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Graft versus host disease (GVHD) is one of the main causes of mortality and the reason for
up to 50% of morbidity after hematopoietic stem cell transplantations (HSCT) which is the
treatment of choice for many blood malignancies. Thanks to years of research and
exploration, we have acquired a profound understanding of the pathophysiology and
immunopathology of these disorders. This led to the proposition and development of
many therapeutic approaches during the last decades, some of them with very promising
results. In this review, we have focused on the recent GVHD treatments from classical
chemical and pharmacological prophylaxis to more innovative treatments including gene
therapy and cell therapy, most commonly based on the application of a variety of
immunomodulatory cells. Furthermore, we have discussed the advantages and
potentials of cell-free therapy as a newly emerging approach to treat GVHD. Among
them, we have particularly focused on the implication of the TNFa-TNFR2 axis as a new
immune checkpoint signaling pathway controlling different aspects of many
immunoregulatory cells.

Keywords: hematopoietic stem cell transplantation, graft versus host disease, T cells, immunoregulation, tolerance
induction, cell therapy, TNFa-TNFR2 signaling pathway
INTRODUCTION

Bone marrow transplantation (BMT), also called hematopoietic stem cell transplantation (HSCT), is
a process of infusing stem cells taken from healthy donors into recipient patients. Though initially
developed to treat damage caused by exposure to high doses of radiation, today allogeneic HSCT is
the treatment of choice for many blood malignancies such as acute leukemias, myelodysplastic
syndrome and lymphomas (1), and inherited or acquired non-malignant blood disorders, such as
sickle-cell anemia and aplastic anemia (2, 3).
Abbreviations: ATG, anti-thymocyte globulin; BM, bone marrow; CD, cluster of differentiation; EVs, extracellular vesicles;
GVHD, graft versus host disease; GVL, graft versus leukemia; GVT, graft versus tumor; HSCs, hematopoietic stem cells; HSCT,
hematopoietic stem cell transplantation; IL, interleukin; ILC, innate lymphoid cells; MSCs, mesenchymal stromal cells; NK,
natural killer cells; PB, peripheral blood; TBI, total body irradiation; Tc, cytotoxic T cells; TCR, T cell receptor; Teffs, effector T
cells; Th, T helper cells; TNFR2, tumor necrosis factor receptor 2; TNFa, tumor nerosis factor alpha; Treg, regulatory T cells;
UCB, umbilical cord blood.
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In allogeneic HSCT, patients first receive a conditioning
regimen consisting of combination chemotherapy sometimes
associated with radiotherapy and T-cell-depleting antibodies.
Patient conditioning is followed by the infusion of donor HSCs
which could be harvested from the bone marrow (BM) or, more
commonly nowadays, from the peripheral blood (PB) of donors
that have been treated with granulocyte colony-stimulating
factor (G-CSF) to induce the release of immature hematopoietic
progenitors into the circulation. BM cells and G-CSF-mobilized
peripheral blood stem cells (PBSCs) are both enriched in
hematopoietic progenitors; however, they also contain mature
CD4+ and CD8+ T cells. In general, donor T cells present in the
graft are essential for three main purposes: 1) They are involved in
hematopoietic engraftment (4). 2) Reconstitution of T cells
immunity (particularly in adults with reduced thymic function,
i.e. the majority of transplanted patients, as recipients’ age has
significantly increased over the last 2 decades) (5). 3) Mediating a
potent beneficial antitumor effect, known as graft versus leukemia/
tumor effect (GVL/GVT) (6).

Unlike solid organ transplantation, the main reason to apply
HSCT is not only to replace a non-functioning tissue, but to
benefit from a strong GVL/GVT effect. About 60 years ago, Barnes
and Loutit suggested that BM transplantation was associated with
an anti-tumor effect that could not be explained by pre-
transplantation chemotherapy or irradiation (7). Furthermore,
Butturini showed the loss of anti-tumor effect after T cell depletion
(8). The first precise work focused on GVL effect was conducted
by Horowitz et al., on a sample of 2,254 patients who received BM
graft. Horowitz demonstrated that the relapse risk of leukemia was
correlated with the occurrence of GVHD, mostly in its chronic
presentation; i.e. those patients developing chronic GVHD had a
lower risk of relapse as compared with patients developing only
acute GVHD or no GVHD at all. On the other hand, the highest
risk of leukemia relapse was observed among recipients of T cell-
depleted grafts or in case of a syngeneic donor (6). In parallel, the
concept that allogeneic cells have an anti-leukemia effect
independent of GVHD is supported by studies on mice, where
T cells with GVL but not GVHD activity were identified (9). This
supports the independency of GVHD from the GVL effect at least
in mouse models. Today we clearly know that these effects result
from the recognition of residual malignant host tumor cells and
other non-malignant residual cells by alloreactive donor T cells
within the graft. In addition, NK cells have been also shown to
have anti-tumoral activities (10). Other studies gave rise to the
hypothesis that NK cells attack targets that do not express ‘‘self’’
MHC class I molecules (11). Interestingly, due to the presence of
killer cell immunoglobulin-like receptors (KIRs), MHC class I
receptors, NK cells can distinguish between normal and tumoral
cells and kill those that do not haveMHC class I molecules specific
for their KIRs (12).

Despite the beneficial effects, several serious complications
might occur after HSCT. One of the principle causes of post-
HSCT mortality is GVHD, which is also a major cause of
morbidity in up to 50% of transplanted recipients (13).

