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Genetic homogeneity of the 
invasive lionfish across the 
Northwestern Atlantic and the 
Gulf of Mexico based on Single 
Nucleotide Polymorphisms
R. Pérez-Portela1,6, A. Bumford1, B. Coffman1, S. Wedelich1, M. Davenport1, A. Fogg2,  
M. K. Swenarton3, F. Coleman4, M. A. Johnston5, D. L. Crawford1 & M. F. Oleksiak1

Despite the devastating impact of the lionfish (Pterois volitans) invasion on NW Atlantic ecosystems, 
little genetic information about the invasion process is available. We applied Genotyping by Sequencing 
techniques to identify 1,220 single nucleotide polymorphic sites (SNPs) from 162 lionfish samples 
collected between 2013 and 2015 from two areas chronologically identified as the first and last invaded 
areas in US waters: the east coast of Florida and the Gulf of Mexico. We used population genomic 
analyses, including phylogenetic reconstruction, Bayesian clustering, genetic distances, Discriminant 
Analyses of Principal Components, and coalescence simulations for detection of outlier SNPs, to 
understand genetic trends relevant to the lionfish’s long-term persistence. We found no significant 
differences in genetic structure or diversity between the two areas (FST p-values > 0.01, and t-test 
p-values > 0.05). In fact, our genomic analyses showed genetic homogeneity, with enough gene flow 
between the east coast of Florida and Gulf of Mexico to erase previous signals of genetic divergence 
detected between these areas, secondary spreading, and bottlenecks in the Gulf of Mexico. These 
findings suggest rapid genetic changes over space and time during the invasion, resulting in one 
panmictic population with no signs of divergence between areas due to local adaptation.

The Indo-Pacific lionfish (Pterois spp.) invasion of the northwestern Atlantic (NW Atlantic) is remarkable for its 
speed and magnitude1 and considered among the world’s more critical conservation issues during the last dec-
ade2. The lionfish invasion is the first recorded invasion of a marine fish species in United States Atlantic waters3. 
Lionfish are now the most abundant fish predators in many reefs within the Wider Caribbean (i.e. tropical NW 
Atlantic, Caribbean Sea and Gulf of Mexico)4–6, including those at depths of 30–350 m, with densities that, in 
some cases, far exceed those in their native ranges7. The success of these invasive predators is likely related to a 
combination of niche availability in the introduced area, ability to colonize a wide variety of habitats and broad 
thermohaline tolerance, high fecundity, wide-ranging dispersal, venomous defences, and absence of natural pred-
ators in the newly colonized environments8. The rapid increase in lionfish abundance in the Wider Caribbean 
has been linked to direct and indirect impacts on invaded ecosystems6,7, such as significant declines in native 
fish biomass due to lionfish’s predatory success on native species7,9 and their purported ability to displace large 
reef fishes, including groupers7,9. Lionfish are high-efficiency predators that feed primarily on post-settlement 
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reef fishes, which they disorient by blowing water jets on them before capture10. Prey in the invaded range have 
not developed defence strategies against this predatory mechanism and so succumb easily10. In addition, female 
lionfish are capable of spawning year-round, every 2–9 days (season dependent), with an average annual output 
of more than 2 million eggs and several tens of generations. This tremendous output of buoyant gelatinous egg 
masses that drift with marine currents, provides opportunities for widespread dispersal over short time-periods11.

The lionfish invasion has been chronologically well documented, and potential routes of invasion and second-
ary spreading tracked3,12,13. Lionfish, likely introduced via the ornamental pet trade and aquarium releases14–16, 
was first noticed in the Western Atlantic on the east coast of Florida off Dania Beach in 198517. In 1992, six 
lionfish were reported to have escaped from the Miami Aquarium at Key Biscayne during Hurricane Andrew18. 
By 2001, lionfish populations were well established along the US Atlantic coast, from Florida to North Carolina 
and Bermuda, with sporadic observations reported as far as north Rhode Island, where cold winter temperatures 
constraint the development of permanent populations3. After 2001, lionfish rapidly spread into the Bahamas and 
throughout Caribbean Sea, with observations of well-established populations in 2004 and 2007, respectively3,19,20. 
Following the colonization of the Caribbean, the first apparent arrival of lionfish into the Gulf of Mexico via larval 
transport was reported in 2009, where they quickly spread and increased in density13,16,21. Unfortunately, lionfish 
dispersion is not limited to the North Hemisphere as in 2014 recreational divers collected one adult specimen 
approximately 5,500 km from the Caribbean in a subtropical reef off Brazil’s southeast coast22.

During the last years, genetic approaches using mitochondrial DNA have been applied to investigate the lion-
fish invasion. Barcode analyses suggested that although two lionfish species, Pterois volitans (Linnaeus, 1758) and 
P. miles (Bennett, 1828), were introduced in the NW Atlantic15,23, P. volitans is the most ubiquitous species, occur-
ring throughout the US east coast, Caribbean Sea, and the Gulf of Mexico15,16,20,21,23,24. Although some molecular 
data did not detect signs of mitochondrial introgression and/or hybridization between the two potential species16, 
the most recent morphological and molecular information revealed that P. volitans is a recent hybrid species 
between the Indian lineage of P. miles and a Pacific lineage encompassing P. lunulata and P. russelii25.

