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Abstract

Graph theory and network modelling have been previously applied to characterize

motor network structural topology in multiple sclerosis (MS). However, between-

group differences disclosed by graph analysis might be primarily driven by discrep-

ancy in density, which is likely to be reduced in pathologic conditions as a

consequence of macroscopic damage and fibre loss that may result in less streamlines

properly traced. In this work, we employed the convex optimization modelling for

microstructure informed tractography (COMMIT) framework, which, given a

tractogram, estimates the actual contribution (or weight) of each streamline in order

to optimally explain the diffusion magnetic resonance imaging signal, filtering out

those that are implausible or not necessary. Then, we analysed the topology of this

‘COMMIT-weighted sensory-motor network’ in MS accounting for network density.

By comparing with standard connectivity analysis, we also tested if abnormalities in

network topology are still identifiable when focusing on more ‘quantitative’ network

properties. We found that topology differences identified with standard tractography

in MS seem to be mainly driven by density, which, in turn, is strongly influenced by

the presence of lesions. We were able to identify a significant difference in density

but also in network global and local properties when accounting for density discrep-

ancy. Therefore, we believe that COMMIT may help characterize the structural orga-

nization in pathological conditions, allowing a fair comparison of connectomes which

considers discrepancies in network density. Moreover, discrepancy-corrected net-

work properties are clinically meaningful and may help guide prognosis assessment

and treatment choice.
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1 | INTRODUCTION

Graph theory and network modelling have been applied to character-

ize structural motor network topology in multiple sclerosis (MS), dem-

onstrating a reduced motor network efficiency through the

quantification of structural damage in white matter (WM) bundles

connecting pairs of cortical and subcortical grey matter (GM) regions

(Pardini et al., 2015). More broadly, graph analysis of the structural

connectome (Sporns, Tononi, & Kötter, 2005) (i.e., the set of white-

matter pathways between pairs of GM regions) has been successfully

used to discriminate MS patients from healthy controls (HCs) and to

classify MS clinical phenotypes (Kocevar et al., 2016; Li et al., 2013;

Llufriu et al., 2017; Nigro et al., 2015). However, such between-group

differences may be primarily driven by discrepancy in network density

(van Wijk, Stam, & Daffertshofer, 2010), which is likely to be reduced

in pathologic conditions as a consequence of macroscopic damage

and fibres loss. Thus, resulting in a less accurate tracking of stream-

lines (Ozturk et al., 2010). In the framework of graph analysis,

methods such as the minimum spanning tree have been applied to

account for differences in density, by reducing networks to a back-

bone structure insensitive to alterations in connection strength or

linked density (Tewarie, van Dellen, Hillebrand, & Stam, 2015). An

alternative and indirect way to deal with group differences in density

is to extract connectivity metrics from an atlas of bundles built from

healthy subjects keeping network density constant (Pagani et al.,

2019). Tracing fibres in HC offers the additional advantage to avoid

inaccuracy in tract reconstruction related to the presence of WM

lesions. Therefore, in MS studies, tractography is often performed in

the control group (or a subset of it), and the reconstructed tracts are

subsequently registered to patients' data to derive the metrics of

interest (Pagani et al., 2019; Pardini et al., 2015; Steenwijk et al.,

2015). Although the underlying idea is the same, its implementation is

slightly different in each of these works. Pagani et al. (2019) first cor-

egistered the diffusion tensor images of HCs to the standard Montreal

Neurological Institute (MNI) space, then they used the average of

those data to perform tractography saving only the tracts connecting

pairs of cortical areas with more than five streamlines as voxel maps.

Finally, they registered all the remaining subjects to MNI space and

they used the common tractogram to compute the individual con-

nectomes. Pardini et al. (2015) instead performed tractography in

each individual healthy subject's space and then registered the recov-

ered track density images to the MNI space to create population-

averaged maps for each tracts of interest. They then coregistered

these maps to each subject involved in the study to compute the con-

nectomes. Finally Steenwijk et al. (Steenwijk et al., 2015) implemented

a similar method of Pardini et al. (2015), but they computed for each

subject and tract separately the average of weighted lesion volume

and weighted average of fractional anisotropy (FA) in normal appe-

aring WM. When tractography is conducted directly in MS patients,

an FA threshold is set during fibre reconstruction and a minimum

number of fibres are selected to define single bundles in order to

reduce the risk of false-positive connections (Nigro et al., 2015; Shu

et al., 2011). The shortcoming of this approach is the drastic reduction

in reconstructed fibres, especially in those bundles that are rich in

crossing fibres (Sinke et al., 2018). More recently, a spherical-

deconvolution-informed filtering of tractograms (SIFT; R. E. Smith,

Tournier, Calamante, & Connelly, 2013) has been employed to reduce

reconstruction bias and improve biological plausibility (Koubiyr et al.,

2019), but the accuracy of SIFT application to pathological brains is

still under debate (Zalesky, Sarwar, & Ramamohanarao, 2020).

