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ABSTRACT

The rational discovery of new specialized metabo-
lites by genome mining represents a very promising
strategy in the quest for new bioactive molecules.
Ribosomally synthesized and post-translationally
modified peptides (RiPPs) are a major class of natural
product that derive from genetically encoded precur-
sor peptides. However, RiPP gene clusters are partic-
ularly refractory to reliable bioinformatic predictions
due to the absence of a common biosynthetic fea-
ture across all pathways. Here, we describe RiPPER,
a new tool for the family-independent identification
of RiPP precursor peptides and apply this methodol-
ogy to search for novel thioamidated RiPPs in Acti-
nobacteria. Until now, thioamidation was believed
to be a rare post-translational modification, which
is catalyzed by a pair of proteins (YcaO and TfuA)
in Archaea. In Actinobacteria, the thioviridamide-
like molecules are a family of cytotoxic RiPPs that
feature multiple thioamides, which are proposed to
be introduced by YcaO-TfuA proteins. Using RiP-
PER, we show that previously undescribed RiPP
gene clusters encoding YcaO and TfuA proteins are
widespread in Actinobacteria and encode a highly di-
verse landscape of precursor peptides that are pre-
dicted to make thioamidated RiPPs. To illustrate this
strategy, we describe the first rational discovery of
a new structural class of thioamidated natural prod-
ucts, the thiovarsolins from Streptomyces varsovien-
sis.

INTRODUCTION

Microorganisms have provided humankind with a vast
plethora of specialized metabolites with invaluable ap-
plications in medicine and agriculture (1). The advent
of widespread genome sequencing has shown that the

metabolic potential of bacteria had been substantially un-
derestimated, as their genomes contain many more biosyn-
thetic gene clusters (BGCs) than known compounds (2,3).
Much of this enormous potential is either unexplored or un-
detectable under laboratory culture conditions, and is likely
to include structurally novel bioactive specialized metabo-
lites. Among the main classes of specialized metabolites
produced by microorganisms, the ribosomally synthesized
and post-translationally modified peptides (RiPPs) (4) may
harbor the largest amount of unexplored structural diver-
sity. This is due to the inherent difficulties related to the in
silico prediction of their BGCs, as RiPP biosynthetic path-
ways lack any kind of universally shared feature apart from
the existence of a pathway-specific precursor peptide.

RiPP BGCs can be identified by the co-occurrence of spe-
cific RiPP tailoring enzymes (RTEs) alongside a precursor
peptide that contains sequence motifs that are characteris-
tic of a given RiPP family. This makes it relatively simple
to identify further examples of known RiPP families (5,6),
but the identification of currently undiscovered RiPP fami-
lies remains a significant unsolved problem. Unlike special-
ized metabolites such as polyketides, non-ribosomal pep-
tides and terpenes, there are no genetic features that are
common to all RiPP BGCs to aid in their identification.
Furthermore, genes encoding precursor peptides are often
missed during genome annotation due to their small size,
yet the reliable prediction of precursor peptides constitutes
a crucial task, as this starting scaffold is essential for RiPP
structural prediction. Numerous analyses of specific RiPP
classes signal the existence of a wide array of uncharacter-
ized RiPP families (7–9), but currently available prediction
tools still rely on precursor peptide features or generic RTEs
that are associated with known RiPP families (10–14).

YcaO domain proteins are a widespread superfamily
of enzymes with an intriguing catalytic potential in RiPP
biosynthesis (15). These were originally shown to be re-
sponsible for the introduction of oxazoline and thiazo-
line heterocycles in the precursor peptide backbone of
microcins (16), and were very recently demonstrated to
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Figure 1. An example of a thioviridamide-like molecule, thioalbamide, and
inset, a proposed biochemical route to thioamides. Thioamides are high-
lighted in blue and other post-translational modifications are colored red.

catalyze the formation of the macroamidine ring of bot-
tromycin (17–19). YcaO proteins act as cyclodehydratases,
activating the amide bond substrate by nucleophilic attack,
which is followed by ATP-driven O-phosphorylation of the
hemiorthoamide intermediate and subsequent elimination
of phosphate. In most azoline-containing RiPPs, this cat-
alytic activity requires a partner protein (E1-like or Ocin-
ThiF-like proteins that are clustered with or fused to the
YcaO domain), which acts as a docking element to bring the
precursor peptide to the active site of the cyclodehydratase
(15). YcaO proteins can also act as standalone proteins,
as in bottromycin biosynthesis (18,19), and many YcaO
proteins are encoded in genomes without E1-like or Ocin-
ThiF-like partner proteins (9,15), including in the BGCs of
thioviridamide-like molecules (6,20–24).

Thioviridamide and related compounds are cytotoxic
RiPPs that contain multiple thioamide groups (Figure 1),
but no azole or macroamidine rings. Thioamides are rare in
nature (25–31) and it has been hypothesized that YcaO pro-
teins could be responsible for this rare amide bond modifi-
cation in thioviridamide biosynthesis, potentially in cooper-
ation with TfuA domain proteins (15) (Figure 1). This pro-
tein pair has been identified elsewhere in nature, including
in archaea, where they are involved in the ATP-dependent
thioamidation of a glycine residue of methyl-coenzyme M
reductase (32,33). We therefore hypothesized that the iden-
tification of tfuA-like genes could be employed as a rational
criterion for the identification of BGCs responsible for the
production of novel thioamidated RiPPs in bacteria.

An exploration of the diversity of tfuA-containing BGCs
required methodology to identify precursor peptides that
have no homology to known precursor peptides. Here, we
report RiPPER (RiPP Precursor Peptide Enhanced Recog-
nition), a method for the identification of precursor pep-
tides that requires no information about RiPP structural
class (available at https://github.com/streptomyces/ripper).
This evaluates regions surrounding any putative RTE for
short open reading frames (ORFs) based on the likelihood
that these are truly peptide-coding genes. Peptide similarity
networking is then used to identify putative RiPP families.
We apply this methodology to identify RiPP BGCs encod-
ing TfuA proteins in Actinobacteria, which reveals a highly
diverse landscape of BGC families that are predicted to
make thioamidated RiPPs. This analysis informed the dis-

covery of the thioamidated thiovarsolins from Streptomyces
varsoviensis, which are predicted to belong to a wider family
of related thioamidated RiPPs and represents the first ratio-
nal discovery of a new family of thioamidated compounds
from nature.

MATERIALS AND METHODS

Chemicals

Unless otherwise specified, chemicals were purchased from
Sigma-Aldrich, and enzymes from New England Biolabs.
Molecular biology kits were purchased from Promega and
GE Healthcare.

