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Abstract: Glutaredoxins (GRXs), important components of the intracellular thiol redox system,
are involved in multiple cellular processes. In a previous study, we identified five GRXs in the
apicomplexan parasite, Neospora caninum. In the present study, we confirmed that the GRXs S14
and C5 are located in the apicoplast, which suggests unique functions for these proteins. Although
single-gene deficiency did not affect the growth of parasites, a double knockout (∆grx S14∆grx C5)
significantly reduced their reproductive capacity. However, there were no significant changes in redox
indices (GSH/GSSG ratio, reactive oxygen species and hydroxyl radical levels) in double-knockout
parasites, indicating that grx S14 and grx C5 are not essential for maintaining the redox balance in
parasite cells. Key amino acid mutations confirmed that the Cys203 of grx S14 and Cys253/256 of grx C5
are important for parasite growth. Based on comparative proteomics, 79 proteins were significantly
downregulated in double-knockout parasites, including proteins mainly involved in the electron
transport chain, the tricarboxylic acid cycle and protein translation. Collectively, GRX S14 and GRX
C5 coordinate the growth of parasites. However, considering their special localization, the unique
functions of GRX S14 and GRX C5 need to be further studied.

Keywords: Neospora caninum; apicoplast; glutaredoxin S14; glutaredoxin C5

1. Introduction

Neospora caninum is an obligate, intracellular, apicomplexan parasite that is found
worldwide. This parasite causes spontaneous abortion in cattle and neural system dysfunc-
tion in dogs and results in major economic losses in the breeding industry [1–3]. During its
life cycle, N. caninum is exposed to various oxidative stresses, and the parasites develop
complex redox networks to maintain redox balance in different stages [4]. Glutaredox-
ins (GRXs) are ubiquitous oxidoreductases that maintain a cellular redox balance with
the thioredoxin family and catalyse thiol-disulphide exchange reactions by utilizing glu-
tathione (GSH) [5]. The number and localization of GRXs differ by species. Humans have
four GRXs, which are located in the cytoplasm, nucleus and mitochondria; yeast possesses
seven GRXs, located in the cytoplasm, nucleus, mitochondria and endoplasmic reticu-
lum/Golgi [6]. Structurally, GRXs are composed of four β-sheets and three α-helices, with
the β-sheets surrounded by α-helices [6]. GRXs are divided into monothiol (CXXS) GRXs
and dithiol (CXXC) GRXs depending on the number of cysteine residues [7,8]. GRXs are
involved in DNA/RNA synthesis, Fe–S cluster assembly, cell signal transduction, apoptosis
and cell proliferation [5,6].

In parasites, GRXs are distributed in different subcellular compartments. For example,
Trypanosoma brucei has five GRXs: two dithiol TbGRXs (TbGRX1 and TbGRX2) and three
monothiol GRXs. GRX1 contains the same CPYC active site as human GRX1 but exhibits
a greater amino acid identity (39%) with the human mitochondrial GRX2 (CSYC active
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site). TbGRX1 coordinates iron–sulphur clusters [9]. TbGrx2 is not essential in vitro or
in vivo during the bloodstream stage, but, under fever-like conditions in a mammalian host,
TbGrx2 deficiency leads to an increase in thermotolerance. In the procyclical stage, TbGrx2
deficiency significantly affects the morphology of the parasite and leads to irreversible
proliferative arrest [10]. The three groups of monothiol GRXs localize to the mitochondria
and cytoplasm and are related to the synthesis of iron–sulphur clusters [11]. Additionally,
Trypanosoma cruzi GRX (TcGRX) is linked to apoptosis-like cell death during infection.
In the amastigote stage, the overexpression of TcGRX increases its general resistance to
oxidative damage and intracellular replication [12]. Plasmodium falciparum expresses three
monothiol GRX-like proteins (GLP1, GLP2, GLP3), which localize to the cytoplasm and
mitochondria. P. falciparum also has one typical dithiol GRX (PfGRX1), which localizes to
the cytoplasm [13]. To further elucidate the redox-based, parasite–host cell interactions
and the mechanisms of antimalarial action, the redox-sensitive, green, fluorescent protein
is coupled to human Grx 1 (hGrx1-roGFP2), with pH and glutathione-dependent redox
potential in different subcellular compartments detected via the targeted transfer of hGrx1-
roGFP2 into the parasite cytoplasm, mitochondria, or apicoplast [4,14,15].