Around 50 years ago, GVHD was initially reported by Barnes,
Loutit, and Micklem as a ‘‘secondary disease of radiation chimera’’
Frontiers in Immunology | www.frontiersin.org 2
and was classically defined by Billingham as a syndrome in which
donor immunocompetent cells recognize and attack host tissues
in immuno-compromised allogeneic recipients (14, 15).
Billingham formulated three conditions for the development
of GVHD:

1. The graft must contain immunologically competent cells.
Mature T cells are the principle immunocompetent cells of
the graft that are responsible for development of GVHD.
Moreover, the severity of GVHD is directly correlated with
the number of transfused T cells (16).

2. The recipient must express tissue antigens that are not present in
the transplant donor. The incompatibility between donor’s and
recipient’s tissues, in particular MHCs (Major Histocompatibility
Complex), known in human as HLA (Human Leukocyte
Antigen), is directly correlated with the incidence of GVHD
(17). Today, thanks to a better understanding of the exact
immunological bases of GVHD, we are sure that not only
differences of MHCs, but also the diversity of minor
histocompatibility antigens could cause this disease. In full HLA-
matched allogeneic HSCT, minor H antigens disparities between
donor and recipient are associated with severe GVHD (18, 19).

3. The patient must be incapable of rejecting the graft. Since the
presence of alloreactive recipient T cells would cause the
rejection of the allograft, recipients must primarily undergo
immunosuppressive treatments.

In 2006, these old criteria have been revised with the addition
of a fourth and essential condition: donor lymphocytes must be
able to migrate and home to host target tissue of GVHD. T cell
have the necessary combination of homing and chemokine
receptors to interact with the endothelium at the target tissues (20).

As mentioned earlier, it is now clear that the main
immunologically competent cells in the triggering of acute
GVHD are donor T cells of the blood or bone marrow
transplants (21). Generally, patients whose immune systems
are suppressed and receive white blood cells from another
individual are at high risk of developing the disease. However,
GVHD can seldom develop in various clinical settings other than
HSCT, such as solid organ transplantation when T cells within
the donor’s tissues are not eliminated, or after transfusion of
blood products (post-transfusion GVHD) (22–24).

In humans, GVHD is either acute (aGVHD), which classically
occurs within 100 days of transplant, but can also develop later
following reduced-intensity conditioning (RIC) regimens (“late-
onset acute GVHD”) or chronic (cGVHD), which typically
develops 100 days after transplantation (25–27). The
mechanisms involved in these two manifestations are different;
aGVHD demonstrates an exacerbated inflammatory mechanism,
whereas cGVHD displays autoimmune features.

The development of GVHD and its severity in transplanted
recipients depend on several factors like the donor/recipient HLA-
matching, recipient’s age, genetic polymorphisms, toxicity of the
conditioning regimen, stem cell source (bone marrow versus
peripheral blood), donor/recipient sex pairs (higher risk for
female donor into male recipient) and prophylaxis approach of
December 2020 | Volume 11 | Article 607030
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GVHD (28). Classically, corticosteroids at the dose of 2 mg/kg/day
are the first line treatment of established grade II or higher
aGVHD, but patients with steroid-refractory aGVHD have a
dismal outcome with long term mortality rates that historically
reached 90% (29). In this review, we discuss in detail the current
strategies of prophylaxis and treatments of GVHD. We have
categorized these treatments into classical ones based mostly on
pharmacological prophylaxis and innovative therapies such as
gene, cell and immune therapy of aGVHD.

Classical Pharmacological Prophylaxis
Despite our profound understanding of aGVHD at the molecular
level, the limited successes of established immune therapies for
prevention and treatment of GVHD remain unsatisfactory. This
might be in turn due to the observed controversial effects of the
majority of molecules involved in the pathophysiology of this
disease, thus complicating the establishment of the best
mechanism of prevention. The ideal clinical achievement in
HSCT would be to extenuate harmful effects of donor T cells
while preserving and accentuating GVL/GVT effect, a scenario
that has not been completely yielded yet. Since the main cause of
GVHD is the presence of donor T cells in the graft, most
prophylaxes are focused on either inhibition or depletion of
these T lymphocytes or induction of tolerance.

Inhibition of Alloreactive T Cells
In 1980s the introduction of two new immunosuppressive agents,
Cyclosporine A and Tacrolimus, which prevent T cell activation
Frontiers in Immunology | www.frontiersin.org 3
via inhibiting calcineurin, significantly improved allograft survival
rate. To work, they fix themselves on calcineurin-calmodulin-
Ca2+ complex and inhibit the phosphatase activity of calcineurin,
which in turn stops the translocation of nuclear factor of activated
T cell (NFAT) and NF-kB into nucleus (Figure 1) (30–32),
therefore, hamper the transcription/expression of IL-2 and IL-2
receptor (IL-2R or CD25).

The standard prophylaxis of GVHD is the combination of a
calcineurin inhibitor with methotrexate, a drug that interferes
with alloreactive T cells division (33). In the setting of unrelated
donor transplantation, the addition of anti-thymocyte globulin
(ATG) can reduce the incidence of both acute and chronic
GVHD, without any significant increase in relapse risk (34). In
the late 90’s, the advent of RIC regimens came with new
“methotrexate-free” GVH prophylaxis protocols (35), such as
the combination of cyclosporine and ATG (36), that can also be
associated with mycophenolate mofetil, mainly in case of
unrelated donor transplantation (37).