Strains and culture conditions

Streptomyces varsoviensis DSM 40346 was acquired from
the German Collection of Microorganisms and Cell Cul-
tures (DSMZ, Germany) and used as genetic source for the
thiovarsolin gene cluster. Streptomyces coelicolor M1146,
S. coelicolor M1152 (34) and Streptomyces lividans TK21
were used as heterologous expression hosts. All culture me-
dia and primers used in this work are described in full in
the Supplementary Methods. Unless otherwise specified, all
Streptomyces strain were grown in SFM (solid) and TSB
(liquid) media at 28◦C. Spores and mycelium stocks were
kept at −20◦C and −80◦C in 20% glycerol. Saccharomyces
cerevisiae VL6–48N (35) was used for transformation-
associated recombination (TAR) cloning and was grown
at 30◦C with shaking at 250 rpm in YPDA medium. Re-
combinant yeast selection was performed using selective
media SD+CSM-Trp complemented with 5-fluoorotic acid
(Fluorochem, 1 mg ml−1). Yeast cell stocks were kept at
−80◦C in 20% glycerol. Escherichia coli DH5� was used
for standard DNA manipulations. E. coli DH5� BT340 was
used for Flp-FRT recombination. E. coli BW25113/pIJ790
was used for Lambda-Red mediated recombination. E.
coli ET12567/pR9604 and E. coli ET12567/pUZ8002 were
used to transfer DNA to Streptomyces by intergeneric con-
jugation. All E. coli strains were grown in LB medium
at 37◦C unless specified by particular protocols (pIJ790-
carrying strains were grown at 30◦C for plasmid replica-
tion, and Flp-FRT recombination was performed at 42◦C).
Escherichia coli hygromycin selection was performed in
DNAm (solid) and DNB (liquid) media. E. coli cell stocks
were kept at −20◦C and −80◦C in 20% glycerol.

RiPPER details

RiPPER consists of a series of Perl scripts that require the
RODEO2 Python script (13,14), BioPerl (36), a locally in-
stalled Pfam database (37,38) and a modified build of Prodi-
gal (39) (which we name Prodigal-short) to operate. Anal-
ysis parameters for RiPPER are defined in an associated
configuration file (local.conf), which can be modified to
optimize the genome mining process. EGN (Evolutionary
Gene and genome Network) (40) was used to construct pro-
tein similarity networks, which were visualized using Cy-
toscape 2.8.3 (41). Further information is provided in the
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documentation provided with the RiPPER scripts at https:
//github.com/streptomyces/ripper. For ease of use, a Docker
container is provided that contains all features required for
using RiPPER. This is available at https://hub.docker.com/
r/streptomyces/ripdock/ along with instructions on installa-
tion and usage. A workflow for using RiPPER is described
below.

Workflow for RiPPER

Below is a summary of the RiPPER workflow, which has
been developed for gene cluster visualization in Artemis
(42) (Supplementary Figure S1). Where relevant, default
analysis parameters are listed. These are all customizable
from the local.conf configuration file associated with a given
RiPPER analysis.

Using RODEO (13,14), accession numbers for a set of
putative RiPP tailoring enzymes (RTEs) are used to obtain
nucleotide regions (as GenBank files) centered on the tailor-
ing enzyme, which is highlighted as a green gene for clarity
in Artemis. 25 kb regions were obtained for the TfuA anal-
ysis (flankLen = 12.5 kb), and 35 kb regions were obtained
for the known RiPP families (flankLen = 17.5 kb, default).

1. Every retrieved genomic region is subjected to RODEO
analysis to obtain a RODEO output for each input acces-
sion, as well as Pfam domain data across the gene cluster.

2. GenBank files are then analyzed using a specially built
version of Prodigal (39), which we call Prodigal-short.
This is configured to find genes as short as 60 nucleotides
instead of the usual size cut-off of 90 nucleotides.

3. For all the genes found by Prodigal-short the following is
done:

a. The Prodigal score is enhanced if the gene is on
the same strand as the tailoring enzyme (sameStran-
dReward, default = 5).

b. Genes are only retained for analysis if they overlap with
existing annotated genes by 20 nucleotides or less.

c. RiPPER uses Prodigal-short to only identify putative
ORFs within a likely size window for precursor peptide
genes. Therefore, genes are only retained for analysis if
the length of the encoded peptide is between minPPlen
and maxPPlen. A window of 20–120 AA (default) was
used in all analyses in this study.

d. If a gene is not filtered out in the above steps, it is an-
notated in the GenBank file and its distance from the
tailoring enzyme is determined.

e. All putative genes identified are provided in the result-
ing GenBank file and are color-coded from pale red
(low score) to bright pink (high score) (Supplementary
Figure S1). Scoring criteria are viewable in Artemis as
notes for each putative gene.

f. RiPPER also retrieves and scores genes that were al-
ready annotated if they encode peptides below the
maxPPlen (default = 120 AA). This means that anno-
tated precursor peptides are also retrieved for down-
stream analysis.

4. The resulting annotated GenBank files can be viewed in
Artemis at this stage for manual identification of RiPP
precursor peptides.

5. If the gene is within a specified distance (maxDist-
FromTE) from the RTE, it is included in the output list
and also saved in a Sqlite3 table. A distance of ±8 kb is
used as default.

6. Within this region, the top scoring short peptides (no
lower score threshold) are retrieved. The number re-
trieved is defined by fastaOutputLimit (default = 3) In
addition, any further peptides with Prodigal scores over
a threshold (prodigalScoreThresh) within this region are
retrieved. A score threshold of 15 was used in the TfuA
analysis and a score threshold of 7.5 (default) was used
in the analysis of known RiPP families.

7. All retrieved peptides are analyzed for Pfam domains,
and all information is tabulated alongside various asso-
ciated data (tailoring enzyme accession, strain, peptide
sequence, distance from tailoring enzyme, coding strand
in relation to tailoring gene, Prodigal score) in a tab-
separated out.txt file. All data are collated in a single file
if multiple genomic regions are analyzed in parallel.

8. All peptides identified by RiPPER across the entire Gen-
bank file that were not retrieved in step 6 (no distance or
score threshold) are searched for characterized precursor
peptide domains (38). Data for these peptides is then tab-
ulated in a tab-separated distant.txt file.

9. Optional follow-on analysis: protein similarity network-
ing and BGC comparative analysis. Protein similarity
networking does not form part of the automated RiP-
PER workflow, but this does assist with the identification
of authentic precursor peptides. The RiPPER output in-
cludes fasta files (out.faa and distant.faa) for all retrieved
peptides that are compatible for analysis with EGN (40).
The following settings were used for all analyses: E-value
threshold = 10, hit identity threshold = 40%, hit covers
at least 35% of the shortest sequence, minimum hit length
= 15 AA. The resulting networks were visualized using
Cytoscape 2.8.3 (41), where data obtained from RiPPER
were imported as node attributes. The similarity between
BGCs associated with the same network was assessed
using MultiGeneBlast (43). Peptides from each network
were aligned using MUSCLE (44) and alignments were
visualized using ESPript 3.0 (45).