Furthermore, the characterization of the structural connectome in

MS has to take into account the impact of WM lesions on connectiv-

ity which is usually assessed through correlation analysis between

graph metrics and lesion loads (He et al., 2009; Romascano et al.,

2015). A more specific disconnection analysis can also be conducted,

quantifying dedicated graph measures that estimate the indirect, com-

pensatory connections between two regions developed after the tran-

section of the direct connection between them (Li et al., 2013). More

recently, the impact of macroscopic lesions on structural connectivity

was modelled by assuming transection of all fibres passing through

WM lesions (Pagani et al., 2019).

Finally, the quantification of the connection strength in structural

connectomes is an open issue. Typically, the connection strength

between each pair of grey-matter regions is ‘quantified’ by counting

the number of streamlines connecting them, that is, streamline count,

but this approach is not quantitative (Jones, Knösche, & Turner,

2013). Microstructure-informed tractography (Daducci, Dal Palu, Des-

coteaux, & Thiran, 2016) was recently proposed as a means to

improve the estimation of structural connectivity by combining

tractography with local microstructural features of the tissue and

fitting the actual contributions of the streamlines to the measured dif-

fusion magnetic resonance imaging (MRI) data. These contributions

do not allow to estimate the microscopical fibre count, but this

approach has the potential to provide a more ‘physically quantitative’

assessment of the connectivity than the simple streamline count. In

fact, as the contributions of the streamlines (or weights) are estimated

such that they explain the diffusion MRI data, and the connectivity is

‘physically quantified’ based on these weights. This possibility to

extract more ‘quantitative’ metrics from the reconstructed con-

nectomes may allow for a fair comparison of network properties

despite density discrepancies. However, to the best of our knowledge,

this approach has never been proposed in clinical studies.

In this proof of concept study, we investigated the topology of

the ‘physically quantitative’ sensory-motor network (SMN) (i.e., the

network whose weights are estimated through microstructure

informed tractography) in MS using the convex optimization modelling

for microstructure-informed tractography (COMMIT) (Daducci, Dal

Palu, Lemkaddem, & Thiran, 2013, 2015). COMMIT allows the track-

ing of fibres within WM lesions and removes the ones deemed implau-

sible according to the chosen microstructural property only after

reconstruction. The goal of this study was to test if abnormalities in

network topology are still identifiable when focusing on more ‘quanti-

tative’ network properties. We focused on patients with progressive

MS (PMS), who present the highest lesion loads, atrophy degree and,

presumably, density reduction among MS clinical phenotypes. Specifi-

cally, we evaluated if (a) COMMIT can improve the detection of
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differences in structural connectome density between MS patients

and HC compared to the raw connectome; (b) differences in network

density affect between-group comparisons of connectome properties;

(c) WM lesions and GM atrophy influence connectome properties; and

(d) SMN network properties are related to clinical disability.

2 | MATERIALS AND METHODS

2.1 | Subjects

Forty-two patients with PMS (22 primary and 20 secondary progres-

sive 28F, mean age 51.4 ± 11.4 years, mean disease duration 15.6

± 13.3 years) and 24 HC (11F, mean age 50.3 ± 8.5 years) were pro-

spectively enrolled. Inclusion criteria for patients with MS were age

between 18 and 70 years, MS diagnosis fulfilling the revised

McDonald criteria (Polman et al., 2011) and Expanded Disability Sta-

tus Scale (EDSS) score ≤7.0. Exclusion criteria were coexistence of

any major systemic condition, diagnosis of psychiatric disorders, con-

traindications to undergo an MRI scan, pregnancy, history of head

trauma, alcoholism, drug addiction, or neurological disorders other

than MS. Clinical examination, performed within 1 week from the

MRI scan, included EDSS, timed 25-foot walk test (T25FWT) and

9-hole peg test (9HPT). Written informed consent was obtained

from all participants before the beginning of the study procedures,

according to the Declaration of Helsinki. The protocol was approved

by the Institutional Review Board of the Icahn School of Medicine at

Mount Sinai.

2.2 | MRI acquisition

All subjects underwent MRI on a Siemens Skyra 3T scanner (Siemens,

Erlangen, Germany) with a 32-channel head coil. The MRI protocol

included the following sequences: axial T2-weighted 3D (repetition

time [TR]: 8000 ms, echo time [TE]: 95 ms, spatial resolution

0.5 × 0.5 × 3.0 mm3); sagittal T1-weighted 3D magnetization-

prepared rapid gradient echo (TR/TE: 3000/2.47 ms, inversion time

[TI]: 1000 ms, spatial resolution 0.8 × 0.8 × 0.8 mm3; generalized

autocalibrating partially parallel acquisitions with acceleration factor

R = 2); twice-refocused spin echo echo-planar imaging sequence for

diffusion MRI with b values of 1,000 and 2,000 s/mm2 and 30 direc-

tions each (repeated twice), in addition to b = 0 images (TR/TE:

4,700/100 ms, flip angle 80�, spatial resolution 1.8x1.8x2 mm3).