Population genetic studies using the mitochondrial d-loop fragment of P. volitans, conducted across the 
Wider Caribbean, supported the chronological records of the invasion and confirmed the colonization routes 
followed by the species15,16,20,21,23,26,27. While these studies discarded the hypothesis of multiple introductions from 
native sources during the invasion process, they revealed successive bottlenecks over the course of the invasion. 
Across the Wider Caribbean, only nine d-loop haplotypes were identified among the total 1,248 samples sequ
enced16,20,21,26,27, a number that contrasts with the 37 different haplotypes sequenced in the native range at the 
Indo-Pacific in only 70 specimens20. D-loop analyses showed that the first bottleneck occurred from the native 
range to the NW Atlantic, although the NW Atlantic area (east coast of the US), identified as the entrance point 
of lionfish, displayed the highest nucleotide and haplotype diversity and number of haplotypes within the Wider 
Caribbean, with the nine different haplotypes16. The second bottleneck occurred within the invasive range when 
of the nine haplotypes found at the NW Atlantic only four secondarily spread to the Caribbean Sea. Finally, three 
of the four haplotypes found in the Caribbean Sea invaded the Gulf of Mexico16,20,21,26,27. Hence, the lionfish 
invasion initially contrasts with the perception that avoiding genetic bottlenecks by the influx of genetic diversity 
through repeated introductions from the native range increases the invasion success and posterior spread within 
the invasive area28,29, as observed in a number marine invasions fuelled by multiple introductions from different 
native sources30,31. The study by Johnson and co-authors (2016), which pooled together all d-loop sequences 
obtained from the Wider Caribbean between 2007 and 2013, also detected significant differences in genetic struc-
ture among the three mentioned areas: NW Atlantic, Caribbean Sea, and the Gulf of Mexico (See Fig. 1), but 
no significant differences within them21, despite the genetic divergence noticed among some populations of the 
Caribbean Sea in a previous study27. Additionally, the sharp genetic discontinuity between the NW Atlantic and 
the Gulf of Mexico suggested no direct gene flow across the Strait of Florida21.

Despite the important insights revealed by the d-loop, using only one mitochondrial marker may prevent 
detection of fine-scale differentiation and connectivity within lionfish’s invasive range16, and hence nuclear loci 
are required to provide a complete picture of the current genetic status of this invasion. In this study, we focus our 
attention on P. volitans, referred to as “lionfish” hereafter. We analyse two areas chronologically identified as the 
first and last invaded areas within the Wider Caribbean: the NW Atlantic (east coast of Florida) and the northern 
Gulf of Mexico, respectively. These two marine areas displayed highly significant differences in genetic diversity, 
structure and absence of connectivity across the Florida Strait for the d-loop marker in a previous study21.

We here apply Genotyping by Sequencing (GBS) techniques to identify over a thousand nuclear and inde-
pendent single nucleotide polymorphic sites (SNPs) from samples collected over a short time. Our general aim is 
to understand the invasion progression by determining fine-scale population genomics between the NW Atlantic 
(east coast of Florida) and the northern Gulf of Mexico, and potential connectivity between them, knowing that 
the spatial genetic structure, temporal genetic trend, and levels of connectivity among areas is relevant to predict 
the potential long-term persistence of an invader29 and to design management strategies for its control.

Results
From the Genotyping by Sequencing (GBS) library of 229 lionfish samples, a total of 404,254 sequence tags were 
retained in TASSEL32. Filtering for individuals with at least 75% of the called loci and loci that were present in 
at least 84% of individuals yielded a total of 1,654 SNPs and 162 individuals from the NW Atlantic and Gulf 
of Mexico (see Tables 1 and 2, and Fig. 1). From this dataset, 434 SNPs were removed: 61 SNPs that showed 
significant linkage disequilibrium (r2 > 0.2999. FDR p-value < 0.01) and 373 SNPs with significantly greater 
observed than expected heterozygosity (Hardy Weinberg Equilibrium- HWE. p-value < 0.01) (see Supplementary 
Material FS1), leaving a final dataset of 1,220 SNPs in 162 specimens covered by 2,322,797 reads (mean: 11.75 
reads per locus and sample).
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Detection of SNP outliers.  From the dataset of 1,220 SNPs, 23 outlier SNPs were identified as candidate 
markers under positive selection with Arlequin after FDR correction (24 SNPs were identified when the uncor-
rected p-value ≤ 0.01 was applied). No marker was identified to be under balancing selection from Arlequin 
(see Fig. 2). Lositan identified a total of 213 outlier SNPs, 73 of them candidates under positive selection (Fig. 2) 
and 140 candidates under balancing selection. Among all outlier SNPs, only 13 were found in common between 
both methods. We consider that only these 13 outlier SNPs had strong statistical support to be considered as 

Figure 1.  Sampling collection of lionfish. (a) Map showing major genetic discontinuities (a,b and c in blue) and 
genetically isolated areas (according to the temporal invasion progression as 1, 2 and 3) detected in previous 
studies from mitochondrial DNA of P. volitans21, and (b) Map of the sampling sites in this study. Maps were 
created for this study with the “marmap” package73 in R64.