Identification of precursors to lasso peptides, microviridins
and thiopeptides

Studies by Tietz et al. (13), Ahmed et al. (46) and Schwalen
et al. (14) had previously used RTE accessions to mine
for precursors to lasso peptides, microviridins and thiopep-
tides, respectively. The same accession codes were used to
mine for precursor peptides using RiPPER (Supplementary
Datasets 1–3), although not all accessions could be retrieved
as some records no longer exist on NCBI. RiPPER was run
using analysis parameters as described above and the re-
sults are described in Table 1. Peptide similarity network-
ing was carried out using EGN (as described above), which
provided large networks for each dataset (Network 1, Sup-
plementary Figures S2–S4, Supplementary Datasets 1–3).
To determine the ability of RiPPER to retrieve authentic
precursor peptide sequences, a bespoke script was used to
compare the RiPPER outputs with the prior studies.

https://github.com/streptomyces/ripper
https://hub.docker.com/r/streptomyces/ripdock/
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TfuA-like protein retrieval and phylogenetic analysis

The NCBI Conserved Domain Architecture Retrieval Tool
(CDART) (47) was used to retrieve all TfuA domain pro-
tein sequences from the phylum Actinobacteria in the NCBI
non-redundant protein sequence database. These 325 pro-
teins were manually assessed by Pfam analysis for TfuA do-
mains, which resulted in the removal of five proteins from
this dataset. To limit the overrepresentation of highly sim-
ilar proteins in an analysis of phylogeny and gene clus-
ter diversity, ElimDupes (https://www.hiv.lanl.gov/content/
sequence/elimdupesv2/elimdupes.html) was used to remove
proteins with at least 99% identity to each other from the
dataset to leave one representative protein. This provided a
dataset of 229 TfuA domain proteins. Three proteins that
contained fused YcaO and TfuA domains were removed
for phylogenetic analysis, along with one (KZS83678.1) that
is truncated. The standalone TfuA domain protein dataset
(225 proteins) was aligned using MUSCLE 3.8.31 (44) with
default settings. The resulting alignment was used to con-
struct a maximum likelihood tree using RAxML-HPC2 on
XSEDE (with 100 bootstrap replications) on the CIPRES
Science Gateway (https://www.phylo.org/). The tree was vi-
sualized using the interactive Tree Of Life (iTOL) (48) (Sup-
plementary Dataset 5). The statistical analysis of the lengths
of predicted precursor peptides is described in the Supple-
mentary Methods.

TAR cloning and heterologous expression of the thiovarsolin
gene cluster

A vector to capture the thiovarsolin gene cluster from S.
varsoviensis genomic DNA (gDNA) was constructed us-
ing yeast assembly between a linearized pCAP03 vector
(49) and two single-strand oligonucleotides (TARvar-1 and
TARvar-2). Oligonucleotides had 35 nucleotide homology
sequences with pCAP03 and were designed to generate a
vector with 50 nucleotide homology sequences with up-
stream and downstream regions of the gene cluster either
side of a PmeI restriction site. pCAP03 was digested with
XhoI and NdeI, and the linearized plasmid and ss-oligos
(1:10 ratio) were transformed into S. cerevisiae VL6–48N
by lithium acetate/polyethylene glycol 3350 mediated trans-
formation. For yeast-colony PCR, each colony was resus-
pended in 50 �l 1 M sorbitol (Fisher) and 2 �l of zymolyase
(5 U �l−1) added to each cell suspension and incubated at
30◦C for 1 hour. Cell suspensions were then boiled for 10
min, centrifuged (15 s, 1000 × g) and 1 �l of the supernatant
was analyzed by PCR.

To transfer the plasmids from yeast into E. coli, colonies
of yeast were grown in 10 ml of liquid SD+CSM-Trp for 18
h at 250 rpm, 30◦C. Cells were harvested by centrifugation
(5 min, 1789 × g), and resuspended in 200 �l 1 M sorbitol
plus 2 �l of zymolyase (5 U �l−1). Cell suspensions were in-
cubated at 30◦C for 1 hour to produce spheroplasts, which
were then pelleted (10 min, 600 × g). The supernatant was
aspirated, and plasmid DNA extracted from the pellet us-
ing a standard Wizard miniprep protocol (Promega). 1 �l
plasmid DNA was then transformed into E. coli DH5� by
electroporation and selected with kanamycin (50 �g ml−1)
Colonies containing the correct capture vector were identi-
fied by PCR (primers: CAP03 check-fw and CAP03 check-

rv), and the plasmid was isolated and confirmed by sequenc-
ing.

gDNA from S. varsoviensis was digested with EcoRV
and ScaI, and the pCAP03-derived capture vector was lin-
earized between the capture arms with PmeI. These were
both then introduced into S. cerevisiae VL6–48N by sphero-
plast polyethylene glycol 8000 transformation. Successful
gene cluster capture by pCAP03 was confirmed by colony
PCR (primers: TARcheck-fw and TARcheck-rv). The plas-
mids from three positive clones were recovered and trans-
formed into electrocompetent E. coli DH5� for amplifica-
tion and further restriction analysis of the purified construct
(pTARvar). E. coli ET12567/pR9604 was transformed with
pTARvar by electroporation, and transformants were then
used to transfer pTARvar into S. coelicolor (M1146 and
M1152) and S. lividans TK21 by intergeneric conjuga-
tion. Nalidixic acid (25 �g ml−1) and kanamycin-resistant
(50 �g ml−1) exconjugants containing integrated pTARvar
(S. coelicolor M1146-TARvar, S. coelicolor M1152-TARvar
and S. lividans TK21-TARvar) were verified by PCR us-
ing GoTaq polymerase (Promega) (primers: TAR check-fw
and TAR check-rv).

Fermentation conditions for metabolite screening

Seed cultures of S. coelicolor M1146-TARvar, S. coelicolor
M1152-TARvar and S. lividans TK21-TARvar were ob-
tained by fermentation in a 250 ml flask containing 50 mL
of TSB for 72 h. 250 �l seed culture was used to inoculate
5 ml of a variety of culture media (TSB, BPM, GYM, MI,
TPM, E25; see Supplementary Methods) in 50 ml conical
centrifuge tubes with caps replaced by foam bungs. Con-
trol strains carrying a genome-integrated empty pCAP03
vector were cultured in the same way for comparison. All
fermentations were conducted in triplicate and incubated
at 28◦C with shaking at 250 rpm. Culture samples (500
�l) were taken at 72 and 168 h, mixed with one volume
of methanol and agitated for 30 min at room temperature.
These mixtures were then centrifuged (15,871 × g, 30 min)
and 600 �l of the resulting supernatant was transferred to
glass vials for liquid chromatography–mass spectrometry
(LC–MS) analysis. Details on the large-scale fermentation,
isolation and structural elucidation of thiovarsolins A and
B are described in the Supplementary Methods.

LC–MS analysis

Spectra were obtained using a Shimadzu Nexera X2 UH-
PLC coupled to a Shimadzu IT-TOF mass spectrometer.
Samples (5 �l) were injected onto a Phenomenex Kinetex
2.6 �m XB-C18 column (50 mm × 2.1 mm, 100 Å) set at a
temperature of 40◦C and eluting with a linear gradient of 5–
95% acetonitrile in water + 0.1% formic acid over 6 minutes
with a flow-rate of 0.6 ml min−1. Positive mode mass spec-
trometry data was collected between m/z 200 and 2000, and
MS2 data was collected using collision-induced dissociation
of the most abundant singly charged species in a scan, with
an exclusion time of 0.8 seconds. Untargeted comparative
metabolomics was carried out on triplicate data using Pro-
filing Solution 1.1 (Shimadzu) with an ion m/z tolerance of
100 mDa, a retention time tolerance of 0.1 min and an ion
intensity threshold of 100,000 units.

https://www.hiv.lanl.gov/content/sequence/elimdupesv2/elimdupes.html
https://www.phylo.org/
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For the accurate mass measurement of the thiovarsolins,
high-resolution mass spectra were acquired by LC–MS on
a Synapt G2-Si mass spectrometer equipped with an Ac-
quity UPLC (Waters). Samples were injected onto an Ac-
quity UPLC® BEH C18 column, 1.7 �m, 1 × 100 mm
(Waters) and eluted with a gradient of (B) acetonitrile/0.1%
formic acid in (A) water/0.1% formic acid with a flow rate
of 0.08 ml min−1 at 45◦C. The concentration of B was kept
at 1% for 2 min followed by a gradient up to 30% B in 4
min. MS data were collected with the following parame-
ters: resolution mode, positive ion mode, scan time 0.5 s,
mass range m/z 50–1200 (calibrated with sodium formate),
capillary voltage = 3.0 kV; cone voltage = 40 V; source tem-
perature = 120◦C; desolvation temperature = 350◦C. Leu-
enkephalin peptide was used to generate a lock-mass cali-
bration with m/z = 556.2766 measured every 30 s during
the run.