2.3 | Lesion and cortical segmentations

Quantification of T2-hyperintense and T1-hypointense lesion volume

was performed in each patient by a single experienced observer

unaware of subject identity, employing a segmentation technique

based on user-supervised local thresholding (Jim 7.0, Xinapse System,

Leicester, UK, http://www.xinapse.com) as described in Petracca et al.

(2018). The corresponding T1 images were then accordingly filled

using T1-hypointense lesion mask and FMRIB software library (FSL)

(https://fsl.fmrib.ox.ac.uk).

For all subjects, we processed T1-filled images with FreeSurfer

(http://surfer.nmr.mgh.harvard.edu) and we automatically segmented

them (Fischl et al., 2002; Fischl et al., 2004) using the standard

Desikan–Killiany atlas (Desikan et al., 2006) which allowed obtaining a

cortical parcellation in 85 regions of interest (ROIs). From this

parcellation, we retrieved the nodes of the motor network comparing

FreeSurfer ROIs and the Harvard–Oxford cortical and subcortical

structural atlas included in FSL (S. M. Smith et al., 2004). In particular,

the primary sensory-motor cortex (S-M1) was defined by the post

central and precentral gyrus ROIs; the secondary motor cortex

(M2) by the paracentral gyrus ROI; the secondary sensory cortex

(S2) by the supramarginal gyrus; the posterior associative sensory cor-

tex (AS Sens C) by the precuneus and superior parietal gyrus ROIs;

the prefrontal cortex (PFC) by the lateral orbitofrontal, medial

orbitofrontal, rostral middle frontal and superior frontal ROIs; the

deep GM (Deep GM) by the union of the thalamus, caudate, putamen

and pallidum ROIs acting as relay for projection tracts and, finally, the

cerebellum (cerebellum) as itself. The obtained nodes for one of the

healthy subjects included in our analyses are shown in Figure 1.

SMN GM fraction (GMF) was computed as the sum of the vol-

umes of all the above-listed areas divided by intracranial volume.

2.4 | Diffusion MRI processing

Diffusion MR images were corrected for motion and eddy currents

(Andersson & Sotiropoulos, 2016) using FSL. To perform whole brain

anatomically constrained tractography (R. E. Smith, Tournier, Cal-

amante, & Connelly, 2012), we first coregistered the T1 and diffusion

images using FMRIB's linear image registration tool (FLIRT)

(Jenkinson, Bannister, Brady, & Smith, 2002) of FSL with boundary-

based cost function (Greve & Fischl, 2009). Then we computed the

fibre orientation distribution functions using the multishell

multitissue-constrained spherical deconvolution approach (Jeurissen,

Tournier, Dhollander, Connelly, & Sijbers, 2014; Tournier, Cal-

amante, & Connelly, 2007) and generated 1 million streamlines using

the iFOD2 (Tournier, Calamante, & Connelly, 2010) tractography algo-

rithm implemented in MRtrix (http://www.mrtrix.org). In light of the

discussion in Zalesky et al (2020), we processed the resulting

tractograms using the COMMIT (Daducci et al., 2013, 2015) with stick

and zeppelin ball model (Alexander et al., 2010). COMMIT is a power-

ful framework that allows to decompose a signal in contributions com-

ing from different compartments. The main assumption of the

framework is that the contribution of a streamline is constant along

its path, while the remaining components can be different in each

voxel. In this case, we applied COMMIT to diffusion MR signal and we

decomposed the signal in intra-axonal, extra-axonal and isotropic con-

tributions according to the stick and zeppelin ball model (Alexander

et al., 2010). Indeed, with this model, we imposed that the intra-

axonal diffusion signal was constant along each tract and (when
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needed) we indirectly accounted for the presence of free water due

to a lesion with the zeppelin and ball compartments.

Finally, for each subject, both the raw (i.e., obtained using the

number of streamlines as entries) and the COMMIT-weighted con-

nectomes (i.e., obtained using COMMIT weights as entries) were built

using the motor network parcellation described above (Figure 2). As

entries (aij) of COMMIT-derived matrices, we used the weighted aver-

age intra-axonal signal contribution of each bundle:

aij =

PNij

k =1
xkij � lk

k =1P lk

Nij

,

where i and j are the indices of ROIs connected by the bundle, Nij is

bundle's number of streamlines, xkij is the weight of the streamline k

obtained by COMMIT and lk its length. In this way, each entry con-

tained the total signal fraction associated to the bundle, which was

given by the weighted average of the streamline contribution

(obtained with COMMIT) multiplied by its length and divided by the

average length of the bundle.