Site Area Code Ng Date Latitude Longitude Depth Preservation

North East. FL NW Atlantic CW 10 2015 30.29 −80.82 no data Ethanol

Cape Canaveral. FL NW Atlantic CC 6 2015 28.04 −80.09 27 Ethanol

Biscayne National Park. FL NW Atlantic BNP 38 2015 25.4 −80.1 4 to 36 Chaos

Ft. Pierce. FL NW Atlantic FP 5 2015 27.38 −79.82 24 Ethanol

Islamorada. FL NW Atlantic Isl 30 2015 24.88 −80.65 no data Chaos

Dry Tortugas. FL Florida Keys DT 19 2013 24.59 −83.88 62 Ethanol

Pulley Ridge Florida Keys PR 26 2013 24.8 −83.70 62 Ethanol

Tampa. FL Gulf of Mexico TB 19 2014 28.08 −84.36 34 Ethanol

Apalachicola. FL Gulf of Mexico Ap 19 2014 30.2 86.86 35 Ethanol

Alabama Shelf. AL Gulf of Mexico AL 20 2014 29.61 −88.101 39 Ethanol

Mississippi Delta. LA Gulf of Mexico MS 10 2013 29.09 −88.734 44 Ethanol

Flower Garden Banks. TX Gulf of Mexico FG 10 2015 27.87 −93.80 24 Frozen + ethanol

Galveston. TX Gulf of Mexico GT 17 2014 28.36 −94.157 27 Ethanol

Table 1.  General information of lionfish samples. Sampling site, major marine area, site code, number of 
individuals genotyped (Ng), year of collection (Date), geographical coordinates (Latitude and Longitude), 
collection depth (in meters), and preservation method.
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potentially under positive selection. The remaining 1,207 SNPs were assumed to be neutral, although their neu-
trality could not be directly proven.

Lack of divergence between the NW Atlantic and the northern Gulf of Mexico.  The main genetic 
descriptors obtained for all 1,220 lionfish SNPs are listed in Table 2. Most populations showed lower values of 
observed (Ho) than expected heterozygosity (He), which translated into positive values of the fixation index FIS, 
and significant deviation from HWE (Table 2). Genetic diversity values varied among populations: populations 
with only few individuals had the lowest diversity. For those populations with 10 or fewer individuals, the mean 
number of alleles per locus was lower than the potential maximum of 2 (see the curve of accumulative number of 
alleles related to sample size in Supplementary Material FS2). Our analyses did not detect significant differences 
in genetic diversity (assessed as Ho and He) between the NW Atlantic and the Gulf of Mexico (t-tests: t = 0.89 and 
0.42, p-values = 0.39 and 0.68, respectively).

The Maximum Likelihood (ML) tree reconstructed from 1,220 SNPs of 162 specimens from 13 locations did 
not show geographical clustering of specimens related to the sampling site and/or geographical area where they 
were collected (Supplementary Material FS3) and displayed very low bootstrap value support on most nodes.

In the Bayesian clustering analysis performed in Structure for all 1,220 SNPs, the optimal numbers of homo-
geneous genetic clusters (K) for the whole data set33 were three and five (K = 3 and K = 5) according to the ad 
hoc statistic ΔK (see values of Delta K- ΔK- in Supplementary Material FS4), but the Log likelihood for K (LK) 
did not significantly increased from 1 to 5 suggesting lack of spatial genetic clustering (see LK in Supplementary 
Material FS4). The individual-based cluster memberships from K = 2 to K = 8 (see Supplementary Material FS4) 
showed no spatial genetic heterogeneity among sampling sites and mixed membership of individuals to all 
clusters, supporting the hypothesis of panmixia across the Florida Strait (see Fig. 3 for K = 3 and K = 5, and 
Supplementary Material FS4 for all K values). Only slight differences in terms of a higher probability of one spe-
cific cluster (the blue cluster) could be observed in two sites located at south Florida, BNP and Isl (Fig. 3). Genetic 
admixture across the invasive range was also observed when 1,207 neutral SNPs and 13 outlier SNPs were sepa-
rately analysed. In Fig. 3, we compare Structure results for K = 5 from the three different datasets.

Code Nf mean n° alleles Ho He FIS HWE

CW 7 1.85 ± 0.001 0.268 ± 0.006 0.289 ± 0.005 0.054 ± 0.013 0.001

CC 1 0.87 ± 0.017 0.121 ± 0.009 0.061 ± 0.005 — —

BNP 36 1.99 ± 0.002 0.358 ± 0.006 0.337 ± 0.004 −0.027 ± 0.001 1.000

FP 4 1.76 ± 0.012 0.230 ± 0.008 0.280 ± 0.005 −0.080 ± 0.018 1.000

Isl 29 1.99 ± 0.002 0.359 ± 0.006 0.337 ± 0.004 −0.033 ± 0.001 1.000

DT 6 1.74 ± 0.013 0.186 ± 0.006 0.256 ± 0.005 0.216 ± 0.015 0.001

PR 20 1.98 ± 0.004 0.294 ± 0.005 0.310 ± 0.004 0.057 ± 0.01 0.001

TB 11 1.90 ± 0.009 0.225 ± 0.004 0.288 ± 0.005 0.193 ± 0.013 0.001

Ap 10 1.88 ± 0.009 0.237 ± 0.005 0.289 ± 0.004 0.151 ± 0.012 0.001

AL 20 1.98 ± 0.004 0.309 ± 0.006 0.320 ± 0.004 0.053 ± 0.011 0.001

MS 1 0.84 ± 0.016 0.099 ± 0.009 0.050 ± 0.004 — —

FG 4 1.58 ± 0.015 0.191 ± 0.007 0.220 ± 0.006 0.081 ± 0.017 0.001

GT 13 1.93 ± 0.007 0.256 ± 0.005 0.298 ± 0.004 0.120 ± 0.012 0.001

Table 2.  Main genetic descriptors for all 1,220 SNPs. Population code, number of individuals retained for 
analyses after filtering (Nf), mean number of alleles, observed and expected heterozygosity (Ho and He, 
respectively), Fixation index (FIS) and p-values of Hardy Weinberg Equilibrium, Mean number of alleles, Ho, He 
and FIS are presented with standard errors.