Deletion of genes in the thiovarsolin biosynthetic gene cluster

The mutational analysis of the thiovarsolin BGC was
performed using an E. coli-based Lambda-Red-mediated
PCR-targeting strategy (50), which allowed the substitu-
tion of genes or groups of genes in pTARvar by a PCR-
generated cassette containing the apramycin resistance gene
aac(3)IV. Given the presence of an oriT in the original
pCAP03 vector, the upstream primer design was modified
with respect to the original protocol in order to exclude a
second oriT from the PCR-targeting resistance cassette and
avoid undesired recombinations. Therefore, resistance cas-
settes were PCR amplified using pIJ773 as template (see
primers in Supplementary Table S3 and mutants in Sup-
plementary Table S4). In the case or varA, an additional
in-frame deletion mutant affecting only the core precur-
sor peptide was created employing a pIJ773-derived cas-
sette lacking OriT (pIJ773 �oriT) but preserving both FRT
recombination sites (primers RD1 and RD3), which al-
lowed the elimination of the apramycin resistance cassette
after Flp-FRT recombination in E. coli DH5� BT340 and
the creation of a clean varA mutant (�varA clean). The
PCR-targeting mutant versions of pTARvar were trans-
ferred to S. coelicolor M1146 by E. coli ET12567/pUZ8002-
mediated intergeneric conjugation and selected by resis-
tance to nalidixic acid (25 �g ml−1), kanamycin (50 �g
ml−1) and, when required, apramycin (50 �g ml−1).

Constructs for the complementation of mutants show-
ing differences in thiovarsolin production in comparison
to S. coelicolor M1146-TARvar (�varA, �varY, �varT
and �varO) were obtained by high-fidelity PCR ampli-
fication (Herculase II, Agilent) of each of these genes
(primers CP1 and CP2 for varA, CP3 and CP4 for varAp,
CP5 and CP6 for varY, CP7 and CP8 for varT, and
CP9 and CP10 for varO), digestion of the PCR prod-
uct with NdeI and HindIII and cloning by ligation (T4
DNA ligase, Invitrogen) into NdeI – HindIII digested
pIJ10257 (51). Ligation mixtures were transformed into
chemically competent E. coli DH5�, plasmids were re-
covered by alkaline lysis and then sequenced. The re-
sulting plasmids (pJ10257-varA, pIJ1027-varAp, pIJ10257-
varY, pIJ10257-varT and pIJ10257-varO) were introduced
into the corresponding S. coelicolor M1146-var mutants by
E. coli ET12567/pUZ8002-mediated intergeneric conjuga-
tion. Exconjugants were selected by resistance to nalidixic
acid (25 �g ml−1), kanamycin (50 �g ml−1), hygromycin
(50 �g ml−1) and, when required, apramycin (50 �g ml−1).
The construction of a minimal thiovarsolin gene cluster
(pIJ10257-varApYT) and the site-directed mutagenesis of
varA are described in the Supplementary Methods.

RESULTS AND DISCUSSION

Development of a family-independent RiPP genome mining
tool

Within a given RiPP family, all BGCs usually encode at
least one tailoring enzyme and one precursor peptide that
each feature domains conserved across the RiPP family (4).
This has led to the development of genome mining method-
ology that can identify these well-characterized RiPP fami-
lies with high accuracy (10–13). However, there is a growing
number of widespread RiPP BGCs with little or no homol-
ogy to known RiPP BGCs (7,52). Theoretically, backbone
modifications such as thioamidation or epimerization (53)
can occur on any residue. In addition, well-characterized
RiPP tailoring enzymes can be associated with unusual pre-
cursor peptides that lack homology to known RiPP classes
(9). We therefore sought to develop a method to identify
likely precursor peptides that was independent of precur-
sor peptide sequence and could be applicable for any RiPP
family. The starting point for this method was to employ
the functionality of RODEO (13,14) to identify genomic re-

Table 1. Comparison of RiPPER with prior studies on the identification of RiPP precursor peptides

Generic RiPPER search
RiPPER including HMM

search Network 1 data from RiPPER analysis

RiPP classa

No. of
RTEs used
in RiPPER
search

Total
peptides
retrieved

Match with prior
datab

Total
peptides
retrieved

Match with prior
datab

Total
peptides
in
network

Match with prior
datab

Additional
HMM
hits

Lasso peptides 1198 4503 1056/1122 (94.1%) 4558 1063/1122 (94.7%) 1211c 934/1122 (83.2%) 125
Microviridins 159 586 270/280 (96.4%) 596 270/280 (96.4%) 270 269/280 (96.1%) 1
Thiopeptides 486 1526 438/591 (74.1%) 1675 549/591 (92.9%) 690 543/591 (91.9%) 75

aData obtained for lasso peptides from ref. 13, microviridins from ref. 46 and thiopeptides from ref. 14.
bThese numbers are sometimes greater than the number of RTEs used in the RiPPER search due to the identification of multiple precursor peptides per
BGC.
cProteins with PqqD domains removed.
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gions associated with a series of putative RTEs. RODEO
uses a mixture of heuristic scoring and support vector ma-
chine classification to identify precursor peptides for lasso
peptides (13) and thiopeptides (14), but does not accu-
rately identify other precursor peptides, whose sequences
are highly variable and are often not annotated in genomes.

To enable the sequence independent discovery of precur-
sor peptides, we sought to identify short ORFs that possess
similar genetic features as other genes in a given gene cluster,
including ribosome binding sites, codon usage and GC con-
tent. Prodigal (PROkaryotic DYnamic programming Gene-
finding ALgorithm) uses these criteria to identify bacterial
ORFs (39). Therefore, following RODEO retrieval of nu-
cleotide data, we implemented a modified form of this algo-
rithm to specifically search for ORFs that encode for pep-
tides of between 20 and 120 amino acids within apparently
non-coding regions near to a predicted RTE (Figure 2A).
Given the prevalence of characterized precursor peptides
that are encoded on the same strand as a tailoring gene, a
same strand score is added (custom parameter; default = 5).
A modified GenBank file is generated by RiPPER that an-
notates these putative short ORFs within the putative BGC
(Supplementary Figure S1), and these are ranked alongside
annotated short genes based on their Prodigal score. RiP-
PER then retrieves the top three scoring ORFs within ±8
kb of the RTE, plus any additional high scoring ORFs over
a specified score threshold that represent probable genes.
These are then assessed for Pfam domains (37) and data as-
sociated with each peptide is tabulated for further process-
ing.