Sirolimus (rapamycin) is a molecule that forms a complex
with mammalian target of rapamycin (mTOR), and therefore
debars the PI3K-AKT-mTOR pathway and also that of NF-kB
with the concomitant reduction of DNA transcription/
translation, cell cycle progression and ultimately T cell
suppression (Figure 1) (38). Rapamycin is highly used in solid
organ transplantation (39, 40) and in autoimmune diseases like
type 1 diabetes, which demonstrates that rapamycin not only
depletes effector T cells but also enhances the expansion of
regulatory T cells (Tregs) that can further suppress effector
FIGURE 1 | Mechanism of action of immunosuppressant agents. Both Cyclosporine and Tacrolimus inhibit calcineurin, a calcium-dependent phosphatase that
dephosphorylates and further activates NFAT, which in turn provokes IL-2 production. Calcineurin is activated by liberated calcium from ER. mTOR is another target
down-stream of CD3 signaling, it is activated by the PI3K enzyme. mTOR induces cellular division and is inhibited by Rapamycin. ER, endoplasmic reticulum.
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activity of T cells (41, 42). In case of GVHD, some clinical trials
have shown its protective effect (43–45).

Despite partial achievements, none of the above-mentioned
therapeutics could satisfactorily prevent GVHD, knowing that
still 50% of transplanted patients show the disorder. Additionally,
because all these agents are conferring a general immunodeficiency,
they unfortunately interfere with the desired GVL effect (46).

In case of aGVHD occurrence, standard first-line treatment
relies on high doses (2 mg/kg/day) of corticosteroids (47).
Unfortunately, all attempts to improve on the curative
treatment of established aGVHD have turned into repeating
failures, either with strategies aiming at increasing the doses of
steroids (48), or combining them with other drugs (49, 50). In
case of steroid-refractory aGVHD, many second-line treatments
have been tested, and until recently, none of them had
demonstrated superiority over others, and thus no standard
treatment was recognized in this setting (47). However, a
recent phase III study has established ruxolitinib, an oral
selective inhibitor of JAK1 and JAK2, as the most potent
molecule in steroid-refractory aGVHD, with an acceptable
safety profile, making it a new standard of care (51). The
rationale for targeting JAK1/2 is the major role of its signaling
in inflammation, tissue damage, T-cell activation, lineage
commitment and survival, but also activation of neutrophils
and differentiation and maturation of dendritic cells, all of which
are involved in the pathogenesis of aGVHD (52–55).

Depletion of Alloreactive T Cells
The idea of depleting T cells from the infused cell product is not
new and dates back to 1980s and 1990s; for such, three main
strategies were considered effective: 1) Ex-vivo negative selection
Frontiers in Immunology | www.frontiersin.org 4
of T cells. 2) Ex-vivo positive selection of CD34+ stem cells. 3) In-
vivo depletion of T cells by antibodies.

Heeding these strategies, total T cells removal from the graft
resulted in reduced incidence and severity of aGVHD (56–58).
Nevertheless, the presence of T cells in graft was demonstrated as
very important, so their depletion caused poor hematopoietic
engraftment, increased incidence of disease relapse and
opportunistic infections (56, 59, 60). Later on, the invention of
magnetic beads led to more accurate targeting and also more
efficient depletion of T cells. Interestingly, three separate clinical
trials, targeting CD3+T cells removal, CD3+T cells plus CD19+ B
cells depletion, or ab T cells plus CD19+ B cells elimination, ended
in lower incidence of aGVHD and better engraftment rate (61–63).

Positive selection of CD34+ stem cells by magnetic beads is
potentially an effective method to deplete alloreactive donor T
cells prior to transplant which resulted in remarkable reduction
of aGVHD and cGVHD (64–66). The major limitations of this
method are increased risk of infections, which resulted in 40%
mortality, and a high incidence of cancer recurrence.

ATG is a polyclonal antibody preparation that triggers
simultaneous in-vivo depletion of donor and host T cells via
induction of apoptosis, which enables a better control of
transplant rejection or GVHD occurrence (Figure 2) (67, 68).
Although ATG seems more convenient for the purpose, its high
doses were associated with increased infections (69). In addition,
ATG affects B cells, NK cells and APCs, thus works as a non-
specific targeting agent (70). In a recent consensus, ATG/ATLG
(anti-T lymphocyte globulin) was strongly recommended as part
of myeloablative conditioning regimen prior to matched or
mismatched unrelated allogeneic HSCT to prevent both
aGVHD and cGVHD. In reduced intensity or non-myeloablative
FIGURE 2 | A summary of the different therapeutics applied in aGVHD treatment. This schematic depicts a summary of recent therapeutics that has been
developed to control GVHD. Therapeutic approaches are divided to pharmacological drugs mostly aiming to target a signaling pathway or cellular therapy that
renders vaster regulatory effects.
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conditioning regimens, ATG/ATLG was estimated appropriate to
reduce the incidence of GVHD, but an increased risk of relapse was
suggested to take into account (71).