Figure 2.  Detection of outlier SNPs. (a) Using coalescent simulations with Arlequin: FST and observed 
heterozygosity (Ho), and (b) Coalescent simulations using Lositan: FST and expected heterozygosity (He). 
Neutral SNPs are plotted as white circles and candidate SNPs under positive selection are represented as red 
circles. Candidate SNPs under balancing selection are not represented in this graph.
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The Analyses of Molecular Variance (AMOVA) for all 1,220 SNPs, 1,207 neutral SNPs, and 13 outlier SNPs 
also did not detect genetic differentiation associated with the NW Atlantic and Gulf of Mexico (“Among groups”), 
regardless of whether the two populations from the Florida Keys (Dry Tortugas- DT and Pulley Ridge- PR) were 
pooled or removed from the analyses, and most genetic variation was retained within individuals (Table 3). No 
differences were observed from AMOVA results between the datasets including all 1,220 SNPs and only 1,207 
neutral SNPs (see Table 3 and Supplementary Material TS1). Nevertheless, from the 13 outlier SNPs, we detected 
significant differences at two additional variance components: between populations within the NW Atlantic and 
Gulf of Mexico, and among individuals within populations, but still most genetic variation was retained within 
individuals (Table 3). FST statistics gave us more details of the pairwise differences between populations within 
the NW Atlantic and the Gulf of Mexico. The FST statistics were in general very low, and only two pairwise com-
parisons were significant (between AL and BNP, and Isl) after FDR correction of the p-values when all 1,220 SNPs 
(Table 4) or only 1,207 neutral SNPs (data not shown) were included in the analyses. FST distances from the 13 
outlier SNPs revealed significant genetic differentiation between other sites: Ap and FG seemed to be the most 

Figure 3.  Structure barplot outputs. Posterior probabilities of individual assignment of the most probable 
number of clusters (K = 3 and 5; different clusters are represented by different colours) for all 1,220 SNPs. 
Barplots from 1,207 neutral SNPs and 13 candidate SNPs under selection (outliers) are also presented. For 
neutral and outlier SNPs the graph of K = 5 is shown for comparison with the whole dataset.

Source of variation d.f

% Var. Fixation index p-value % Var. Fixation index p-value

All 1,220 SNPs 13 outlier SNPs

PR and DT within NW Atlantic

Among groups 1 0 −0.001 0.99 0 −0.012 0.58

Among populations within groups 11 0 −0.006 0.99 5.7 0.056 0.00

Within populations 149 0 −0.036 1 27.3 0.286 0.00

Within individuals 162 100 −0.044 0.85 68.2 0.318 0.00

PR and DT within Gulf of Mexico

Among groups 1 0 −0.002 0.90 0 −0.012 0.58

Among populations within groups 11 0 −0.006 1 5.7 0.056 0.00

Within populations 149 0 −0.037 0.98 27.3 0.286 0.00

Within individuals 162 100 −0.449 0.95 68.2 0.318 0.00

Without PR and DT

Among groups 1 0 −0.002 0.87 0 −0.016 0.52

Among populations within groups 11 0 −0.005 0.99 7.04 0.069 0.00

Within populations 125 0 −0.045 0.98 28.3 0.299 0.00

Within individuals 136 100 −0.053 0.99 68.2 0.338 0.00

Table 3.  Results of analyses of molecular variance (AMOVAs) of lionfish from all 1,220 SNPs and 13 candidate 
SNPs under selection (outliers). Populations’ grouping (Source of variation), degrees of freedom (d.f.), 
percentage of variation (% Var.), fixation indexes, and p-values.
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genetically divergent sites (see Table 4), but this genetic divergence was not fully supported by Bayesian clustering 
analyses (see previous results from Structure) or discriminant analyses of principal components (see explanation 
below).

The discriminant analyses of principal components (DAPC) also showed a general pattern of low genetic 
differentiation, as that observed from previous analyses. According to the Bayesian Information Criterion (BIC) 
that compares different DAPC clustering solutions, two clusters were the optimal number to describe our data. 
The DAPC plot, including all sampling sites and all 1,220 SNPs, showed no clear separation of populations or 
clusters between the NW Atlantic and Gulf of Mexico (Fig. 4a). Only FG seemed lightly isolated from all the other 
sampling sites. This pattern was maintained when only 1,207 neutral SNPs were included in the DAPC analysis 
(Fig. 4b). When 13 outlier SNPs were separately analysed, the divergence between FG and all the other popula-
tions decreased (Fig. 4c).

Discussion
Our genomic data of 1,220 SNPs from 162 P. volitans specimens across the NW Atlantic and the northern Gulf of 
Mexico represents the first study using nuclear loci to explore the genetic structure of this invasive predator and 
is among the few studies applying genome-wide scanning, based on Next Generation Sequencing technologies, 
to investigate population structure of a marine invader (see a review in ref.34, and examples in refs35,36). Although 
18 nuclear microsatellite loci were isolated for P. volitans and P. miles a few years ago37, to our knowledge, those 
markers have not yet been used for population analyses.