To validate this approach, we used RTE accession num-
bers that had previously been used to identify lasso pep-
tide (13) (RODEO), microviridin (46) and thiopeptide (14)
(RODEO) gene clusters. In each case, class-specific rules
had been used to identify associated precursor peptides.
These RiPP classes are well-suited to method validation as
they have diverse gene cluster features and precursor pep-
tide sequences, and span multiple bacterial taxa. In ad-
dition, the genes encoding these small peptides are often
not annotated in genome sequences (13). We therefore used
RiPPER with the same protein accessions as those previous
studies to retrieve BGCs and associated precursor peptides.
Comparison of the RiPPER outputs with these studies re-
vealed that lasso peptide and microviridin precursor iden-
tification was highly reliable. 1056 out of 1122 (94.1%) and
279 out of 288 (96.7%) peptides identified by those prior
mining studies were identified by RiPPER (Table 1, Sup-
plementary Datasets 1–2). An analysis of Prodigal scores
of these validated precursor peptides showed that this scor-
ing approach is suited to the identification of RiPP precur-
sor peptides (Supplementary Figure S5), despite their small
size and the possibility that horizontal gene transfer could
influence codon usage bias.

In contrast, RiPPER only retrieved 438 of the 591
(74.1%) thiopeptide precursors previously identified (Table
1, Supplementary Dataset 3). This was possibly due to the
comparatively large size of thiopeptide BGCs, which meant

that the ±8 kb search window was not suited to a subset of
these BGCs. Widening the generic search reduced specificity
of the retrieval, so an additional targeted search step was
introduced. All short peptides across the entire gene clus-
ter region (default = 35 kb) that were not retrieved by the
first search were analyzed for precursor peptide domains us-
ing hidden Markov models (HMMs) recently built by Haft
et al. (38). Any peptides containing a domain were therefore
also retrieved. This provided a minor improvement to RiP-
PER retrieval of lasso precursor peptides but significantly
improved thiopeptide precursor peptide retrieval to 549 out
of 591 (92.9%) peptides identified by RODEO (14).

This data demonstrated that the RiPPER methodology
was applicable to multiple diverse classes of RiPP, but the
generic nature of retrieval meant that only between a half
and a quarter (depending on RiPP class) of total retrieved
peptides were likely to be precursor peptides (Table 1). We
therefore generated peptide similarity networks (40) using
peptides retrieved from each RiPPER analysis, where pep-
tides with at least 40% identity were connected to each
other. Despite the large sequence variance within each RiPP
class, this was highly effective at filtering the peptides into
networks of likely precursor peptides. For each RiPPER
analysis, the largest network (‘network 1’) contained the
majority of precursor peptides identified by previous stud-
ies (Table 1, Supplementary Figures S2–S4). Unexpectedly,
network 1 of the lasso peptide dataset also contained PqqD
domain proteins, a conserved feature of lasso peptide path-
ways that function as RiPP precursor peptide recognition
elements (54,55). These peptides were manually filtered by
the Pfam domain results; alternatively, a higher identity cut-
off for networking would have separated PqqD domains
from network 1. In addition, network 2 comprises of 56
Burkholderia peptides that are precursors to capistruin lasso
peptides (all identified by RODEO). Notably, for each RiP-
PER analysis, network 1 contained peptides with the ex-
pected precursor peptide domain that were not retrieved by
either RODEO (13,14) or the bespoke microviridin analysis
(46). In total, this provided over 200 new candidate precur-
sor peptides (Table 1), as well as additional networked pep-
tides with no known domains that could feasibly be authen-
tic precursor peptides. The ability of RiPPER to correctly
identify a comparable number of precursor peptides to prior
targeted methods demonstrates that the combination of ra-
tional ORF identification and scoring, Pfam analysis, and
peptide similarity networking can identify RiPP precursor
peptides with a high degree of accuracy and coverage with-
out any prior knowledge of the RiPP class.

Identification of thioamidated RiPP BGCs using RiPPER

As a backbone modification, thioamidation potentially has
no requirement for specific amino acid side chains, which
means that there may be no conserved sequence motifs
within precursor peptide substrates. To guide our identifi-
cation of thioamidated RiPP BGCs, we identified a curated
set of 229 TfuA-like proteins in Actinobacteria whose pu-
tative BGCs were retrieved using RiPPER, which showed
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Figure 2. RiPPER identification of putative precursor peptides. (A) Schematic of RiPPER workflow where a cluster is identified based on a putative
RiPP tailoring enzyme (RTE). (B) The 30 largest peptide similarity networks identified using RiPPER for peptides associated with tfuA-like genes in
Actinobacteria. Red numbers indicate networks predicted to comprise of authentic precursor peptides (see Supplementary Table S1 and Figures S7-S20)
and triangular nodes indicate peptides encoded on the opposite strand to the RTE gene. Additional color-coding of nodes reflects domains with a probable
association with a biosynthetic gene cluster and includes putative precursor peptides (nitrile hydratase-like (8) and type-A lantibiotic) and other small
proteins (PqqD-like proteins (54,55), acyl carrier proteins and regulatory proteins).

that each TfuA protein was encoded alongside a YcaO
protein but their associated gene clusters could be highly
variable. RiPPER retrieved 743 peptides (Supplementary
Dataset 4) and peptide similarity networking (40% identity
cut-off) yielded 74 distinct networks of peptides, where 30 of
these networks featured four or more peptides (Figure 2B,
Supplementary Figure S6, Supplementary Table S1). Multi-
GeneBlast (43) was then employed to compare the BGCs
corresponding to each network.

As an initial proof of concept, this correctly grouped all
thioviridamide-like precursor peptides into a single network
(Figure 3A). Surprisingly, these precursor peptides were
connected with four additional peptides encoded in puta-
tive BGCs that are extremely different to thioviridamide-
like BGCs; three of these peptides were not previously an-
notated as genes. These peptides feature extensive sequence
similarities with the thioviridamide-like precursor peptides
(Supplementary Figure S7), but the BGCs themselves are
extremely different, where the only common features with
the thioviridamide-like BGCs are the YcaO, TfuA and pre-
cursor peptide genes (Figure 3B). More generally, peptide
networking guided the identification of a wide variety of
probable tfuA-containing RiPP BGCs (Supplementary Fig-
ures S7–S20). For example, many mycobacteria encode a
YcaO-TfuA protein pair, and the largest network of puta-
tive precursor peptides is associated with this mycobacte-
rial BGC (Figure 2B, Network 1) where they are usually en-
coded near a Type III polyketide synthase (PKS) and a sul-
fotransferase (Supplementary Figure S8). Network 2 con-
sists of 25 related Streptomyces peptides that possess high
Prodigal scores and are encoded at the start of a conserved
biosynthetic operon (Supplementary Figure S9). This is a
strong candidate as an authentic RiPP BGC family, yet only
6 of these 25 short peptides were originally annotated.