Introduction of monoclonal antibodies made T cells depletion
even more specific. T10B9 is a monoclonal antibody (mAb) which
targets T cell receptor (TCR) ab heterodimer region of CD3+T
cells (72). A combination of this mAb and Cyclosporine A was
compared with methotrexate and cyclosporine A treatment in a
phase 2/3 clinical trial, and the results showed reduction in grades
3 to 4 aGVHD but a higher risk of chronic myelogenous leukemia
relapse (73). Another example of this kind is Alemtuzumab
(Campath), which targets CD52 antigen (Figure 2) expressed
on the surface of T and B cells but not on CD34+ stem cells (74).
Its first application was reported to reduce multiple sclerosis (MS)
severity and relapse (75). A recent study was performed on 201
adult patients receiving a RIC allograft. With a median follow-up
of 24 months, the cumulative incidences of aGVHD and late acute
GVHD grades II-IV (grades III-IV) were 34% (13%) and 20%
(8%) respectively. Furthermore, the cumulative incidences of
cGVHD and overlap syndrome were 4% and 7% respectively
(76). Although Alemtuzumab administration before HSCT, from
related or unrelated donors, resulted in a lower incidence of
GVHD, it could remain in the blood at lympholytic level for 1
to 2 months after transplantation. Consequently, the immune
system reconstitution was considerably delayed, leading to a high
incidence of viral infection and relapse (77).

More recently, the use of post-transplant cyclophosphamide
(PT-Cy) has brought T-cell replete haplo-identical transplantation
up to date, with remarkable results regarding GVHD incidence in
this high-risk setting, thanks to the selective depletion of
alloreactive T cells, while sparing regulatory T cells (78, 79). PT-
Cy has also shown efficacy in transplantation with HLA-matched
related and unrelated donors (80), and phase III clinical trials
comparing PT-Cy and standard GVHD prophylaxis are currently
ongoing (NCT03818334, NCT02345850).

Although the inhibition and depletion of alloreactive T cells
are classically more studied to prevent GVHD, several other
research works have been investigating on alternative strategies
to block T cell migration towards GVHD target organs. This is in
accordance with the more recently defined fourth criteria of
GVHD development (20). A variety of molecules have been
testing for this effect, notably maraviroc that blocks CCR5
(Figure 2) (81, 82), fingolimod (FTY720) that mostly interferes
with T cells’ infiltration into skin (83–85), and natalizumab that
has been shown to mediates homing of lymphocytes to the
gastrointestinal tract (86), with promising results.

Innovative Therapies
Current progress in biomedical research has opened the door for
new innovative therapy approaches including gene and cell
therapies. Gene transfer technologies, including the suicide gene
approach, are promising tools to manipulate donor T cell
immunity, to boost the GVL effect, to foster functional immune
reconstitution, and to prevent or control GVHD. Cell therapy of
aGVHD is based on distinctly ex-vivo or in-vivo expansion of
Tregs, which are the natural immunosuppressant cells of the body.
Moreover, the application of mesenchymal stromal cells (MSCs),
Frontiers in Immunology | www.frontiersin.org 5
regulatory macrophages, innate lymphoid cells (ILCs), NKT cells
and endothelial progenitor cells (EPCs), based on their
immunoregulatory and/or regenerative properties have also been,
or are currently being investigated, showing very promising results.
Gene Therapy of aGVHD
Gene therapy of aGVHD consists in transferring a suicide gene
into donor T lymphocytes, which can be selectively controlled after
transplant. Herpes simplex virus thymidine kinase (HSV-TK) has
already been introduced as a cell-cycle dependent suicide gene (87,
88). In the presence of ganciclovir (GCV), an anti-herpes drug,
infected cells catalyze the generation of triphosphate ganciclovir that
further inhibits DNA chain elongation, which is toxic to
proliferating cells (89, 90). In-vitro and in-vivo preclinical studies
in mice (91, 92) and afterward phase I/II clinical trials have
demonstrated that the retroviral-mediated transfer of HSV-TK
suicide gene into donor T cells prior to graft infusion allows
efficient control of donor T cell alloreactivity (93, 94). In the latter
clinical trial, the investigators also showed that these infected T cells
improve immune reconstitution and could provide GVL effect.
However, there are some possible drawbacks for applying this
strategy. In immuno-compromised patients, TK may lead to
undesired elimination of transduced cell populations as a result of
the immunogenicity of this viral protein. In addition GCV is a drug
used to treat cytomegalovirus (CMV) infection which commonly
affects immuno-compromised patients. Administration of GCV in
CMV infected patients could result in undesired TK-cell killing (95).
Also, as suggested in the study by Maury et al., elimination of TK+

cells after ganciclovir administration may not prevent GVHD
caused by a putative in-vivo expansion of the small proportion of
TK- alloreactive T cells in this lymphopenic setting (94).

Another suicide gene that has also been tried in a phase I
clinical trial, is inducible human caspase 9 (iC9), a hybrid protein
consisting of a human FK506-binding protein (FKBP12) linked
to a modified human caspase 9 lacking the caspase recruitment
domain (CARD). This transgene can be activated by a single
administration of a small-molecule drug (AP1903). Thanks to
the accelerated immune reconstitution, patients have immediate
and sustained protection from major pathogens, including
cytomegalovirus, adenovirus, BK virus, and Epstein-Barr virus
in the absence of acute or chronic GVHD (96).