Our fine-scale population genomic analyses of lionfish demonstrate lack of a current genetic break between 
the first and the last invaded areas in US waters: the NW Atlantic and the Gulf of Mexico, respectively. The 
Bayesian clustering analysis and DAPC showed different clustering solutions due to a lack of clear genetic differ-
entiation across the whole analysed area. From all 1,220 SNPs and 1,207 neutral SNPs, we only noticed significant 
genetic differences between three sites based on FST distances; the 13 outlier SNPs, FG and Ap showed significant 

CW BNP FP Isl DT PR TB Ap AL FG GT

CW — 0.05904 0.12398 0.07693 0.08734 0.08357 0.09997 0.12432 0.02388 0.26866 0.11102

BNP −0.00585 — 0.13273 0.01039 0.05440 0.01263 0.04417 0.08623* 0.01792 0.08177 0.05091

FP −0.0091 −0.01163 — 0.15015 0.11214 0.13219 0.12923 0.13048 0.12197 0.28386 0.10115

Isl −0.00569 −0.00205 −0.00986 — 0.01259 0.00150 0.00448 0.08536* 0.00696 0.13068* 0.03878

DT −0.01861 −0.03608 −0.01768 −0.04071 — −0.04126 0.05904 0.04868 0.01374 0.30744 −0.03108

PR −0.00091 −0.00059 −0.00483 −0.00267 −0.02645 — 0.04344 0.03418 0.00650 0.16721 −0.00889

TB −0.00174 −0.01366 0.00119 −0.01649 −0.00057 −0.00173 — 0.11251 0.01298 0.26521* 0.01745

Ap −0.00228 −0.01181 −0.0075 −0.01483 −0.00275 −0.00333 0.01082 — 0.09401* 0.26914* 0.02245

AL −0.00374 0.00136* −0.00754 0.00211* −0.02251 0.00291 −0.00487 −0.0038 — 0.20537* 0.01672

FG −0.00706 −0.03463 −0.00706 −0.03926 0.01363 −0.023 0.01023 0.01088 −0.02301 — 0.24847*
GT 0.00236 −0.00695 −0.00131 −0.00917 −0.01311 −0.00199 −0.00225 −0.00287 −0.00034 −0.00234 —

Table 4.  Lionfish FST values between sampling sites. FST values from all 1,220 SNPs below the diagonal, and 
13 candidate SNPs under selection (outliers) above the diagonal. *Significant after false discovery rate (FDR) 
correction set at p ≤ 0.01.

Figure 4.  DAPC results. The DAPC graphs represent results from three different analyses: (a) from all 1,220 
SNPs, (b) 1,207 neutral SNPs, and (c) 13 candidate SNPs under selection (outliers). In the DAPC graph points 
represent different individuals, point patterns different sampling sites, and colours different marine areas 
(grey = NW Atlantic, blue = Dry Tortugas and Pulley Ridge, and light green = northern Gulf of Mexico).
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differences with five additional sites, but that divergence was not mirrored by other analyses (e.g. Structure and 
DAPC). Only FG seemed to be genetically divergent for most analyses and databases. However, this location 
only includes four individuals, a sample size that cannot be considered representative of the genetic diversity and 
structure of this location, as demonstrated by the low number of accumulated alleles within these four individuals 
(see Table 2). Hence, independently of the database used (all 1,220 SNPs, 1,207 neutral SNPs, or 13 outlier SNPs), 
results show a picture of general genetic homogeneity with enough gene flow between the NW Atlantic and the 
Gulf of Mexico to erase signals of secondary spreading detected from d-loop analyses in previous years and stud-
ies23. Whether current gene flow occurs directly across the Florida Strait or indirectly throughout the Caribbean 
Sea cannot be assessed by the presented data, and further analyses including samples from the Caribbean Sea are 
necessary to investigate connectivity routes.

Our findings, therefore, contrast with the discontinuity between the NW Atlantic and the Gulf of Mexico 
and the lower genetic diversity of the Gulf of Mexico observed in previous studies based on d-loop data16,20,21,27. 
Different mitochondrial and nuclear DNA patterns (mito-nuclear discordance), such as those noticed here for 
lionfish, are becoming more commonly reported as the number of nuclear multilocus datasets increases (see 
examples in refs38,39) and can be explained by several non-exclusive causes40. Demographic asymmetry due to 
sex-biased dispersal can cause mito-nuclear discordance in motile animals, including marine fish species40,41. 
Although recent findings suggest that lionfish adults move more than initially thought42, they are not migratory, 
and buoyant eggs are the dispersal stage11, so different migratory behaviour between males and females cannot 
explain the pattern we found, and other hypotheses should be considered, including temporal genetic shifts and 
selection.