Thioamidated RiPPs are a largely unexplored area of the nat-
ural products landscape

To investigate whether BGC families correlate with the evo-
lutionary relationships of the TfuA proteins, a maximum
likelihood tree was constructed from standalone TfuA do-
main proteins and the peptide networks were mapped to
this tree (Figure 4, Supplementary Dataset 5). This showed
strong correlations between TfuA phylogeny and precur-
sor peptide similarity. Despite the significant differences be-
tween their gene clusters, the thioviridamide-like and non-
thioviridamide-like peptides of Network 5 are all associated
with closely related TfuA proteins. Unsurprisingly, some
TfuA domain proteins are associated with multiple peptide
networks due to the abundance of small peptides that are
unlikely to be precursor peptides, such as regulatory pro-
teins and RiPP precursor peptide recognition elements (55).
For example, almost all peptides from Networks 9, 11 and
18 are associated with the same set of TfuA domain pro-
teins, but Pfam analysis indicates that Networks 11 and 18
consist of acyl carrier proteins and ThiS-like proteins (56),
respectively. Therefore, the Network 9 peptides, which are
encoded at the beginning of each BGC and feature no con-
served domains, are likely precursor peptides for this BGC
family (Figure 4).

Pfam analysis indicated that all precursor peptides in
Network 7 feature nitrile hydratase domains, which is a
common feature amongst precursor peptides across diverse
RiPP families (8,57). In total, at least 15 distinct predicted
RiPP families were predicted from the top 30 peptide net-
works (Supplementary Dataset 4, Supplementary Table S1,
Supplementary Figures S7–S20), while many smaller net-
works and singletons are also likely to be authentic pre-
cursor peptides, based on their Prodigal scores and posi-
tions within BGCs. A comparative analysis with the source
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Figure 3. Thioviridamide-like precursor peptides. (A) The precursor peptide network that includes both thioviridamide-like precursor peptides (red nodes)
and a related but uncharacterized family of precursor peptides from BGCs that are highly different to thioviridamide-like BGCs (blue nodes). Characterized
compounds are listed with their respective nodess. (B) Comparative analysis of thioviridamide-like and non- thioviridamide-like BGCs from this network
where related genes share the same color. See Supplementary Figure S7 for full BGC details.

GenBank entries indicated that over half of the peptides en-
coded in these BGCs were not previously annotated (Sup-
plementary Dataset 4). For peptides predicted to be authen-
tic precursor peptides (Supplementary Table S1), unanno-
tated peptides identified by RiPPER were, on average, sig-
nificantly shorter than annotated peptides (Supplementary
Figure S21).

Characterization of a novel family of TfuA-YcaO BGCs

To determine whether the newly identified YcaO-TfuA
BGCs actually produce thioamidated RiPPs, we focused on
Network 22 (Figure 5A), a group of five orphan BGCs with
multiple unusual features (Figure 5B). Most notably, the
predicted precursor peptides feature a series of imperfect
repeats that could reflect a repeating core peptide (Figure
5C), where the family varies from a non-repeating precur-
sor peptide (Asanoa ishikariensis) to five repeats (Strepto-
myces varsoviensis). In addition, the Nocardiopsis and Strep-

tomyces BGCs encode two additional conserved proteins,
an amidinotransferase (AmT) and an ATP-grasp ligase,
which are homologous to proteins in the pheganomycin
pathway (58), and are adjacent to genes encoding non-
ribosomal peptide synthetases or PKSs (Figure 5B). Ef-
forts to genetically manipulate S. varsoviensis and Nocar-
diopsis baichengensis were unsuccessful and we were un-
sure of the gene cluster boundaries, so transformation-
associated recombination (TAR) cloning (49,59) was em-
ployed to capture a 31.7 kb DNA fragment comprising 25
genes (Supplementary Table S2) centered around the ycaO-
tfuA core of the S. varsoviensis BGC. Two independent pos-
itive TAR clones were conjugated into three different host
strains: Streptomyces lividans TK24 and Streptomyces coeli-
color M1146 and M1152 (34) and the resulting TARvar ex-
conjugants were fermented in a variety of media. Liquid
chromatography–mass spectrometry (LC–MS) analysis re-
vealed two major compounds (m/z 399.18 and m/z 401.20),
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Figure 4. Examples of putative RiPP BGCs and associated TfuA phylogeny. A maximum likelihood tree (branch lengths removed) of TfuA-like proteins
is color-coded to indicate the relationship between TfuA-like proteins and the associated networks of putative precursor peptides. Representative BGCs
are also shown, where grey genes indicate genetic features that are conserved across multiple BGCs within that family. Fully annotated BGCs are shown
in Supplementary Figures S7–S20.

and two minor compounds (m/z 385.16 and m/z 387.18)
not present in the negative control strains (Figure 5D).
Small amounts of these compounds could be detected when
S. varsoviensis was fermented for 10 days (Figure 6, Supple-
mentary Figure S22).

To associate the production of these new compounds
to the cloned DNA fragment, PCR-targeting mutagene-
sis (50) was employed to generate a series of deletion mu-
tants on the putative BGC. A progressive trimming pro-
cess determined that a cluster of seven genes that are
mostly conserved across the Nocardiopsis and Streptomyces
BGCs was sufficient for compound production: varA (en-
coding the predicted repeating precursor peptide), varY (the
YcaO protein), varT (the TfuA protein), varO (a heme
oxygenase-like protein (60)), varL (an ATP-grasp ligase),
varP (a major facilitator superfamily transporter) and varS
(an amidinotransferase). The deletion of varA, varY and
varT completely abolished the production of the four new
compounds, while the �varO mutant produced only m/z
401.20 and m/z 387.18, suggesting that VarO may func-
tion as a dehydrogenase (Figure 6). Deletion of varL, varP
and varS did not affect production, despite their conser-
vation in related BGCs (Figure 5B). �varY, �varT and
�varO mutants were successfully complemented by ex-
pressing these genes under the control of the ermE* pro-
moter, whereas complementation of �varA required its na-
tive promoter. As expected, expression of a 3.7 kb DNA
fragment including only varA, varY and varT in S. coeli-
color M1146 led to the production of m/z 401.20 and m/z
387.18 (Figure 6, varAYT). Collectively, this data show that
varAYTO are the only genes required for the biosynthesis

of this new group of RiPPs, thiovarsolins A–D (observed
m/z 399.1818, 401.1968, 385.1652 and 387.1808, respec-
tively, Supplementary Table S5).

The thiovarsolins are thioamidated peptides that derive from
the repetitive core of the precursor peptide

The structures of thiovarsolins A and B were determined
by NMR (1H, 13C, COSY, HSQC and HMBC; Supple-
mentary Figures S23-S34, Supplementary Table S6) follow-
ing large scale fermentation and purification of each com-
pound. This analysis showed that thiovarsolins A and B are
N-acetylated APR tripeptides in which the amide bond be-
tween Pro and Arg is substituted by a thioamide (�C = 200
ppm) (Figure 5D). This was supported by accurate mass
data (Supplementary Table S5) and an absorbance maxi-
mum at ∼270 nm for both molecules, which is character-
istic of a thioamide group (61). Additionally, a trans dou-
ble bond is present between C� and C� of the arginine side
chain in thiovarsolin A. This peptide backbone is fully com-
patible with an APR sequence within the repeats of VarA
(Figure 5C). The name thiovarsolin corresponds to linear
thioamidated peptides made by S. varsoviensis.