Our previous study found that N. caninum has five GRXs (GRX1, GRX3, GRX S14, GRX
C5 and GRX5). GRX1 and GRX3 are located in cytoplasm, and GRX1 deficiency resulted
in a marked reduction in the secretion of microneme proteins, significantly affecting the
invasion and egress processing of the parasites [16]. In contrast, GRX5 localized to the
mitochondria (unpublished), whereas GRX S14 and GRX C5 have yet to be explored. In the
present study, we (i) identified two GRXs (GRX S14 and GRX C5) in N. caninum located in
the apicoplast, (ii) verified that single-gene deletion does not affect the growth of parasites
but that double-gene deletion slows their growth, (iii) confirmed that the cysteines of the
CXXC/CXXS motif in GRX S14 and GRX C5 are important for parasite growth, and (iv)
found that the levels of the electron transport chain (ETC) and tricarboxylic acid cycle
(TCA) cycle proteins in ∆grx S14 ∆grx C5 parasites were downregulated.

2. Results

In this study, we found that GRX C5 has a typical CXXC motif and is a dithiol GRX;
GRX S14 has a typical CXXS motif and is a monothiol GRX (Figure 1a). Sequence alignment
shows that GRX C5 and GRX S14 has the highest homology with Toxoplasma gondii GRX
C5 and GRX S14, respectively (Figure 1a,b). According to the tertiary structure prediction,
GRX C5 contains a GSH binding motif (CPYC, TVP, CSD motif, Lys and Gln/Arg residues)
(Figure S1a), and GRX S14 possesses the GSH binding motif of CGYS, as well as Ile19,
Leu60 and Arg94 residues (Figure S1b).

2.1. GRX S14 and GRX C5 Localize to the Apicoplast

To investigate the localization of GRX S14 and GRX C5, we introduced a haemag-
glutinin (HA) epitope tag at the C-terminus of GRX S14 and GRX C5 in the N. caninum
wild-type (WT) strain (Nc1) (Figure 2a). Western blotting verified the expected molecular
masses of ~40 kDa for GRX S14-HA and GRX C5-HA (Figure 2b). An immunofluorescence
assay (IFA) revealed that GRX S14 and GRX C5 localized to the apicoplast (Figure 2c).

2.2. GRX S14 and GRX C5 Together Affect the Growth of Parasites, and Their Function Depends
on the CXXC/CXXS Motif

To investigate the function of the GRX S14 and GRX C5 proteins, we generated two
single-gene knockout strains (∆grx C5 and ∆grx S14) and overexpression strains through
CRISPR/Cas9-mediated homologous recombination (Supplementary Figure S1c,d). All strains
were validated using PCR. The plaque formation ability of these strains was analysed, and
the plaque assays showed no obvious difference among the Nc1, single-gene knockout and
overexpression strains (Figure 3a) (∆grx C5, F(2, 56) = 3.104, p = 0.0527; ∆grx S14, F(2, 30) = 2.500,
p = 0.0990). Moreover, the steps of the lytic cycle (invasion, intracellular replication and egress)
were not significantly affected in the gene-edited strains (Figure 3b–d).
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Figure 1. Sequence–structural alignment of the GRX C5 and GRX S14 proteins. (a) Alignment of the 
deduced amino acid sequence of GRX C5 with homologues from other species. The percent homol-
ogy of GRX C5 with each glutaredoxin is shown at the end of the alignment. Regions of high identity 
and similarity between glutaredoxin sequences are shown as black and grey columns, respectively. 
Active site residues are marked with a red letter, and residues involved in interactions with GSH 