A plausible cause of discordance between lionfish studies using different markers is temporal changes in the 
genetic structure over the invasion process. Population genetics theory anticipates fast genetic changes in intro-
duced populations characterized by bottlenecks, founder effects, strong genetic drift, and new selective pressures 
in the introduced environments43–45. Despite the importance of temporal genetic trends for the invasion dynam-
ics, this point is overlooked in most studies of marine invaders, and it is assumed that genetic diversity remains 
stable over time34. The few studies investigating temporal trends of genetic structure in introduced marine species 
showed variable outcomes46–51. Whereas some invasive ascidians suffering massive seasonal die-off events main-
tained stable levels of genetic diversity and homogeneous structure over time due to the re-establishment of pop-
ulations from the survivors or recolonization from nearby sites48,51, other introduced species exhibited changes in 
genetic architecture over short time periods. For instance, in the introduced colonial ascidian, Perophora japonica, 
a genetically isolated population from Plymouth (South England) displayed a linear reduction in mitochondrial 
genetic diversity and large haplotype frequency changes over a 9 year-monitoring period, due to either genetic 
drift and/or selection46. Rapid allele frequencies changes over time, high heterozygous deficiency, and inbreeding 
were also detected in isolated populations of the colonial ascidian Botryllus along the coast of Israel49, but genetic 
isolation was not always associated with genetic diversity loss in this species. Invasive Botryllus populations along 
the Californian coast, isolated from other genetic sources and highly influenced by genetic drift and selection, 
maintained stable levels of genetic diversity thanks to high mutation rates generating a complex pattern of allele 
gains and losses47. Nevertheless, marine invasive populations are, in many cases, characterised by high levels of 
genetic diversity due to multiple introductions from genetically distinct sources28. An outstanding example of 
multiple cryptic introductions and genetic admixture within the invaded range, which might be related to the 
high invasion success, is that of the European green crab, currently one of the most important aquatic invaders 
established across all temperate shores around the world30,36.

In lionfish, d-loop data revealed strong bottlenecks and scientists discarded the idea of multiple introductions 
into the NW Atlantic from the native range16,20, which would result in a small initial effective population size. 
Moreover, changes in genetic structure are expected to occur faster in mitochondrial than nuclear DNA because 
mitochondrial DNA, a haploid, maternally inherited molecule, has an effective population size of one-quarter 
that of nuclear DNA and therefore is more sensitive to diversity changes associated with genetic drift. For this rea-
son, the comparison of the NW Atlantic d-loop data (collected between 2007 and 2009) and the Gulf of Mexico 
(collected between 2011 and 2013)16,20,21,27 should be taken with caution since it assumes that NW Atlantic pop-
ulations remained static over a six-year period with no changes in haplotype frequencies due simply to genetic 
drift. This assumption of temporal stability might obscure the most recent pattern of genetic diversity in lionfish. 
In this sense, the analyses presented here, based on 1,220 nuclear SNPs from samples collected during a brief 
period of 20 months seems to be a more reliable way to determine lionfish’s current genetic structure.

Besides neutral temporal trends, differential selection can also promote discrepancy patterns between mito-
chondrial and nuclear DNA. Mitochondrial selection under divergent environmental conditions plays an impor-
tant role for the distribution of mitochondrial variants in other marine fish species52,53. Different environmental 
pressures between the NW Atlantic and the Gulf of Mexico could also have favoured some lionfish mitochondrial 
haplotypes over others, thus shaping the spatial distribution of haplotypes during the invasion process. However, 
the sampling scheme used in our study and the lack of new mitochondrial sequences do not allow mitochondrial 
selection and/or adaptation hypotheses to be tested. None of the 1,220 tags containing the SNPs were identified as 
mitochondrial fragments, and the different analyses performed did not reveal evidence of local adaptation and/
or nuclear selection across the lionfish’s invasive range. In some marine species with long-dispersal potential, 
outlier SNPs unravelled significantly finer genetic structure than neutral markers, suggesting the existence of local 
adaptation36,54–57. For example, in the European hake, Atlantic and Mediterranean populations showed sharper 
divergence in analyses using outlier SNPs than neutral SNPs54, a pattern of higher resolution that was also found 
in other fish species at small geographical scales of a few hundred kilometres when analysing outlier SNPs55,56. 
In some marine invaders, local adaptation also seemed to play an important role in shaping populations’ genetic 
structure, showing either latitudinal clines in outlier allele frequencies36 or significant correlation with environ-
mental variables such as salinity and water temperature57. Nevertheless, in lionfish, differential selection between 
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the NW Atlantic and the Gulf of Mexico, and mito-nuclear interactions remains as an open question because 
although we did not find strong evidence of local adaptation, 1,220 SNPs still represent a small proportion of the 
species’ genome, and selection on non-explored genomic areas could be possible.

The SNP data here presented yield valuable information of the genetic trend in the lionfish invasion, which 
could potentially be affected by genetic changes over time and across space, although other hypotheses such 
as different selective pressures between mitochondrial and nuclear DNA cannot be completely discarded. 
Additionally, we perceive some limitations in our study that should be taken in consideration for further investi-
gations. For instance, we noticed that population analyses based on SNPs should include: sizes over 10 individuals 
to retain the potential maximum genetic diversity within populations, representative populations from the native 
range to shed light on the current impact of bottlenecks in genetic diversity across the whole invasive range, and 
populations from the Caribbean Sea to clarify the most important connectivity routes within the invaded area.

As demonstrated by previous publications based on mitochondrial DNA, which detected strong bottlenecks 
during the first introduction steps and invasion progression16,20,21,27,28, the lionfish invasion is an example of how 
reductions in genetic diversity do not necessarily compromise population establishment and spreading16,20,21,27,28 
and points out the importance of primary (pre-border) and secondary (post-border) introductions, e.g., sec-
ondary introductions to the Caribbean Sea and later to the Gulf of Mexico16,20,21,27. The potential of lionfish to 
overcome these initial steps of the invasion with low genetic diversity at the mitochondrial DNA16,20,21,27, and 
to homogenize nuclear genetic structure across the invaded area (as shown in this study with SNPs), should be 
considered when developing theoretical models on the expected geographical spreading of this invasion58 and 
implementing appropriate strategies for its management and control.