In an attempt to reprogram progenitor cells in order to
evaluate their engraftment, differentiation, and safety, NSG mice
CD34+ cells were ex-vivo transduced with a proprietary lentiviral
vector encoding a human gene or a mock (GFP) vector. The result
revealed that the mice treated with transduced CD34+ cells had
lower aGVHD outcome such as lymphohistiocytic inflammatory
cell infiltrates and microgranulomas in the liver and lungs in
comparison to control mice injected with naive CD34+ cells (97).
CELL THERAPY OF aGVHD

Mesenchymal Stromal Cells
Mesenchymal stromal cells (MSCs) are non-hematopoietic self-
renewal cells that have the ability of multipotent differentiation
December 2020 | Volume 11 | Article 607030
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mainly into mesodermal lineages like chondrocytes, osteocytes
and adipocytes (98–100). These cells that are known for their
adherence capacity to plastic, neither express the hematopoietic
and monocyte markers such as CD34, CD45 and CD14, nor
endothelial markers like CD31 and CD144. Additionally, they do
not express MHC II molecules like HLA-DR, and co-stimulation
molecules like CD80 and CD86. However, they do express
markers such as CD90, CD73, CD105, CD146, and CD29, plus
a poor expression of MHC I molecules. MSCs can be isolated
from different adult, prenatal and neonatal tissue sources
including but not limited to BM, adipose tissue (AT), dental
tissues, endometrium, amniotic fluid, umbilical cord and many
others (101–103). It has been revealed that MSCs from diverse
tissues have different regenerative and immunoregulatory
features (101, 104). Moreover, source tissue diversities were
correlated to variable expression quantities of highly procoagulant
tissue factor (TF) CD142 on their cell surface (102), which
remarkably affects their safety profile for intravenous (IV) infusion
due to triggering of the “instant-blood-mediated inflammatory
reaction” (IBMIR) (105). This is indeed a crucial aspect for the
cells’ safety and efficacy profile (106) as also interestingly discussed
by Moll G et al, for recent COVID-19 MSC based therapies (107).

MSCs can support hematopoietic cells and possess non-
specific immunosuppressive and immunomodulatory functions
against both innate and adaptive immune responses (108, 109).
They can directly inhibit the proliferation of alloreactive T cells
or convert them to Foxp3 expressing regulatory T cells through a
cell-cell contact dependent and independent manner (Figure 2)
(110–114). Additionally, MSCs can program macrophage
plasticity by polarizing them towards less pro-inflammatory
M1 and more anti-inflammatory M2 subpopulations (Figure
2) (115). Contrary to their in-vitro suppressive capacity when
used in a 1:1 MSCs/T cells ratio, they had no clinical usefulness in
terms of graft survival or severity of aGVHD in mice (116).
However, few years ago Baron et al., revealed that, a third party,
ex-vivo expanded, MSCs co-injection in a high risk, mismatched,
unrelated-donor HSCT could reduce the severity of GVHD
(117). On the other hand, co-injection of MSCs and HSCs in
an HLA-identical sibling HSCT although resulted in a decrease
of aGVHD severity, the incidence of relapse was remarkably
higher (118). Recently a case report for a 15 years old boy,
showed a dramatic decrease of aGVHD after treating with 2 × 10
(6) MSCs/kg 8 times in 4 weeks followed by MSCs
administration once/week in the next 4 weeks (119).

Most cells release membrane-derived extracellular vesicles
(EVs) carrying biomolecular payloads that offer significant
potential in both detecting and treating diseases. EVs have a
lipid bilayer and are ranging from 50 nm to ~2µm secreted from
nearly all mammalian cell types (e.g., endothelial cells, neuronal
cells, muscle cells, stem cells) that can be found in various body
fluids such as breast milk, semen, saliva, urine, and serum (120).
Based on their biogenesis pathways, EVs are categorized into three
main classes: exosomes, microvesicles, and apoptotic bodies (121).

MSC-EVs could alter CD4+ T cells through an APC-related
pathway, increasing the population of CD4+CD25+Foxp3+ Treg,
consequently, increasing the immunosuppressive effects of
Frontiers in Immunology | www.frontiersin.org 6
MSC-EVs (Figure 2) (122). Furthermore, recent studies
support the crucial role of MSC-EVs in regulating the M1/M2
macrophage subpopulation balance. For instance, MSC-EVs
could interfere with the activation of M1 macrophages while
favoring their M2 counterparts. This is accompanied by reduced
secretion of TNFa, IFNg, VEGF, and IL-12 and increased IL-10
production (123–125). EVs were shown to have the similar tissue
repair capabilities as MSCs making them a promising non-
cellular approach for GVHD treatment (126). It has been
demonstrated that MSC-EVs could enhance the survival rate
and reduce the grade of aGVHD in mouse models. This was
followed by a modification in the naive and effector T cell ratio
(127). Other studies reported reduced clinical symptoms
including diarrhea and hormone consumption after MSC-EVs
therapy. They showed that MSC-EV treatment reduced the
PBMC secretion of IL-1b, TNFa, and IFNg (128).

The encouraging point in using MSCs is that they are very
well tolerated in-vivo, however, the efficiency of MSCs treatment
is variable in different studies. This could be due to the fact that
MSCs are very heterogeneous cells. Recently, we have
demonstrated that compared to MSCs harvested from WT
mice, their counterparts from TNFR2 KO mice are significantly
disabled to suppress Teffs and convert them to Foxp3+Tregs (111).
Sorting TNFR2 enriched MSCs or up-regulating this marker with
a proper agonist could potentially lead to a more homogeneous
cell product with increased immnuregulatory features. Taken
together, the optimized source, dose, frequency and treatment
intervals of MSCs administration require better understanding of
the mechanisms of MSCs treatment.