Figure 1. Sequence–structural alignment of the GRX C5 and GRX S14 proteins. (a) Alignment of the deduced amino acid
sequence of GRX C5 with homologues from other species. The percent homology of GRX C5 with each glutaredoxin is
shown at the end of the alignment. Regions of high identity and similarity between glutaredoxin sequences are shown as
black and grey columns, respectively. Active site residues are marked with a red letter, and residues involved in interactions
with GSH are marked with a green letter. (b) Alignment of the deduced amino acid sequence of GRX S14 with homologues
from other species. The “*” represent highly conserved amino acid residues.
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marker. Rabbit anti-ENR (red) was used as an apicoplast marker, and the nuclear DNA was stained 
with Hoechst (blue) (bar = 5 μm). 
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Figure 2. Cellular localization of GRX S14 and GRX C5. (a) Strategy for constructing GRX S14-HA and GRX C5-HA parasites.
(b) Western blotting indicated that the HA tag was successfully added. αHA was used to detect GRX S14 and GRX C5;
mouse anti-actin was used as a control. (c) IFA indicated GRX S14 and GRX C5 to both be distributed in the apicoplasts of
parasites. αHA was used to detect GRX S14 and GRX C5 (green), whereas rabbit anti-SRS2 (red) served as a parasite surface
marker. Rabbit anti-ENR (red) was used as an apicoplast marker, and the nuclear DNA was stained with Hoechst (blue)
(bar = 5 µm).

Because the single-gene knockout strains of N. caninum did not exhibit altered growth,
we hypothesized that the GRX S14 and GRX C5 proteins had a synergistic effect on the
growth of the parasites. To test this hypothesis, we constructed double-gene knockout
strains (∆grx C5∆grx S14). PCR verified the successful construction of the ∆grx C5∆grx S14
strain (Figure 4a), and a significant reduction in plaque formation size was observed in the
∆grx C5∆grx S14 parasites compared with the Nc1 parasites (Figure 4b) (t-test: t(58) = 7.758,
p < 0.0001). We further evaluated the influence on ∆grx C5∆grx S14 parasite growth in vivo.
The survival rate of mice infected with the ∆grx C5∆grx S14 parasites was 80%, and that of
mice infected with Nc1 was 40%, indicating a significantly reduced pathogenicity for the
∆grx C5∆grx S14 parasites in mice (Figure 4c). Subsequently, we compared the steps of the
lytic cycle (invasion, intracellular replication and egress) between the Nc1 and ∆grx C5∆grx
S14 parasites. Although the intracellular replication of the ∆grx C5∆grx S14 parasites was
significantly reduced (Figure 4d) (F(3, 8) = 5.005, p = 0.0305), the invasion and egress were
not affected (Figure 4e,f) (t-test: t(2) = 1.901, p = 0.1977; t(2) = 0.5156, p = 0.6575).



Int. J. Mol. Sci. 2021, 22, 11946 4 of 13
Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 3. Lack of GRX S14 and GRX C5 alone did not affect the growth of parasites. (a) Plaque assays 
comparing growth of wild-type, knockout and overexpression parasites. Each well contained 300 
parasites, and plaques were stained for 9 days. Plaque areas were counted by randomly selecting at 
least 20 plaques and measuring the pixel point with Photoshop C6S software (Adobe, USA). Data 
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with anti-NcSRS2 antibodies and Hoechst staining. The invasion ratio of wild-type, knockout, over-
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vided by the number of total cells in one horizon. Data are the mean ± SD (error bars) of three inde-
pendent experiments. Statistical analysis showed no significant difference (Δgrx C5, F(2, 6) = 0.06720, 
p = 0.9357; Δgrx S14, F(2, 6) = 2.238, p = 0.1879). (c) Intracellular replication of different parasite strains 
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Statistical analysis showed no change (Δgrx C5, F(8, 15) = 0.6462, p = 0.7287; Δgrx S14, F(8, 15) = 0.6732, p 
=0.7080). (d) The egress ability of parasites was assessed after treatment with the calcium ionophore 
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vival curve of GraphPad Prism (San Diego, CA, USA). 
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wild-type, knockout and overexpression parasites. Each well contained 300 parasites, and plaques were stained for 9 days.
Plaque areas were counted by randomly selecting at least 20 plaques and measuring the pixel point with Photoshop C6S software
(Adobe, San Jose, CA, USA). Data were compiled from three independent experiments. (b) A total of 1 × 105 parasites were
inoculated on human foreskin fibroblast (HFF) cells in 12-well plates and cultured for 24 h. IFA was performed with anti-NcSRS2
antibodies and Hoechst staining. The invasion ratio of wild-type, knockout, overexpression and complementary parasites was
based on the number of parasite-infecting cells divided by the number of total cells in one horizon. Data are the mean± SD (error
bars) of three independent experiments. Statistical analysis showed no significant difference (∆grx C5, F(2, 6) = 0.06720, p = 0.9357;
∆grx S14, F(2, 6) = 2.238, p = 0.1879). (c) Intracellular replication of different parasite strains was compiled from three separate
assays, with 100 total PVs of each strain counted in each assay. Statistical analysis showed no change (∆grx C5, F(8, 15) = 0.6462,
p = 0.7287; ∆grx S14, F(8, 15) = 0.6732, p =0.7080). (d) The egress ability of parasites was assessed after treatment with the calcium
ionophore A23187. IFA was employed to detect the integrity of the parasitophorous vacuole (PV). The average number of
ruptured PVs was determined by counting 100 random vacuoles per slide. Statistical analysis showed no significant difference
(∆grx C5, F(2, 6) = 2.734, p = 0.1432; ∆grx S14, F(2, 6) = 3.622, p = 0.0930). (e) Mouse survival after infection with different strains.
BALB/c mice (n = 5) were injected intraperitoneally with 8× 106 doses of parasites. Statistical analysis was performed using the
survival curve of GraphPad Prism (San Diego, CA, USA).