In light of the recent results showed in Buchanan et al. (2020), in

Data S1, we also report additional results obtained by thresholding

the number of streamlines in the raw connectomes according to two

widely used techniques: proportional and consistency thresholding.

For further details, we recommend readers to refer Data S1.

2.5 | Graph analysis

As it was done in previous works (Pagani et al., 2019; Pardini et al.,

2015; Steenwijk et al., 2015), for each subject we computed six

global network measures from the obtained connectomes using the

brain connectivity toolbox (Rubinov & Sporns, 2010): modularity

(reflecting the segregation of the network), global efficiency

(corresponding to the average inverse shortest path length in the

network and inversely related to the characteristic path length),

clustering coefficient (reflecting the degree to which the nodes tend

to cluster together), mean strength (corresponding to the average of

all the nodal strengths, where the nodal strength is the sum of the

weights of links connected to the node), assortativity (reflecting if

nodes tend to be connected to other nodes with similar strengths)

and density (corresponding to the fraction of present connections

to possible connections). For each node of the subjects'

connectome we also computed local efficiency and nodal strength

to investigate which node of the SMN was more affected by the

disease.

2.6 | Statistical analysis

All analyses were performed using Statistical Package for Social Sci-

ence (SPSS V.25.0).

Between-group comparisons were performed via analysis of

covariance analysis, entering age and gender as covariates. In order

to assess differences in density estimation related to the applica-

tion of COMMIT, we performed between-group comparisons both

on results from raw connectomes and COMMIT-weighted con-

nectomes and repeated the analysis entering density as additional

covariate.

The relationship between network global properties, T2 lesion

load and GM atrophy were tested via partial correlation accounting

for age and gender.

F IGURE 1 Motor network hubs used
in our analysis in a representative healthy
subject. The primary sensory-motor
cortex (S-M1) is shown in red; the
secondary motor cortex (M2) in green;
the secondary sensory cortex (S2) in light
blue; the posterior associative sensory
cortex (AS Sens C) in yellow; the
prefrontal cortex (PFC) in blue; the deep

grey matter (Deep GM) in pink (for the
right hemisphere) and orange (for the left
hemisphere) and the cerebellum in purple
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The relationship between network properties and clinical disabil-

ity was tested with stepwise regression models, entering age and gen-

der in the first block and network global/local properties in the

second block.

Results were considered significant for p < .05 (Bonferroni

corrected <0.008 for global properties [0.05/6 as the number of

network global properties considered]; Bonferroni corrected

<0.003 for local properties [0.05/14 as the number of nodes

considered]).

3 | RESULTS

3.1 | Between-group differences in connectome
properties

3.1.1 | Raw connectomes

Mean values and SDs of the global network metrics are reported in

Table 1. After Bonferroni correction for multiple comparisons,

F IGURE 2 Matrix representation of the connectomes obtained with the two different methods: counting the number of streamlines
connecting two pairs of grey matter regions (top); or assigning the quantitative measures obtained with COMMIT (bottom). For both method we
report the average connectomes obtained for the two groups of subjects: healthy controls (left) and PMS patients (right). In both cases (raw and
COMMIT), the pattern of connections is similar, but while in the upper case the information contained in the connectomes is nonquantitative, in
the bottom ones it represents the intra-axonal signal fraction associated to each connection. We also observe that some interhemispheric
connections present in the raw connectomes disappear after the application of COMMIT. COMMIT, convex optimization modelling for
microstructure informed tractography; PMS, progressive multiple sclerosis
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modularity, global efficiency and mean strength were significantly dif-

ferent between the two groups of subjects when accounting for age

and sex. When controlling also for density only the difference in mod-

ularity was still present. Of note, no significant differences in density

were identified between the two groups.

Mean values and SDs of the local network metrics are reported in

Table 2 (strength) and Table 3 (efficiency). After Bonferroni correction for

multiple comparisons, significant differences were identified in five nodes

in terms of strength and in nine nodes in terms of efficiency between the

two groups of subjects when accounting for age and sex. When control-

ling also for density, significant differences were still identified in two

nodes in terms of strength and in six nodes in terms of efficiency.

3.1.2 | COMMIT-weighted connectomes

Mean values and SDs of the global network metrics are reported in

Table 4. After Bonferroni correction for multiple comparisons, all the

explored metrics, except the clustering coefficient, were significantly

different between the two groups of subjects when controlling for

age and sex. When controlling also for density the difference in

assortativity disappeared.

Mean values and SDs of the local network metrics are reported in

Table 5 (strength) and Table 6 (efficiency). After Bonferroni correction for

multiple comparisons, significant differences were identified in six nodes

in terms of strength and in seven nodes in terms of efficiency between

the two groups of subjects when accounting for age and sex. When con-

trolling also for density significant differences were still identified in the

same nodes in terms of strength and in seven nodes in terms of efficiency.