As previously mentioned MSCs can exert their therapeutic
effect either directly or indirectly through educating/reprogramming
other cells such as macrophages and T cells. In the next sections, we
discuss the role of regulatory macrophages and regulatory T cells in
GVHD treatment.
Regulatory Macrophages
Recipient macrophages are known to resist the conditioning
regimen and to remain in patients for many weeks after HSCT
(129). This might provide the opportunity to modulate donor T
cell immunity. This hypothesis proved valid in a mouse model of
GVHD indicating that macrophages resisted in lymphoid tissues
after lethal irradiation and elimination by anti-colony
stimulating factor 1 receptor (anti-CSF-1R), which is expressed
on all monocytes and tissue macrophages and plays a key role in
their homeostasis (130), led to exacerbated GVHD (131). They
further showed that pre-transplant CSF-1 therapy could expand
recipient regulatory macrophages resulting in amelioration of
aGVHD through an IL-10 dependent mechanism. The
infiltration of macrophages can add to GVHD occurrence,
however, macrophages have different subpopulations which act
differently in GVHD (132). Macrophages recruitment is one of
the main steps in aGVHD initiation, and a higher ratio of M1/
M2 macrophages correlates to a higher incidence of grades 2 to 4
acute GVHD (133, 134). Pro-inflammatory M1 macrophages
have been shown to contribute and infiltrate more in aGVHD,
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whereas anti-inflammatory M2 macrophages are reported to be
more predominant in cGVHD and refractory aGVHD. Due to
the secretion of anti-inflammatory cytokines, such as IL-10 and
TGFb, M2 macrophages could suppress different immune cells,
particularly T cells. Therefore, they could be potentially a good
cell therapy product to target GVHD. Bouchlaka et al, showed
that MSC educated M2 macrophages have enhanced CD206,
CD163, IL-6, TGF-b, arginase-1 expression and reduced IL-12
and TNFa production and can attenuate GVHD. This was
mostly due to controlled T cell proliferation and enhanced
fibroblast proliferation (135). Very interestingly, it has been
demonstrated that the polarization of M2 macrophages by
MSCs is also TNF-TNFR2 dependent (136). This could
demonstrate once more the importance of TNFR2 targeting to
take the better advantage of M2 macrophages or change the
balance of M1 and M2 macrophages in GVHD treatment.

Regulatory T Cells
Natural regulatory T cells (nTregs) are defined as natural
immunosuppressive cells that are able to inhibit alloreactive
lymphocytes and control innate and adaptive immune responses
(Figure 2) (137–140). Any impairment in Tregs functionality or
imbalance in their recovery after HSCT is associated with a loss of
tolerance and development of autoimmunity and also GVHD
(141, 142). Compared to previous cell therapy approaches of
aGVHD, Tregs are the most studied and applied cellular based
therapy that has shown very promising results. Studies in mouse
models have proved that depletion of Tregs before transplantation
significantly accelerates the occurrence of aGVHD and inversely,
others reported that adoptive transfer of freshly-purified donor
Tregs or donor derived ex-vivo expanded Tregs were remarkably
efficient to control aGVHD (143–145). The attractive point of
Treg cell therapy is that GVL effect is acceptably preserved which
is probably due to retention of donor T cells or differences in
homing pattern of effector versus regulatory T cells (146). In
addition to Treg suppressive activity they have other beneficial
effects like facilitating the engraftment of hematopoietic cells and
participating in immune reconstitution (60, 147). However, the
low percentage of Tregs (5–10% of peripheral CD4+ T cells)
represents a major obstacle for their vast clinical application.
This barrier has been overcome by means of ex-vivo expansion
of Tregs with anti-CD3 and anti-CD28 in the presence of IL-2, to
yield non-specific polyclonal Tregs. Although, the application of
polyclonal Tregs has shown promising outcomes in different
complications such as GVHD (148), solid organ transplantations
like kidney transplantation (149), non-immune diseases such as
cardiovascular diseases, obesity, type 2 diabetes (T2D), and
degenerative diseases (150), it was less convincing in other
disorders such as type 1 diabetes (T1D) and multiple sclerosis
(MS) mainly due to the heterogeneity of expanded Treg cell
population (150, 151).

The other proposed solution was ex-vivo expansion of Tregs
through TCR-mediated activation by alloantigen of recipient
(recipient specific Treg or rs-Treg) in the presence of IL-2. This
process permits to obtain a satisfying number of rs-Tregs that are
capable of specifically suppressing donor T cells and consequently
Frontiers in Immunology | www.frontiersin.org 7
providing more promising results regarding aGVHD control
compared with polyclonal Tregs (152, 153). These rs-Tregs
could hamper the activation and differentiation of donor T cells
in-vivo leading to a total and sustained protection of transplanted
mice while preserving immune reconstitution and GVL effect
(147, 154). Unfortunately, due to the difficulty to sort purified
Tregs under clinical grade practice conditions, rs-Tregs involve a
risk of contamination of cell product with highly alloreactive and
thus pathogenic recipient specific effector T cells (rs-Teffs), which
precludes their therapeutic application. To overcome this issue,
Martin GH et al. suggested an alternative strategy utilizing Tregs
which are specific for a single exogenous antigen (HY antigen
specific Tregs or HY-Treg) that is neither expressed in donor nor
in recipient (HY antigen is only expressed in males). In this case,
the contaminating Teffs are maintained non-pathogenic as the
exogenous antigen is transiently presented by few host APCs and
is not expressed by host target organs of aGVHD. In a semi-
allogeneic mouse model of HSCT, when both donors and
recipients were female, the co-transfer of Teffs and HY-Tregs
alone could not protect against aGVHD, however, modifying the
gender of recipients to male mice that express HY antigen, was
enough to completely protect against aGVHD. Alternatively, to
re-activate HY-Tregs in-vivo in the presence of their cognate Ag,
three intravenous injections of HY-peptide at D0, D3 and D6,
resulted in entire protection against aGVHD (155). The hallmark
of this strategy is that it potentially provides an OFF-ON system to
benefit from the alloreactive effect of donor T cells on demand i.e.
to destroy malignant cells when Tregs are off (non-activated), and
to turn them on (activated with their cognate Ag) as soon as
observing the primarily signs of aGVHD.