Tandem MS (MS2) analysis of the thiovarsolins (Supple-
mentary Figure S35) revealed a clear structural relationship
between thiovarsolins A (m/z 399.18) and C (m/z 385.16),
as well as between thiovarsolins B (m/z 401.20) and D (m/z
387.18), which suggested that each 14 Da mass difference
could be due to one methyl group. Interestingly, the first rep-
etition of the putative modular core peptide features a GPR
motif instead of APR, which could potentially explain this
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Figure 5. Identification of the thiovarsolin family of RiPPs. (A) The associated precursor peptide network. (B) BGCs associated with each precursor peptide.
The protein product of each var gene is listed at the top (HO = heme oxygenase; AmT = amidinotransferase; MFS = major facilitator superfamily) and
genes common to multiple BGCs are color-coded by the predicted function of the protein product (see Supplementary Figure S17 for full details). (C)
Putative repeating precursor peptides identified by similarity networking. The predicted leader peptide is aligned, while the repeat regions are highlighted.
Underlined text indicates the partially conserved core peptide that the thiovarsolins derive from, and bold text indicates equivalent residues in the other
precursor peptides. (D) Analysis of thiovarsolin production by S. coelicolor M1146-TARvar, which contains a 31.7 kb DNA fragment centered on the S.
varsoviensis BGC. Base peak chromatograms of crude extracts of S. coelicolor M1146-TARvar and an empty vector negative control (pCAP03) are shown,
with peaks corresponding to thiovarsolins A-D indicated. Thioamidation and dehydrogenation post-translational modifications are highlighted on the
thiovarsolin structures.

Figure 6. Mutational analysis of thiovarsolin biosynthesis. Extracted ion chromatograms (EICs) are shown for each thiovarsolin (A = m/z 399.18, B =
m/z 401.20, C = m/z 385.16, D = m/z 387.18). M1146 pCAP03 indicates the empty plasmid control, while each �var mutation was made in the TARvar
construct and expressed in S. coelicolor M1146. See text and Supplementary Figure S36 for details of varA*.
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14 Da mass difference, as well as their observed abundances
in relation to thiovarsolins A and B. To test this hypothesis,
a mutated version of varA was constructed (varA*, Supple-
mentary Figure S36) in which the Ala residue in each re-
peat was substituted by Gly. This was expressed in M1146-
TARvar �varA using a pGP9-based expression plasmid
(62). The resulting strain was only able to produce thiovar-
solins C and D (Figure 6, varA*), confirming that these two
minor compounds derive from a GPR core peptide. Such an
extensively repeating precursor peptide is rare, but is com-
parable to the variable repeats found in precursor peptides
for some cyanobactins (63) and the fungal RiPP phomopsin
(64).

Our genetic and chemical analysis of the var BGC
strongly suggests that the YcaO (VarY) and TfuA (VarT)
proteins cooperate to introduce a thioamide bond. Given
the absence of a specific protease in the gene cluster, it is
plausible that endogenous peptidases are responsible for the
liberation of the non-degradable thioamidated APR and
GPR tripeptides, which later undergo an N-terminal acety-
lation catalyzed by an endogenous N-acetyltransferase, as
previously reported for other metabolites containing pri-
mary amines (65,66). The timing of VarO-catalyzed dehy-
drogenation is unclear and could happen directly on the
precursor peptide or after proteolysis. Small amounts of
thiovarsolins A and B are produced by S. varsoviensis, but
the lack of a function for varS and varL suggests that the
described thiovarsolins might not be the final products of
these pathways. However, no further thiovarsolin-related
metabolites could be detected in either S. varsoviensis or S.
coelicolor M1146-TARvar when analyzed by comparative
metabolomics and by assessment of MS2 data for losses of
H2S (m/z 33.99), which is a fragmentation profile that is
characteristic of thioamides (6).

CONCLUSION

The discovery of the thiovarsolins supports the existence of
an unexplored array of thioamidated RiPPs in Actinobac-
teria. The discovery that a minimal gene set of varA (pre-
cursor peptide), varY (YcaO protein) and varT (TfuA pro-
tein) is sufficient for the biosynthesis of thiovarsolin B (Fig-
ure 6) provides strong evidence that the YcaO-TfuA pro-
tein pair catalyze peptide thioamidation in bacteria, which
is supported by a parallel study by Mitchell and colleagues
on thiopeptide thioamidation (14). It was previously deter-
mined that a distantly related pair of homologs catalyze
thioamidation of methyl-coenzyme M reductase in archaea
(32,33), and that a subset of archaeal YcaO proteins cat-
alyze thioamidation in the absence of a TfuA protein (33).
It is therefore possible that there are even more pathways
making thioamidated RiPPs than the ones identified in
our study, although the closest actinobacterial homologs
of the thioamidating TfuA-independent YcaO protein from
Methanopyrus kandleri (AAM01332.1) are encoded along-
side TfuA proteins. Further experimental work is therefore
required to determine the breadth of YcaO-domain cataly-
sis and the role of the TfuA partner protein.

The relatively simple thiovarsolin pathway represents a
promising system for future biochemical studies of this re-
action in the context of RiPP biosynthesis. Unexpectedly,

genes conserved across multiple homologous var-like path-
ways (varS, varP and varL, Figure 5B) were not required
for thiovarsolin biosynthesis. Along with N-terminal acety-
lation, this suggests that the identified thiovarsolins may be
shunt products, although the production of thiovarsolins
by S. varsoviensis indicates that they are made naturally,
so production is not simply a consequence of heterologous
pathway expression. The introduction of a double bond
in the arginine residue side chain of the thiovarsolins by
VarO would represent new RiPP biochemistry, as heme
oxygenases have never been associated with RiPP biosyn-
thesis. This shows that the breadth and diversity of RiPP
post-translational modifications is still expanding, which
has also been highlighted by recent discoveries of radi-
cal SAM enzyme-catalyzed epimerization (57), cyclization
(67,68) and �-amino acid formation (69) in RiPP pathways.

RiPPER is a flexible prediction tool that can be applied
to any class of predicted RiPP tailoring enzyme to aid in
the discovery of this metabolic dark matter. This more gen-
eral approach complements existing genome-mining tools
such as BAGEL (10), RODEO (13,14), PRISM (70) and
antiSMASH (12), which all provide in-depth analyses and
product predictions for established RiPP families. The un-
derlying logic of RiPPER differs significantly to BAGEL4,
antiSMASH 4.0 (which incorporates RODEO) and PRISM
3, which all identify gene clusters based on sets of conserved
protein domains predicted to be involved in biosynthesis.
With these tools, if established RiPP gene cluster families
are identified, predicted precursor peptides and modifica-
tions are sometimes displayed. In contrast, the user dic-
tates the gene clusters searched in RiPPER, which aids in
the identification of precursor peptides, and this is most ef-
fective when multiple similar gene clusters are analyzed in
parallel (e.g. Figure 2B). This difference in operation and
output makes it difficult to make meaningful comparisons
between tools.