Finally, the lionfish invasion to the Wider Caribbean can be used as a lesson to anticipate the genetic trend and 
potential impacts of P. miles invasion in the Mediterranean Sea. As P. volitans across the Wider Caribbean, P. miles 
has quickly colonized wide areas of the eastern Mediterranean59, which adds an additionally threaten in a small 
sea that is at the same time a hotspot of marine biodiversity and one of the world’s most impacted seas.

Methods
Sampling collection.  P. volitans samples were collected over a 20 month period, between June 2013 and 
February 2015, from thirteen locations along Florida’s eastern coast (NW Atlantic and Florida Keys) and the 
northern Gulf of Mexico, at depths between 4 and 62 meters. Sampling sites and number of individuals gen-
otyped are detailed in Table 1 and Fig. 1. Collections were often opportunistic by SCUBA divers, so collection 
depths could not always be recorded. Fin or gill clips were obtained from the collected specimens and preserved 
in absolute ethanol, frozen at −20 °C or stored in 320 µl of chaotropic buffer (4.5 M guanadinium thiocynate, 
2% N-lauroylsarcosine, 50 mM EDTA, 25 mM Tris-HCL pH 7.5, 0.2% antifoam, 0.1 M β-mercaptoethanol) (see 
Table 1).

Ethics Statement.  No endangered or protected species were involved in this study. Lionfish were sampled 
opportunistically by the authors from lionfish derbies or state and federal collections (as stated below); only 
dead lionfish were obtained. Lionfish were collected by a number of organizations in areas open to fishing with 
a spear or permitted by methods utilized. These fish were collected as a result of other activities such as tour-
naments, commercial harvest, and general fisheries surveys, and were sampled opportunistically for this study. 
No permits were required to collect lionfish beyond a state saltwater fishing license, which was in possession of 
divers at each collection. In the case of lionfish collected from offshore Florida, no fishing license is required. 
The University of Miami Institutional Animal Care and Use Committee (IACUC) did not require a protocol for 
this study since only dead specimens were donated to the University. State and Federal government organiza-
tions, although exempt from IACUC requirements, follow best practices to minimize pain and suffering of spec-
imens. These are approved Institutional Animal Care and Use Committee protocols via the American Veterinary 
Medical Association Guidelines for the Euthanasia of Animals and the American Society of Ichthyologists and 
Herpetologists Guidelines for Use of Fish in Research.

Library construction and SNP isolation.  Genomic DNA was extracted from tissue clips using silica col-
umns. DNA quality was assessed via agarose gel electrophoresis, and DNA concentrations were quantified using 
Biotium AccuBlueTM Broad Range dsDNA Quantitative Solution according to the manufacturer’s instructions. 
After quantification, 100 ng of DNA from each sample was dried down in 96-well plates in a SpeedVac concentra-
tor. Samples were then rehydrated overnight with 5 µl of ultrapure milliQ water before further processing.

Genotyping by Sequencing libraries were constructed using the restriction enzyme ApeKI. A total of 50 ng 
of genomic DNA per sample was digested at 75 °C for 2 hours. Unique barcoded adapters were used for library 
construction as described in60. A total of 229 DNA samples were pooled together and fragments approximately 
300 bp in length were selected with magnetic beads. Primers complementary to the adapters were then used for 
library amplification60. Before sequencing, library quality was checked in an Agilent 2100 Bioanalyzer. The GBS 
library including the 229 individuals was sequenced in two lanes of an Illumina Hi Seq. 2500 using 75 bp single 
end reads at Elim Biopharmaceuticals, Inc. Hayward, CA.

The UNEAK GBS analysis pipeline in TASSEL32 for species without a reference genome was used to call 
SNPs using Bowtie61. The software identifies SNPs found on single non-overlapping “tags” (64 bp sequences) 
initiated at the restriction sites. Only SNPs that had a minimum of five reads across all samples were retained to 
reduce the impact of sequencing errors. Loci with significant linkage disequilibrium (D’ p-value False Discovery 
Rate correction-FDR- adjusted to 0.01) identified in TASSEL and those with significantly greater observed than 
expected heterozygosity (p-value < 0.01) were removed from the database before performing further analyses. 
SNPs were then filtered to select individuals with at least 75% of the called loci and loci that were present in at 
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least 84% of individuals. Maximum heterozygosity during filtering was set at 0.5 to avoid excess of heterozygotes 
due to sequencing errors. All sequences containing selected SNPs were blasted (e-value < 10−5) against the mito-
chondrial DNA of Salmo salar and the Genbank database to identify mitochondrial fragments.

Data availability.  The HapMap file including the whole dataset of SNPs here analysed, a coverage file 
and the genepop file including allele frequencies have been deposited in PANGAEA (https://doi.org/10.1594/
PANGAEA.886118).