To assess the importance of the putative CXXS active site of GRX S14 and the CPFC
active site of GRX C5, we used ∆∆grx S14 grx C5 as the base strain and generated a
complementary grx S14 sequence with a mutation of the cysteine in the CXXS active site
to alanine at the UPRT site (com∆grx S14AXXS∆grx C5). In the same way, we constructed
the grx C5 mutant strain (∆grx S14com∆grx C5AXXA), grx C5 complemented strain (∆grx
S14com∆grx C5) and grx S14 complemented strain (com∆grx S14∆grx C5). The phenotype
assays showed that complementing the full sequence of grx S14 or grx C5 could restore the
growth ability of the parasites (Figure 5) (F(2, 57) = 21.77, p < 0.0001), but complementing
the mutant sequence could not restore growth (F(2, 57) = 1.126, p = 0.3316).
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statistically significant results. (e) Invasion assay of Δgrx S14 Δgrx C5 and Nc1 parasites. (f) The 
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cation of the ∆grx S14 ∆grx C5 strain. PCR1 and PCR2 suggest successful homologous integration;
in PCR3 and PCR4, fragments of grx S14 and grx C5 were amplified. (b) Plaque assay comparing
the growth of wild-type and knockout parasites. (c) Mouse survival after infection with different
strains. (d) Intracellular replication of ∆grx S14 ∆grx C5 compared with Nc1 parasites. Asterisks
indicate statistically significant results. (e) Invasion assay of ∆grx S14 ∆grx C5 and Nc1 parasites.
(f) The egress ability of ∆grx S14 ∆grx C5 and Nc1 parasites. Statistical analysis was performed using
GraphPad Prism (San Diego, CA, USA). n.s: not significant means, *** p < 0.001, and * p < 0.01.
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2.3. Redox Homeostasis of ∆grx C5∆grx S14 Parasites Was Not Affected

As GRXs play crucial roles in redox-dependent signalling pathways by utilizing GSH
as a direct electron donor [6], we measured the GSH/GSSG content in ∆grx C5∆grx S14
parasites. The results showed no significant differences in the GSH/GSSG ratio between
∆grx C5∆grx S14 parasites and Nc1 parasites (Figure 6a) (t-test: t(2) = 0.3968, p = 0.7299).
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liquid nitrogen and thawing at 37 ◦C. The supernatant of each sample was collected for GSH and
GSSG measurement. The GSH/GSSG ratio was calculated, as represented by bar charts according
to three independent experiments. (b) Reactive oxygen species (ROS) levels of parasites under
oxidative stress were determined by FACS analysis using DCFH-DA, whereby the mean fluorescence
intensity reflected the ROS level in parasites. (c) The hydroxyl radical (OH) content was detected by
FACS analysis, with the mean fluorescence intensity reflecting the hydroxyl radical level. n.s: not
significant means.

GRXs play an important role in the reactive oxygen species (ROS) antioxidant system.
To examine redox homeostasis, we compared the ROS and hydroxyl radical (OH) levels
between ∆grx C5∆grx S14 and Nc1 parasites and found no significant differences between
the two strains (Figure 6b,c) (t-test: t(2) = 0.9853, p = 0.4284; t(2) = 2.371, p = 0.1411). These
data indicate that the double-gene deficiency of GRX C5 and GRX S14 does not affect the
redox homeostasis of tachyzoites.