3.2 | Relationship between raw connectome global
properties, WM lesions and GM atrophy

Accounting for age and gender, significant correlations were identified

between T2 lesion volume and global efficiency (r = −.655, p < .0001),

TABLE 1 Global graph metrics of
HCs and PMS patients computed on the
raw connectomes

HC (n = 24) PMS (n = 42) pa pb

Modularity 0.39 ± 0.03 0.46 ± 0.06 <.001 <.001

Global efficiency 1997.23 ± 242.51 1,716.31 ± 379.93 .003 .024

Clustering coefficient 2,376.28 ± 281.07 2,340.14 ± 385.03 .958 .327

Mean strength 14,726.32 ± 1,742.35 12,701.39 ± 2,682.28 .002 .017

Assortativity −0.13 ± 0.02 −0.12 ± 0.03 .113 .208

Density 0.94 ± 0.02 0.91 ± 0.08 .055 –

Abbreviations: HCs, healthy controls; PMS, progressive multiple sclerosis.

Note: All values are expressed as mean ± SD; ANCOVA age and gender corrected (pa), ANCOVA age,

gender and density corrected (pb). Statistically significant p values after Bonferroni correction are

highlighted in bold.

TABLE 2 Nodes strength of HCs and
PMS patients computed on the raw
connectomes

Side HC (n = 24) PMS (n = 42) pa pb

PFC R 22,763.00 ± 3,061.27 17,223.40 ± 5,448.31 <.001 <.001

L 24,068.79 ± 3,684.92 19,031.62 ± 6,314.12 .001 .010

S2 R 8,730.58 ± 1,326.41 8,490.48 ± 1832.01 .685 .417

L 8,847.83 ± 1,428.36 8,494.86 ± 1819.53 .508 .651

M2 R 8,164.50 ± 1,553.38 7,556.55 ± 1,558.34 .129 .428

L 6,648.67 ± 1,451.18 6,142.43 ± 1,421.49 .201 .452

As Sens C R 12,782.87 ± 2,542.15 10,918.00 ± 3,097.91 .029 .216

L 13,511.79 ± 2027.72 11,186.31 ± 3,014.71 .002 .018

S-M1 R 25,710.50 ± 3,185.54 23,091.50 ± 4,319.22 .025 .215

L 24,168.08 ± 3,993.54 22,589.05 ± 4,580.20 .219 .866

Deep GM R 19,671.92 ± 3,032.35 14,175.50 ± 5,019.85 <.001 <.001

L 21,266.62 ± 3,421.53 16,600.62 ± 5,764.56 .001 .004

Cerebellum R 5,024.42 ± 2,200.44 6,222.33 ± 2,177.42 .037 .059

L 4,808.92 ± 2,198.79 6,096.78 ± 2,301.40 .037 .061

Abbreviations: AS Sens C, posterior associative sensory cortex; Deep GM, deep grey matter; HCs,

healthy controls; M2, secondary motor cortex; S-M1, sensory-motor cortex; S2, secondary sensory

cortex; PFC, prefrontal cortex; PMS, progressive multiple sclerosis.

Note: All values are expressed as mean ± SD; ANCOVA age and gender corrected (pa), ANCOVA age,

gender and density corrected (pb). Statistically significant p values after Bonferroni correction are

highlighted in bold.
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clustering coefficient (r = −.469, p = .002), modularity (r = .640,

p < .0001), density (r = −.696, p < .0001), mean strength (r = −.630,

p < .0001). No correlations were identified between SMN GMF and

global metrics.

3.3 | Relationship between COMMIT-weighted
connectome global properties, WM lesions and GM
atrophy

Accounting for age and gender, significant correlations were identi-

fied between T2 lesion volume and global efficiency (r = −.431,

p = .005), modularity (r = .507, p = .001) and density (r = −.738,

p < .0001) as well as between SMN GMF and mean strength

(r = .425, p = .006).

3.4 | Clinical impact of raw connectome abnormalities

The models including demographic variables and network global proper-

ties accounted for 40% of variance in 9HPT scores (for density R2 = .40,

p = .001,β = −.57, p = .003) and 32% of variance in 25FWT (for density

R2 = .32, p = .004, β = −.51, p = .001; for assortativity R2 = .32, p = .004,

β = .51, p = .001). No significant results were yielded by the model

including demographic variables and node local properties.