Detection of outlier SNPs.  Two different software programs, Arlequin62 and Lositan63, were used to iden-
tify non-neutral SNPs, as candidate markers under selection, based on an FST-outlier detection method and 
coalescence simulations. Arlequin uses simulations based on observed heterozygosity (Ho) to create a null dis-
tribution of FST values and associated p-values for each locus. We performed a total of 20,000 simulations, with 
100 demes, under a finite island model. This model was chosen due to the general lack of genetic structure (see 
Results). FDR correction of the p-values was applied to detect significant outliers; we also considered a more con-
servative approach with significance at p < 0.01 since strong corrections can increase type II error thereby assum-
ing neutrality in SNPs that are not neutral55 (although both approaches showed similar results). Lositan, on the 
other hand, creates a distribution based on the relation between FST values and expected heterozygosity (He). We 
performed a first run using all loci to estimate mean FST values with 20,000 simulations, 99% confidence interval, 
infinite alleles mutation model and false discovery rate of 0.1%. After the first run, loci in the confidence interval 
were removed, and “neutral” FST values were recalculated. A third run was finally performed using all loci, and the 
neutral FST values previously calculated were implemented to detect outliers. Finally, outliers recovered from both 
software programs, Arlequin and Lositan, were considered as candidate SNPs under selection.

Genetic structure analyses.  General descriptors of genetic diversity as mean number of alleles, observed 
heterozygosity (Ho), expected heterozygosity (He), fixation index FIS, and the Hardy Weinberg Equilibrium were 
calculated for all markers per population using Arlequin 3.5.1.262 and the “adegenet” package in R64.

A Maximum Likelihood (ML) tree, including all genotypes obtained, was reconstructed in RAxML with a 
GTR+ G model and 100 rapid bootstrap replicates65 to explore potential clustering of individuals related to differ-
ent geographical areas and/or sampling sites. The ML tree was then visualized and edited in Figtree 1.4.0 (http://
tree.bio.ed.ac.uk/software/figtree/).

A Bayesian clustering analysis, performed with the software Structure 2.3.466, was used to investigate the 
optimal number of major homogeneous genetic clusters (K) found within our datasets under the null hypothesis 
of genetic homogeneity. Because Bayesian analysis can be computationally very intense and long, an initial fast 
run was performed with a K from 1 to 13 with five independent replicates, 20,000 Markov chain Monte Carlo 
(MCMC) per replicate, and a 2,000 burn-in period to get a general idea about the maximum number of clusters 
expected. Then, a definitive run was performed with K from 1 to 8 with five independent replicates, 100,000 
MCMC per replicate, and a 10,000 burn-in period. We used an “admixture model” and correlated gene frequen-
cies as implemented in Structure. The five independent runs were averaged using the clumpak server67 (http://
clumpak.tau.ac.il). The K value was determined by comparing the rate of change in the likelihood of K, using the 
ad hoc statistic ΔK in Structure Harvester 0.6.9468.

Analyses of Molecular Variance (AMOVA), based on allele frequencies, were performed to specifically explore 
the potential genetic break between the two genetically different regions previously identified from mitochon-
drial DNA, the NW Atlantic and the Gulf of Mexico. The locations of PR and DT, at the Florida Strait, are rich 
mesophotic reefs and part of the Florida Keys reef complex but far inside the Gulf of Mexico. Since the genetic 
break between the NW Atlantic and the Gulf of Mexico shifts at different points of the Florida Strait depending 
on the species69,70, we could not a priori assign these two sites (PR and DT) to one or the other area. Therefore, 
we performed three different AMOVA analyses: the first analysis included PR and DT within the NW Atlantic 
pool, the second included them within the Gulf of Mexico pool, and the third one excluded these two sites from 
the analysis. After testing differences between major marine areas, pairwise FST distances based on allele fre-
quencies between all sampling sites were calculated with the same software. The significance of AMOVA and FST 
values was assessed after 50,000 non-parametric permutations of individuals among populations and/or popula-
tions between geographical areas and under the null hypothesis of genetic homogeneity. FDR correction of these 
p-values was applied for FST multiple testing71.

Significant difference in genetic diversity (Ho and He) between the two marine regions, the NW Atlantic and 
Florida Keys (CW, CC, FP, BNP, Isl, PR and DT, see Results section), and the Gulf of Mexico (TB, Ap, AL, MS, FG, 
GT) was evaluated with a t-test.

Additionally, discriminant analyses of principal components (DAPC)72 were computed for the complete data-
set. DAPC does not assume any underlying population genetic model and is not as affected by Hardy Weinberg 
disequilibrium as other methods based on genetic distances (e.g. FST and AMOVA) and Bayesian clustering analy-
ses. We used collection sites as populations with the “adegenet” package in R64. DAPC extracts multivariate infor-
mation from genetic datasets by first performing a principal component analysis (PCA) on predefined groups 
(collection sites in this case) and then using the PCA factors as variables for a discriminant analysis (DA), which 
seeks to maximize the inter-site component of variation. Thus. DAPC allows the visual identification of genetic 
clusters and can outperform more computer-intensive approaches, such as Structure, in detecting genetic struc-
ture72. Since the number of principal components (PCs) retained may have large impact on the DAPC output, 
the optimal number of PCs to be retained was first explored by the cross-validation method implemented by this 
package.

http://dx.doi.org/10.1594/PANGAEA.886118
http://dx.doi.org/10.1594/PANGAEA.886118
http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
http://clumpak.tau.ac.il
http://clumpak.tau.ac.il
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To understand whether selection and/or local adaptation within the lionfish’s invasive range is an impor-
tant driver of the genetic structure, the searching strategy explained before for the Bayesian clustering analysis, 
AMOVA, FST and DAPC was comparatively applied to three different SNP datasets: for all isolated SNPs, for 
neutral SNPs, and for candidate SNPs under selection (outliers).
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