2.4. GRX S14 and GRX C5 Are not Involved in the Control of Protein Trafficking to the Apicoplast

Previous research showed that thioredoxins contributed to the control of protein
trafficking to the apicoplast [17]. The localization of the apicoplast proteins, the enoyl acyl
carrier protein reductase (ENR) and acyl carrier protein (ACP), was observed in Nc1, ∆grx
S14∆grx C5, com∆grx S14AXXS∆grx C5, ∆grx S14com∆grx C5AXXA, ∆grx S14com∆grx C5
and com∆grx S14∆grx C5. As the localization of the apicoplast proteins ENR and ACP in
the deletion or mutant strain was normal (Figure 7), GRX S14 and GRX C5 do not appear
to influence protein trafficking to the apicoplast.

2.5. Double-Gene Depletion Affects the Expression of Several Proteins

To explore which pathways of the parasite are affected by double-gene depletion, we
performed a comparative proteomic analysis between ∆grx S14∆grx C5 and the Nc1 para-
sites. The ∆grx S14∆grx C5 parasites showed a significant downregulation of 29 proteins
(fold change > 2, p-value < 0.05, Figure 8a). According to GO enrichment analysis, the
biological functions of the proteins with downregulated expressions were mainly related
to the electron transport chain and tricarboxylic acid cycle (Figure 8b,c).
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3. Discussion

GRXs are ubiquitous oxidoreductases that maintain a cellular redox equilibrium
and catalyse thiol-disulphide exchange reactions by utilizing GSH [5]. GRXs are classi-
fied as monothiol (CXXS) or dithiol (CXXC) GRXs depending on the number of cysteine
residues present in the redox active site [7,8]. The biological functions of GRXs include
DNA/RNA synthesis, Fe–S cluster assembly, cell signal transduction, apoptosis and cell
proliferation [5,6]. Only a few GRXs from parasites have been reported, mainly for try-
panosomes and malaria parasites [10,15].

We identified five putative GRXs in N. caninum. Our previous study showed that
the GRX1 (NcGRX1) and GRX3 (NcGRX3) of N. caninum are located in the cytoplasm [16]
and NcGRX5 in mitochondria. In the present study, we found that GRX S14 and GRX C5
localize to the apicoplasts. The apicoplast is an essential, nonphotosynthetic plastid found
in related apicomplexan pathogens [18,19]. This organelle is the product of a secondary
endosymbiosis event and is homologous to the chloroplasts of algae and plants [19]. There-
fore, the functions of GRX S14 and GRX C5 might be similar to those of plant GRXs. GRXs
have a crucial role in the developmental process of A. thaliana. For example, the lack of
Class I GRX C1 and GRX C2 proteins in Arabidopsis can lead to an impaired embryonic
development and even cause death [20]. Arabidopsis GRX S14, GRX S15, GRX S16 and
GRXS17 are Class II GRXs. GRX S14 is composed of two domains: an N-terminal domain
with an endonuclease activity and a C-terminal domain with a GRX motif [21]. The silenc-
ing of tomato GRXS16 results in an increased sensitivity to osmotic pressure [22]. GRX S17
consists of a TRX-like domain and three GRX domains and plays a key role in controlling
plant development. The A. thaliana GRX S17 mutant strain displays a slowed primary
root growth and impaired flowering at 28 ◦C [23]. This mutant strain exhibits severe
nutritional and reproductive development impairment under a long-day photoperiod [24].
GRX S14 and GRX S15 are associated with oxidative stress, high temperature and arsenic
exposure [25].

One study showed that NcGRX1 is important for microneme protein-mediated para-
site growth, but that NcGRX3 deficiency does not affect parasite growth [16]. Our study
showed that the deletion of GRX S14 or GRX C5 alone did not affect the growth of N. can-
inum, which was consistent with previous research on Arabidopsis [25]. GRX C5 has a
CPFC active site and is homologous to Arabidopsis Class I GRX C5. AtGRXC5, which
has two forms, is expressed in Escherichia coli. The monomeric apoprotein of AtGRXC5
exhibits a deglutathionylation activity in mediating the recycling of the plastidial methion-
ine sulfoxide reductase B1 and peroxiredoxin IIE. The dimeric holoprotein of AtGRXC5
incorporates a (2Fe–2S) cluster [26]. In our study, single-gene deletion did not affect the
growth of parasites, whereas the simultaneous deletion of both apicoplast GRXs reduced
their growth. These results revealed that GRX S14 or GRX C5 might have a synergistic
effect during parasite growth. In addition, parasites with a mutated cysteine in the CPFC
motif of GRX C5 or the CGYS motif of GRX S14 displayed a reduced growth, indicating
that these motifs were the key active sites of each GRX.