Further studies to identify the mechanism of action of Tregs
in such an inflammatory environment revealed that in murine
model of aGVHD, Treg immunosuppressive effect was dependent
on the secretion of TNFa by Teffs and the expression of TNFR2
by Tregs. In this context, the blockade of TNFa-TNFR2 signaling
pathway either by administration of an anti-TNFR2 mAb or
harvesting Tregs from TNFR2-KO mice to block the possibility
of signal transduction through the TNFR2, or using T cells
harvested from TNFa KO mice led to the interruption in Treg
suppressive function resulting in high grades of aGVHD (156,
157). The advantage of this finding is that it provides an OFF
button for Tregs. Thus, after their proper immunosuppressive
function (ON status) we have the possibility to turn them off until
the next need.

Such promising results acquired with animal models over the
last decade encouraged its application in human. Two phase 1
clinical trials using adoptive transfer or ex-vivo expanded Tregs
before (day 4) or just after (day+1 +/− day+15) transplant
resulted in notable reduction in the severity of aGVHD (158,
159). In further clinical update, Brunstein et al., have reported
that the incidence of grades 2 to 4 aGVHD at 100 days was 9%,
and cGVHD at 1 year was 0% without any difference in infection
density (148). Moreover, a significant faster recovery of total
CD4+T cells and a subset of naive CD4+T cells were observed.
The rationale for using cord blood derived Tregs in the study by
Brunstein et al. was in part based on their similar capacity to
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express the essential Tregs markers (160), in addition to their
resistance against the classical immunosuppressant drugs that
usually interfere with Treg viability or function, and therefore
abrogate their therapeutic effect (161).

Another strategy to increase Treg percentage in patients is
through in-vivo expansion of these cells by the administration of
low doses of IL-2. Previous clinical studies had already revealed
that IL-2 therapy induces the selective expansion of Tregs
following HSCT and in patients with solid tumors (162–164).
This strategy was tried in a phase 2 clinical trial which achieved
an expansion of Tregs from a mean of 4.8% pre IL-2 to 11.1%
after therapy, with the greatest change occurring in recipients of
matched related donor transplants. Interestingly, no IL-2–treated
patient developed grades 2 to 4 aGVHD. Additionally, IL-2–
treated recipients maintained T cells reactive to viral and
leukemia antigens and on the whole, the rate of infection was
significantly lower compared with non-treated patients (165).

The low dose IL-2 administration was also studied in cGVHD
with remarkable in-vivo Treg expansion and promising clinical
results, particularly in pediatric patients (166–168).

Innate Lymphoid Cells
Innate lymphoid cells (ILCs) are different from their B and T cell
counterparts as they do not express rearranged Ag specific
receptors (169). ILCs are a heterogeneous family of cells that
are classified on the basis of their transcriptional factors and their
functionality. Like T lymphocytes, ILCs are also grouped into
cytotoxic and helper subsets. New classifications consider NK
cells as cytotoxic ILCs that express T-bet and eomesodermin
(Eomes) and are able to secrete IFNg and TNFa, thus yielding
cytotoxic effects (169, 170). Helper ILCs are further subdivided
into three distinct populations: ILC1, ILC2 and ILC3. Briefly,
ILC1 population needs T-bet for their development and they are
able to secrete IFNg. However, the difference between this
population and NK cells is that they neither express Eomes
nor exert cytotoxic activities (170). ILC2 express GATA3 and
produce Th2 cytokines (171). Finally, ILC3 cells are themselves
heterogeneous populations that are further subdivided into more
subsets. They are known to express RORgt and to mainly
produce IL-17 and IL-22 cytokines (172). In general, ILCs
contribute to host defenses against a broad variety of pathogens
(173, 174). In the context of GVHD, due to the damage caused by
the conditioning regimen and the further tissue damage resulted
from donor T cells attack, the role of ILCs is supposed to be
essential. Hanash et al., identified intestinal ILC3 subset as the
main IL-22–producing cells after TBI, highlighting their crucial
role in the protection against epithelial cells damage and in
preserving intestinal stem cells (175). The same results were
reported by another team showing that IL-22 treatment in mice
after HSCT could increase intestinal stem cell recovery, increase
epithelial cell regeneration, and eventually reduce intestinal
GVHD (176). The role of ILCs in tissue repair is not limited to
intestinal cells since another study has described the promising
role of ILC3 in thymic epithelial recovery, through IL-22
production, causing a more efficient T cell reconstitution (177).
Similar results were obtained in lung epithelial tissue repair (178).
The latter is in accordance with another study demonstrating a
Frontiers in Immunology | www.frontiersin.org 8
critical role of lung ILCs in restoring airway epithelial integrity
and tissue homeostasis after infection with influenza virus (179).
The possible protective effect of ILCs in aGVHD was firstly
discussed by Hanash et al., showing that host-derived IL-22
could substantially limit aGVHD development (175). Moreover,
Munneke et al., have suggested that once ILCs (regardless of
origin, donor or recipient) are activated they could reduce
aGVHD development and tissue damage (180). Nevertheless,
the exact role of IL-22 in inflammatory conditions such as
GVHD is not completely clear and might be controversial. For
instance, Couturier et al, reported that the IL-22 deficiency in
donor T cells could attenuate murine aGVHD mortality while
preserving the GVL effect (181). Altogether, the positive role of
ILCs in tissue repair, stabilization of stem cells and maintenance of
tissue hemostasis is currently the subject of discussions and ILCs
are potentially an interesting candidate to be tested in back to back
therapies i.e. with classical pharmacological treatments or more
interestingly with novel therapies such as gene therapies and
regulatory T cells (182). In other words, testing the immune
suppression caused by any of these approaches versus tissue repair
and hemostasis that could be induced by ILCs.

