding environment; then, the rough mor-
photype alternation enhances its virulence. The study targeting 182
MABS patients reported the rough morphotype presented with longer
disease duration, more severe symptoms, higher levels of inflammatory
factors such as C-reactive protein, tumor necrosis factor-α (TNF-α), and
interferon-γ (IFN-γ), and greater decline in pulmonary function [20].
Similarly, in a study of 71 MABS isolates, a rough morphotype was
significantly associated with worse clinical outcomes and various find-
ings, including complications from immunosuppression or pulmonary
diseases [21]. Together, these results suggest that an effective treatment
for rough-morphotype MABS may be directly associated with good
clinical outcomes.

Furthermore, aminoglycosides are important agents in treating
MABS next to macrolides. Notably, AMK has shown excellent activity
against RGMs in several studies and is currently the most widely used
aminoglycoside for treating MABS. However, AMK resistance in MABS
has been consistently observed, and the AMK resistance gene in MABS
was recently detected. MABS contain various aminoglycoside-modifying
enzymes, aac(2′), eis1, and eis2, which are involved in specific amino-
glycoside resistance [22]. So, there is increasing attention on the alter-
native drugs of AMK.

ISP is an aminoglycoside mainly used in Asia that has shown excel-
lent activity against a wide range of bacteria, includingMABS. An in vitro
study in 117 MABS isolates revealed that ISP had a lower level of MIC50
and MIC90 than did AMK (MIC50: 8 μg/mL vs. 16 μg/mL and MIC90: 16
μg/mL vs. 32 μg/mL, respectively) [12]. ISP is a relatively less toxic
aminoglycosides [23]. Finally, the ototoxicity of ISP has been reported
to be less than that of AMK [24]. In our study, the MICs of ISP were
significantly higher than that of AMK (p < 0.001, Table S3). But, the
differences of detailed molecular mechanisms between AMK and ISP
was not analyzed. It is uncertain which are optimal aminoglycosides for
the first-line treatment of MABS.

The number of isolates treated in our study was limited, and the
clinical data of ISP has been still insufficient. This study was performed
in vitro, and clinical responses to therapy were not demonstrated.
Further studies are required to confirm these findings. In conclusion, we
speculated that the STFX-ISP and CLR-ISP combinations presented a
synergistic effect in the Mab and Mbo subspecies and rough morpho-
types in MABS. Thus, the ISP-containing combination therapy could
provide a new therapeutic option in patients with MABS infection.
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