Arabidopsis GRX S14 is a new signalling molecule in plants that regulates the Ca2+

transport activity of CAX1 by interacting with the N-terminal region of CAX1 (cation
exchanger) [27] and protecting against protein oxidative damage [28]. Arabidopsis and
poplar GRX S14 are located in the chloroplast and form a bridge with the (2Fe–2S) cluster
and two external GSH ligands. GRX S14 is used as a scaffold protein for (2Fe–2S) cluster
assembly because it transfers the complete cluster to the receptor protein regulated by
GSH [29,30]. Our previous research revealed that N. caninum GRX1 deficiency decreases
the ratio of reduced GSH/GSSG, causing a significant accumulation of hydroxyl radicals
in parasites, and increases the number of apoptotic cells under oxidative stress (H2O2)
conditions [16]. In the present study, GRX S14 and GRX C5 double-gene deletion did
not affect the GSH/GSSG ratio of parasites, nor did it alter levels of ROS and OH. Thus,
GRX S14 and GRX C5 may not have important roles in regulating the redox balance in
N. caninum.
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In addition, glutaredoxin and thioredoxin are oxidoreductases that together maintain a
redox balance in cells. Previous studies have found that thioredoxin 1 of T. gondii is located
in the apicoplast and involved in the control of protein trafficking to this organelle [17].
However, our results showed that a lack of both GRX proteins or mutations in the key
active site did not affect localization of the apicoplast proteins ACP and ENR, indicating
that the apicoplast GRX might not be involved in apicoplast protein import.

Apicoplast processes involve multiple metabolic pathways, including the synthesis of
haem, type II fatty acids, and isoprenoid precursors, among others [31]. After the double
deletion of grx S14 and grx C5, only 29 proteins were downregulated more twice, and
no known apicoplast proteins were identified. Surprisingly, the downregulated proteins
are involved in the mitochondrial electron transport chain (ETC) and TCA cycle. This
result suggests that GRX S14 and GRX C5 may not be involved in apicoplast function
but instead may be related to the ETC and TCA cycle. Regardless, the mechanism by
which apicoplast proteins are involved in the mitochondrial ETC or TCA process remains
unclear. In summary, we identified two new GRXs localized to the apicoplasts. Double-
gene deletion resulted in a significant growth defect and caused the downregulation of the
expression of proteins involved in the electron transport chain and TCA cycle.

4. Materials and Methods
4.1. Parasites and Cell Culture

The N. caninum wild-type (WT) strain (Nc1) was used as the parental parasite for
genetically engineered strains. Parasites were grown in vitro on HFF cells using 2% FBS at
37 ◦C and 10% CO2.

4.2. Construction of Transgenic Parasite Lines

The CRISPR/Cas9 system was used to generate grx S14 and grx C5 deficiency (∆grx
S14 and ∆grx C5 parasites). The EuPaGDT Library in ToxoDB was used to design the gRNA
targeting sites of the plasmids pCRISPR-CAS9-grx S14 and pCRISPR-CAS9-grx C5. The
basic plasmid template was CRISPR-CAS9-GRX1, which was constructed in our previous
study [16]. Cas9 upstream and downstream fragments containing gRNA sequences were
amplified and ligated by seamless cloning (Vazyme Biotech, Co., Ltd., Nanjing, China).
For disruption of the grx S14 locus, dihydrofolate reductase (DHFR) was inserted into
the 3′ flank and 5′ flank of the grx S14 regions and ligated into the plasmid backbone
carrying ampicillin resistance. For construction of homologous recombinant plasmids of
grx S14 (p5′grx S14-DHFR-3′grx S14), the 3′ flanking and 5′ flanking sequences of the grx
S14 gene were amplified from genomic DNA of Nc1 parasites. The pCRISPR-CAS9-grx
S14 and p5′grx S14-DHFR-3′grx S14 plasmids were co-transfected into Nc1 parasites, and
the parasites were screened using pyrimethamine. Monoclonal screening was carried out
by a limited dilution method, with reference to a previous study [32]. ∆grx S14 parasites
were identified by PCR followed by sequencing. Construction of ∆grx C5 parasites was
the same as that for ∆grx S14. For generation of double-gene knockout parasites (∆grx
S14∆grx C5), the p5′grx C5-CAT-3′grx C5 homologous plasmid was constructed in the
same way. The pCRISPR-CAS9-grx C5 and p5′grx C5-CAT-3′grx C5 homologous plasmids
were co-transfected into ∆grx S14 parasites and then screened with chloramphenicol drugs.
Finally, primers were designed to identify the monoclonal strains.