The de novo identification of precursors to lasso pep-
tides, microviridins and thiopeptides highlights the scope of
RiPPER, which was achieved without any specific rules for
these RiPP families. The methodology proved to be highly
adept at identifying previously overlooked precursor pep-
tide genes, and the method parameters can be easily adapted
based on prior knowledge of a given RiPP family (min/max
gene length, max distance from RTE, same strand score and
peptide score threshold, for example). In our TfuA analysis,
peptide networking proved to be a highly effective method
to prioritize related precursor peptides and their associated
BGCs for further analysis, where it highlighted the existence
of likely RiPP families as opposed to the coincidental pres-
ence of a small ORF near a putative BGC. The diversity
of TfuA-associated precursor peptides identified in Acti-
nobacteria highlights the utility of a generic precursor pep-
tide identification tool and provides the basis for investigat-
ing the breadth of this RiPP family. It will be fascinating to
determine both the structure and function of these cryptic
metabolites.
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RiPPER is available at: https://github.com/streptomyces/
ripper and https://hub.docker.com/r/streptomyces/ripdock/

https://github.com/streptomyces/ripper
https://hub.docker.com/r/streptomyces/ripdock/


Nucleic Acids Research, 2019, Vol. 47, No. 9 4635

Thiovarsolin gene cluster information is available at
https://mibig.secondarymetabolites.org (accession number
BGC0001849).
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49. Tang,X., Li,J., Millán-Aguiñaga,N., Zhang,J.J., O’Neill,E.C.,
Ugalde,J.A., Jensen,P.R., Mantovani,S.M. and Moore,B.S. (2015)
Identification of thiotetronic acid antibiotic biosynthetic pathways by
Target-directed genome mining. ACS Chem. Biol., 10, 2841–2849.

50. Gust,B., Challis,G.L., Fowler,K., Kieser,T. and Chater,K.F. (2003)
PCR-targeted Streptomyces gene replacement identifies a protein
domain needed for biosynthesis of the sesquiterpene soil odor
geosmin. Proc. Natl. Acad. Sci. U.S.A., 100, 1541–1546.

51. Hong,H.-J., Hutchings,M.I., Hill,L.M. and Buttner,M.J. (2005) The
role of the novel Fem protein VanK in vancomycin resistance in
Streptomyces coelicolor. J. Biol. Chem., 280, 13055–13061.

52. Haft,D.H. (2011) Bioinformatic evidence for a widely distributed,
ribosomally produced electron carrier precursor, its maturation
proteins, and its nicotinoprotein redox partners. BMC Genomics, 12,
21.

53. Morinaka,B.I., Verest,M., Freeman,M.F., Gugger,M. and Piel,J.
(2017) An Orthogonal D2O-Based induction system that provides
insights into D-amino acid pattern formation by radical
S-Adenosylmethionine peptide epimerases. Angew. Chem. Int. Ed.,
56, 762–766.

54. Latham,J.A., Iavarone,A.T., Barr,I., Juthani,P.V. and Klinman,J.P.
(2015) PqqD is a novel peptide chaperone that forms a ternary
complex with the radical S-adenosylmethionine protein PqqE in the
pyrroloquinoline quinone biosynthetic pathway. J. Biol. Chem., 290,
12908–12918.

55. Burkhart,B.J., Hudson,G.A., Dunbar,K.L. and Mitchell,D.A. (2015)
A prevalent peptide-binding domain guides ribosomal natural
product biosynthesis. Nat. Chem. Biol., 11, 564–570.

56. Dorrestein,P.C., Zhai,H., McLafferty,F.W. and Begley,T.P. (2004)
The biosynthesis of the thiazole phosphate moiety of thiamin: the
sulfur transfer mediated by the sulfur carrier protein ThiS. Chem.
Biol., 11, 1373–1381.

57. Fuchs,S.W., Lackner,G., Morinaka,B.I., Morishita,Y., Asai,T.,
Riniker,S. and Piel,J. (2016) A Lanthipeptide-like N-Terminal leader
region guides peptide epimerization by radical SAM epimerases:
implications for RiPP evolution. Angew. Chem. Int. Ed., 55,
12330–12333.

58. Noike,M., Matsui,T., Ooya,K., Sasaki,I., Ohtaki,S., Hamano,Y.,
Maruyama,C., Ishikawa,J., Satoh,Y., Ito,H. et al. (2015) A peptide
ligase and the ribosome cooperate to synthesize the peptide
pheganomycin. Nat. Chem. Biol., 11, 71–76.

59. Yamanaka,K., Reynolds,K.A., Kersten,R.D., Ryan,K.S.,
Gonzalez,D.J., Nizet,V., Dorrestein,P.C. and Moore,B.S. (2014)
Direct cloning and refactoring of a silent lipopeptide biosynthetic
gene cluster yields the antibiotic taromycin A. Proc. Natl. Acad. Sci.
U.S.A., 111, 1957–1962.

60. Kikuchi,G., Yoshida,T. and Noguchi,M. (2005) Heme oxygenase and
heme degradation. Biochem. Biophys. Res. Commun., 338, 558–567.

61. Judge,R.H., Moule,D.C. and Goddard,J.D. (1987) Thioamide
spectroscopy: long path length absorption and quantum chemical
studies of thioformamide vapour, CHSNH2/CHSND2. Can. J.
Chem., 65, 2100–2105.
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65. Garcı́a,I., Vior,N.M., González-Sabin,J., Braña,A.F., Rohr,J.,
Moris,F., Méndez,C. and Salas,J.A. (2013) Engineering the
biosynthesis of the polyketide-nonribosomal peptide collismycin A
for generation of analogs with neuroprotective activity. Chem. Biol.,
20, 1022–1032.

66. Ye,S., Molloy,B., Braña,A.F., Zabala,D., Olano,C., CortEs,J.,
Moris,F., Salas,J.A. and Méndez,C. (2017) Identification by genome
mining of a type I polyketide gene cluster from Streptomyces
argillaceus involved in the biosynthesis of pyridine and piperidine
alkaloids argimycins P. Front Microbiol., 8, 194.

67. Khaliullin,B., Ayikpoe,R., Tuttle,M. and Latham,J.A. (2017)
Mechanistic elucidation of the mycofactocin-biosynthetic
radicalS-adenosylmethionine protein, MftC. J. Biol. Chem., 292,
13022–13033.

68. Bushin,L.B., Clark,K.A., Pelczer,I. and Seyedsayamdost,M.R. (2018)
Charting an unexplored streptococcal biosynthetic landscape reveals
a unique peptide cyclization motif. J. Am. Chem. Soc., 140,
17674–17684.



Nucleic Acids Research, 2019, Vol. 47, No. 9 4637

69. Morinaka,B.I., Lakis,E., Verest,M., Helf,M.J., Scalvenzi,T.,
Vagstad,A.L., Sims,J., Sunagawa,S., Gugger,M. and Piel,J. (2018)
Natural noncanonical protein splicing yields products with diverse
�-amino acid residues. Science, 359, 779–782.

70. Skinnider,M.A., Merwin,N.J., Johnston,C.W. and Magarvey,N.A.
(2017) PRISM 3: expanded prediction of natural product chemical
structures from microbial genomes. Nucleic Acids Res., 45,
W49–W54.