3.5 | Clinical impact of COMMIT-weighted
connectome abnormalities

The models including demographic variables and network global prop-

erties accounted for 27% to 35% of variance in 9HPT scores (for

TABLE 3 Nodes efficiency of HC and
PMS patients computed on the raw
connectomes

Side HC (n = 24) PMS (n = 42) pa pb

PFC R 709.40 ± 103.54 546.64 ± 171.56 <.001 .001

L 707.44 ± 124.48 556.60 ± 190.01 .002 .012

S2 R 401.98 ± 53.94 385.79 ± 100.87 .398 .073

L 379.30 ± 62.29 370.41 ± 89.42 .766 .274

M2 R 434.33 ± 76.70 352.43 ± 83,17 <.001 .002

L 401.06 ± 67.52 335.49 ± 88.80 .002 .006

As Sens C R 620.74 ± 111.40 479.05 ± 131.44 <.001 <.001

L 656.76 ± 110.77 492.80 ± 122.97 <.001 <.001

S-M1 R 839.94 ± 128.53 674.43 ± 172.13 <.001 .001

L 783.84 ± 138.19 654.77 ± 171.33 .004 .028

Deep GM R 646.60 ± 109.95 498.40 ± 159.60 <.001 .001

L 658.61 ± 107.49 537.86 ± 161.56 .002 .014

Cerebellum R 163.01 ± 61.32 153.46 ± 50.50 .608 .911

L 130.99 ± 52.71 129.97 ± 44.51 .977 .602

Abbreviations: AS Sens C, posterior associative sensory cortex; Deep GM, deep grey matter; HCs,

healthy controls; M2, secondary motor cortex; S-M1, sensory-motor cortex; S2, secondary sensory

cortex; PFC, prefrontal cortex; PMS, progressive multiple sclerosis.

Note: All values are expressed as mean ± SD; ANCOVA age and gender corrected (pa), ANCOVA age,

gender and density corrected (pb). Statistically significant p values after Bonferroni correction are

highlighted in bold.

TABLE 4 Global graph metrics of HCs and PMS patients on COMMIT-weighted connectomes

HC (n = 24) PMS (n = 42) pa pb

Modularity 0.41 ± 0.02 0.46 ± 0.05 <.001 .005

Global efficiency 5.27 ± 0.62 4.35 ± 0.52 <.001 <.001

Clustering coefficient 5.67 ± 0.81 5.18 ± 0.70 .024 .025

Mean strength 38.15 ± 4.22 31.64 ± 3.88 <.001 <.001

Assortativity −0.16 ± 0.03 −0.13 ± 0.04 .006 .188

Density 0.88 ± 0.26 0.82 ± 0.09 .004 –

Abbreviations: COMMIT, convex optimization modelling for microstructure informed tractography; HCs, healthy controls; PMS, progressive multiple

sclerosis.

Note: All values are expressed as mean ± SD. Raw p values from the post hoc test to compare subject groups in terms of the network metrics are reported

in the last two columns; pa comparison controlling for age and sex; pb, comparison controlling for age, sex and density. Statistically significant p values after

Bonferroni correction are highlighted in bold.
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modularity R2 = .27, p = .018, β = .45, p = .007; for density R2 = .35,

p = .003, β = −.53, p = .001). The model including demographic vari-

ables and node local properties accounted for 58% of variance in

9HPT scores (for right PFC local efficiency R2 = .58, p = .008,

β = −.53, p = .003) and 66% of variance in T25FWT scores (for asso-

ciative sensory cortex local efficiency R2 = .66, p = .001,

β = 1.12, p < .001).

4 | DISCUSSION

Notwithstanding all previous efforts in investigating structural con-

nectivity and disconnection in MS, in this study we propose a method-

ological approach—COMMIT—that accounts for the presence of

lesions and fibres loss and provides a means to directly compare con-

nectomes with different density.

TABLE 5 Nodes strength of HCs and PMS patients computed on COMMIT-weighted connectomes

Side HC (n = 24) PMS (n = 42) pa pb

PFC R 53.16 ± 9.33 40.86 ± 8.78 <.001 <.001

L 54.88 ± 7.22 42.81 ± 10.57 <.001 .001

S2 R 22.19 ± 5.71 19.53 ± 4.47 .064 .235

L 23.20 ± 4.95 19.21 ± 4.66 .002 .011

M2 R 25.54 ± 6.42 24.68 ± 6.77 .587 .500

L 19.69 ± 5.61 18.60 ± 4.99 .425 .107

As Sens C R 31.19 ± 4.43 26.55 ± 6.54 .005 .079

L 36.77 ± 7.37 27.43 ± 6.34 <.001 <.001

S-M1 R 62.95 ± 11.77 56.30 ± 9.03 .027 .129

L 62.66 ± 13.90 52.03 ± 8.32 <.001 .002

Deep GM R 49.71 ± 6.63 34.08 ± 10. 30 <.001 <.001

L 52.55 ± 14.48 36.69 ± 9.90 <.001 <.001

Cerebellum R 20.35 ± 7.87 22.26 ± 7.73 .232 .698

L 19.30 ± 7.30 21.88 ± 7.72 .174 .676

Abbreviations: AS Sens C, posterior associative sensory cortex; COMMIT, convex optimization modelling for microstructure informed tractography; Deep

GM, deep grey matter; HCs, healthy controls; M2, secondary motor cortex; S-M1, sensory-motor cortex; S2, secondary sensory cortex; PFC, prefrontal

cortex; PMS, progressive multiple sclerosis.