For the generation of ∆grx S14∆grx C5 complemented parasites (∆grx S14com∆grx C5
and com∆grx S14∆grx C5), the UPRT gene was disrupted by the UPRT-specific CRISPR-
Cas9 plasmid and replaced with the p5′UPRT-Tubulin promoter-DHFR-grx S14/grx C5-
HA-3′UPRT sequence, as described previously [16]. The grx S14 and grx C5 expression se-
quences were amplified using Nc1 cDNA and inserted into the p5′UPRT-Tubulin promoter-
DHFR-Grx1-HA-3′UPRT plasmid (preserved in the Key Laboratory of Animal Parasitology,
Beijing City, China) by seamless cloning (Vazyme Biotech, Co., Ltd., Nanjing, China).
The p5′UPRT-Tubulin promoter-DHFR-grx S14/grx C5-HA-3′UPRT and UPRT-specific
CRISPR-Cas9 plasmids were co-transfected into the ∆grx S14∆grx C5 parasites and then
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screened with fluorodeoxyribose (FUDR) drugs. The construction strategy for the over-
expression strain was the same as that for the complementary strain. The homologous
recombinant plasmid and CRISPR/CAS9-UPRT plasmids were co-transfected into Nc1
parasites. For construction of cysteine mutant parasites, the cysteine of grx S14 in the
CGYS motif (com∆grx S14AXXS∆grx C5) and grx C5 in the CPFC motif (∆grx S14com∆grx
C5AXXA) were mutated to alanine. The construction method was the same as that for the
complemented parasites. The mutant sequences of grx C5AXXA and grx S14AXXS were
checked by PCR.

To obtain GRX1-HA parasites, we constructed a pLIC-DHFR-grx S14-HA plasmid for
inserting a 3×HA tag into the grx S14 gene 3′ end. The 3′ flank and 5′ flank regions of grx
S14 were amplified from the DNA of the Nc1 parasites and inserted into the backbone of
the pLIC-DHFR-HA plasmid using seamless cloning (Vazyme Biotech, Co., Ltd., Nanjing,
China). The construction strategy of pCRISPR-CAS9 was consistent with the above method.
The pLIC-DHFR-grx S14-HA plasmid and pCRISPR-CAS9 plasmids were co-transfected
into Nc1 parasites and screened with pyrimethamine.

4.3. Immunoblotting and Immunofluorescence Assays

Immunoblotting was performed as previously reported [16]. Briefly, tachyzoites were
collected and lysed with RIPA lysis buffer (Huaxinbio, Beijing, China). Mouse anti-HA
(MAb, 1:5000, Sigma, St. Louis, MO, USA) and anti-actin (1:5000) were used as primary
antibodies. For IFA, tachyzoite-infected HFFs were treated with 4% paraformaldehyde
(PFA) and then permeated with 0.25% Triton X-100, followed by blocking with 3% BSA.
Subsequently, the samples were incubated with primary mouse anti-HA (1:100), mouse anti-
ACP (1:300), rabbit anti-ENR (1:200) and rabbit anti-SRS2 (1:400) for 1 h; secondary FITC- or
Cy3-conjugated antibodies were used for labelling. DNA was stained with Hoechst 33258
(Sigma, St. Louis, MO, USA). Images were observed using a Leica confocal microscope
system (Leica, TCS SP52, Wetzlar, Hesse, Germany).