NKT Lymphocytes
NKT cells simultaneously express TCR and markers of NK cells.
Within this population, invariant NKT (iNKT) are characterized by
an invariant alpha chain of TCR that has a capacity to recognize
glycolipids, like the glycolipid alpha-galactosylceramide (alpha-
GalCer) antigen presented by CD1d molecules (183, 184). This
glycolipid induces a fast and massive activation of NKT cells which
are involved in the regulation of allogeneic responses via production
of IL-4 and IFNg. They can also regulate other cells of the immune
system towards a tolerogenic or a cytotoxic response, particularly
against tumors (185–187). In a mouse model, it was shown that
CD4-CD8- iNKT lymphocytes of bonemarrow origin, could control
aGVHD without attenuation of GVL effect (188). Authors also
suggested that this protection effect is through production of IL-4 by
NKT cells that can consecutively induce Treg proliferation. In
another study, administering a low dose of CD4+NKT at the
same time of the BM graft significantly reduced the incidence of
aGVHD. Once again, this was associated with IL-4 secretion by
NKT cells and subsequently altering the secretion of pro-
inflammatory cytokines such as IFNg and TNFa by donor T
cells, without hampering their proliferation (189). In patients who
received Total Lymphoid Irradiation (TLI) conditioning regimen, a
very good reconstitution of iNKT was observed and this was linked
to a remarkable decrease in the incidence of higher grades of
aGVHD (190). Moreover, Rubio et al., have provided a proof of
concept that early post-allogeneic HSCT iNKT cell recovery can
predict the occurrence of aGVHD and an improved overall survival
(191). This was confirmed in another study showing that
proportion of CD4- iNKT cells of the graft could be predictive of
aGVHD in recipients (192).

Endothelial Progenitor Cells
Endothelial progenitor cells (EPCs) are the BM-derived
hematopoietic cells that are responsible for neo-vascularization
and repairing tissue damages at the endothelial sites (193). These
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cells that express classical endothelial markers such CD31, CD144,
VEGFR2 and CD133 demonstrate some unique features that make
them especially interesting for treatment of degenerative,
cardiovascular and hematopoietic disorder. For instance, Loisel
et al. have shown a successful administration of autologous
EPCs for the treatment of right ventricle (RV) failure in a piglet
model of chronic thromboembolic pulmonary hypertension
(CTEPH) (194). Similar to MSCs, EPCs have shown some levels
of immunosuppressive and immunomodulatory properties (195).
Our team has recently demonstrated that human EPC derived from
CB are tolerated in xenogeneic mouse models of ischemia and
contributed to vascular formation (196). We further revealed that
EPCs’ immunosuppressive effect was entirely TNFR2 dependent
since administration of an anti-TNFR2 mAb abolished their
regulatory functions (197). Accordingly, we showed that priming
EPCs with TNFa enhances their immunosuppressive effect through
a TNFR2 dependent interaction (198). These interesting features
encouraged scientists to evaluate their therapeutic effect in GVHD
models. EPCs injection was reported to be have some protective
roles in accelerating hematopoietic and immune reconstitution,
restoring vascular niche in BM and ameliorating GVHD grade
through improving the integrity of BM sinusoidal endothelial cells
(199–202). Further investigations revealed that the administration
of anti-vascular endothelial cadherin antibody (AAVE) remarkably
interrupted those mentioned effects (200). Based on our recent
experiences, we think it would be very interesting to specifically
target TNFR2 molecule in EPCs via its proper agonist, in order to
selectively upregulate this marker and benefit from increased EPC
immunosuppressive and pro-angiogenic effects. Controlling these
two crucial aspects leads to higher HSCs engraftment, better immune
reconstitution and, if necessary, improved GVHD prevention.
Frontiers in Immunology | www.frontiersin.org 9
CONCLUSIONS

In spite of great advancements in treating GVHD, it still remains
a major complication of HSCT. Here, we described a series of
novel therapeutic approaches that target different cells that
contribute to GVHD occurrence. Additionally, we have
discussed the application and the potential therapeutic benefits
of a variety of cells with immunoregulatory functions with the
special attention in Tregs that have been proved to be a very
promising approach to control GVHD. Cell free therapies
including the administration of EVs, in-vivo amplification of
regulatory cells and targeting immune checkpoint signaling
pathways such as the TNF-TNFR2 axis are among some new
emerging approaches to selectively control the reaction and
intensity of the immune response which potentially could lead
to better control of GVHD.
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