Note: All values are expressed as mean ± SD; ANCOVA age and gender corrected (pa), ANCOVA age, gender and density corrected (pb). Statistically

significant p values after Bonferroni correction are highlighted in bold.

TABLE 6 Nodes efficiency of HCs and PMS patients computed on COMMIT-weighted connectomes

Side HC (n = 24) PMS (n = 42) pa pb

PFC R 1.84 ± 0.34 1.48 ± 0.23 <.001 <.001

L 1.71 ± 0.28 1.43 ± 0.31 .001 .022

S2 R 1.12 ± 0.22 1.23 ± 0.52 .349 .233

L 1.10 ± 0.20 1.10 ± 0.49 .918 .007

M2 R 1.25 ± 0.25 1.19 ± 0.36 .456 .022

L 1.12 ± 0.20 1.19 ± 0.57 .531 .060

As Sens C R 1.59 ± 0.18 1.41 ± 0.35 .026 .001

L 1.82 ± 0.26 1.46 ± 0.45 .001 <.001

S-M1 R 2.12 ± 0.32 1.78 ± 0.41 .001 .001

L 2.12 ± 0.36 1.69 ± 0.36 <.001 <.001

Deep GM R 1.72 ± 0.21 1.37 ± 0.23 <.001 <.001

L 1.72 ± 0.28 1.37 ± 0.32 <.001 <.001

Cerebellum R 0.76 ± 0.26 0.67 ± 0.18 .095 .080

L 0.79 ± 0.26 0.70 ± 0.20 .094 .140

Note: All values are expressed as mean ± SD; ANCOVA age and gender corrected (pa), ANCOVA age, gender and density corrected (pb). Statistically

significant p values after Bonferroni correction are highlighted in bold.
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Thanks to its capability of decomposing the intrinsic signal contri-

bution of each streamline in the tractogram, COMMIT may represent

an effective method to cope with density discrepancies between

healthy subjects and patients. The main idea behind this method is to

assume that one (or more) microstructure feature does not vary along

the length of a tract and therefore it is possible to effectively estimate

its value for the entire tract (rather than only voxel-wise). This estima-

tion is done simultaneously for all the streamlines by fitting them to a

map related to the selected microstructure feature. If only diffusion-

weighted magnetic resonance imaging data are available, it is reason-

able to assume that the intra-axonal diffusion signal is constant along

the tract and COMMIT uses any predefined microstructural model to

estimate it. Similarly to what was recently found in Lipp et al. (2019),

using the recently introduced multishell multitissue spherical

deconvolution (Jeurissen et al., 2014) and the probabilistic algorithm

(Tournier et al., 2010) to generate streamlines, we were able to propa-

gate the tracking also inside MS lesions to build the input tractograms.