4.4. Phenotypic Assays
4.4.1. Plaque Assays

HFFs were grown in 12-well plates for three days, after which 300 tachyzoites were
inoculated into the cells. After the culture was left undisturbed for 9 days, the infected
HFFs were fixed with 4% PFA and observed by crystal violet staining. The plaque area was
counted based on pixels using Photoshop C6S software (Adobe, San Jose, CA, USA), and
data were compiled from three independent experiments.

4.4.2. Invasion Assay and Intracellular Replication Assay

Parasites were used to infect fresh HFF cells seeded on coverslips for 1 h and washed
with PBS to remove noninvaded parasites. After 24 h, invasion and intracellular replication
were evaluated by IFA using rabbit anti-SRS2 antibodies and Hoechst staining. For the
invasion assay, the percentage of invasion was represented as the number of vacuoles
per host cell. For the intracellular replication assay, the number of parasites per vacuole
for each strain was determined by counting at least 100 vacuoles under a fluorescence
microscope (Olympus Co., Tokyo, Japan).

4.4.3. Egress Assay

HFF cells seeded on coverslips were infected with parasites for 36 h. Egress was
triggered with 2 µM A23187 Ca2+ ionophore (Sigma, St. Louis, MO, USA) for 3 min and
then fixed with PFA. The ruptured vacuoles and unbroken vacuoles were counted per slide
to evaluate the egress rate. One hundred random fields of vision were counted per slide to
evaluate the egress ratio. Three independent experiments were performed.
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4.4.4. N. caninum Mouse Infection

BALB/c mice purchased from Merial Animal Health Co., Ltd. (Beijing, China), raised
in a barrier environment in sterile cages and fed sterilized food and clean water ad libitum.
Animals were acclimated to these conditions for one week prior to the experiment. BALB/c
mice (five mice per strain) were infected intraperitoneally with 8 × 106 parasites. The
period for observing the survival was 30 days. The mice were humanely euthanized
after 30 days.

4.4.5. Detection of Reactive Oxygen Species

The fluorescence intensity of parasites with green fluorescence generated by DCF can
reflect the ROS level in parasites. The ∆∆grx S16 grx C5 and WT parasites were grown in
HFF cells seeded on coverslips. After 24 h, the parasites were purified and treated with
30 µM DCFH-DA at 37 ◦C for 1 h and resuspended in 100 µL of PBS after two washes.
Finally, 100 µL of parasites was analysed by flow cytometry. The mean fluorescence
intensity was used to indicate the amount of ROS in the parasites.

4.4.6. Detection of Hydroxyl Radicals

Parasites were grown in HFF cells for 24 h and filtered using 5-µm polycarbonate
membranes. The concentration of hydroxyl radicals in parasites was detected using a
hydroxyl radical detection kit using hydroxyphenyl fluorescein (2-[6-(4′-hydroxy) phenoxy-
3H-xanthen-3-on-9-yl] benzoic acid, HPF) according to the manufacturer’s instructions
(Genmed Scientific, Inc., Boston, MA, USA) and a microplate reader (Synergy H(1), Biotek,
Winooski, VT, USA) at 590 nm.

4.4.7. GSH and GSSG Determination

A total of 1×107 parasites of each strain were harvested and lysed by freezing in
liquid nitrogen and thawing at 37 ◦C in three cycles. The supernatant of each sample was
collected for GSH and GSSG measurement using a GSH and GSSG Assay Kit according to
the manufacturer’s instructions (Beyotime, Shanghai, China).

4.4.8. Comparative Proteomics Analysis

Intracellular tachyzoites of the Nc1 and ∆∆grx S14grx C5 strains cultured in HFF cells
were subjected to sequential syringe lysis and filtered through a 5-µm membrane. The
samples were washed twice with ice-cold PBS, minced individually with liquid nitrogen
and sent to Shanghai Applied Protein Technology Co., Ltd. for global proteome analysis
(Shanghai, China).

4.5. Statistical Analysis

Graphs were created using GraphPad Prism (San Diego, CA, USA). All bar graphs and
scatter plots depict the mean with standard deviations shown as error bars. All data were
analysed with the t-test and two-way ANOVA. p values are represented by asterisks in the
figures as follows: * p < 0.05, ** p < 0.01, and *** p < 0.001. We consider all p-values < 0.05 to
be significant.
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