We then applied COMMIT to decide if a streamline passing through a

lesion is essential to explain the signal or not and consequently keeps

or discards it to construct the final tractogram. In the present work,

we employed as microstructural model the stick and zeppelin ball

model (Alexander et al., 2010) which indirectly accounts for the pres-

ence of free water due to a lesion with the zeppelin and ball compart-

ments. Finally, to construct the COMMIT-weighted connectomes, we

chose not to use the traditional number of streamlines connecting

two cortical regions of interest (streamlines count), which was shown

not to be quantitative (Jones et al., 2013). Conversely, we considered

the more informative total signal fraction associated to the bundle,

which is given by the weighted average of the streamline contribution

(obtained with COMMIT) multiplied by its length and divided by the

average length of the bundle. This approach offers two main advan-

tages. First, by forcing fibre tracking within lesions and subsequently

filtering them according to the signal preservation along the stream-

line, COMMIT retains in the tractogram only fibres whose microstruc-

ture is not irredeemably damaged by lesions or subtle inflammatory/

neurodegenerative processes ongoing in the normal appearing WM

(Lassmann, 2018). Thus, producing a weighted network composed by

‘healthy’ and partly damaged fibres whose signal is not irreversibly

compromised and can be fitted with a stick. As a consequence of

COMMIT's filtering, in the COMMIT-weighted connectomes, we

observed a reduction in density in comparison with the raw con-

nectomes both in patients and controls (Figure 3). A number of

implausible connections, related to tractography intrinsic limitations,

as well as the fact that our control group presumably presented age-

related subtle WM abnormalities, were removed in HCs. As expected

though, the number of implausible connections removed in patients

was even higher, which explains why differences in terms of density

between patients and controls became apparent only after COMMIT

application. Second, by giving the possibility to compare more ‘quanti-

tative’ metrics rather than measures derived from the nonquantitative

streamline number (Jones et al., 2013), COMMIT offers the possibility

to assess differences in network properties beyond changes driven by

density discrepancy. This is supported by the results of our between-

group comparison, which shows that, while topology differences iden-

tified with standard tractography were mainly driven by density, dif-

ferences in global and local properties derived from the COMMIT-

weighted connectomes were insensitive to density correction

(Figures 3–5). Finally, it is worth highlighting that although COMMIT

estimates the actual weight of the edges in the network by fitting the

corresponding streamlines to the white-matter signal, normalization

may still be required to account for ROI size differences in the chosen

parcellation (Sotiropoulos & Zalesky, 2019). In fact, larger ROIs may

be connected with more streamlines simply because of their size.

Note, however, that this applies to raw and COMMIT-weighted con-

nectomes alike, and hence it does not bias our results. Future studies

will investigate the possibility to use COMMIT to account also for this

aspect.

Differences in connectome global properties estimated after

COMMIT application suggest that also the COMMIT-weighted

connectome presents the topology abnormalities previously described

in MS (Kocevar et al., 2016; Li et al., 2013; Llufriu et al., 2017; Nigro

et al., 2015; Pardini et al., 2015). Indeed, the COMMIT-weighted

SMN was less efficient, more dispersed and weaker in MS than in HC,

supporting the notion that also seemingly intact connections are not

sufficient to preserve brain structure. As COMMIT retains also con-

nections partly affected by WM lesions, WM bundles entered in the

COMMIT-weighted connectome still suffer the consequences of

smouldering inflammation, axonal and neuronal damage within focal

lesions, and periventricular damage sustained by detrimental soluble

factors (Lassmann, 2018). Fibres damage and loss above a certain

threshold could eventually leave a vulnerable structure, not able to

sustain efficient network function. Assortativity was the only network

property still affected by density after COMMIT application,

suggesting that nodes' connection strength in the COMMIT-weighted

connectome depends on the presence of preserved connections. The

strong link between density and assortativity is also highlighted by

their comparable predictive power on clinical disability. Locally,

strength and efficiency were decreased in the PFC, primary sensory-

motor areas, associative sensitive cortex and deep GM, confirming the

diffuse involvement of cortical and deep GM regions reported in the

progressive phenotypes (Eshaghi et al., 2018) (Figures 4 and 5).

COMMIT-weighted SMN global properties showed strong to moder-

ate associations with WM lesion load and atrophy, confirming that

brain topological organization is related to the accrual of macrostruc-

tural damage (Pagani et al., 2019), with lesion load playing a predomi-

nant role in PMS (Steenwijk et al., 2015). Of note though, raw SMN

global properties showed even stronger relationships with WM lesion

load, once again supporting the notion that network properties

derived from raw connectomes are substantially influenced by the

presence of lesions. On the other hand, the effects of atrophy were

not detectable, possibly because of the dominant influence of WM

lesion load itself. As per the clinical impact of network topology, raw

connectomes properties were not predictive of clinical status, while

among COMMMIT-weighted connectomes properties the main role

was played by nodes’ local efficiency, which predicted a large amount

of variance in motor disability. PFC efficiency was particularly relevant
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F IGURE 3 Boxplots showing the differences in global network measures between HCs (white) and PMS patients (grey) for both raw and
COMMIT tractograms. We observe that after the application of COMMIT the differences between HC and PMS patients are more pronounced.
Also, the presence of outliers is often mitigated when COMMIT is applied. COMMIT, convex optimization modelling for microstructure informed
tractography; HCs, healthy controls; PMS, progressive multiple sclerosis

F IGURE 4 Barplot showing the local efficiency of all the hubs of the motor network for both raw and COMMIT connectomes. The
statistically significant differences between HCs in white and PMS patients in grey and accounting for discrepancies in age, sex and density are
marked with an asterisk. COMMIT, convex optimization modelling for microstructure informed tractography; HCs, healthy controls; PMS,
progressive multiple sclerosis
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for manual dexterity performance, highlighting the importance of

motor planning for the execution of fine motor movements, while effi-

ciency of associative sensory cortex was significantly correlated with

the ambulation performance. Interestingly, it seems that the efficiency

of integrative rather than primary areas is particularly relevant for clini-

cal function preservation within the weighted connectome, highlighting

the compensatory role of these regions in advanced disease stages.

5 | CONCLUSIONS

Topology differences identified with standard tractography in MS

seem to be mainly driven by density, which, in turn, is strongly

influenced by the presence of lesions, suggesting caution when inter-

preting between-group differences in connectome properties. Moving

from a qualitative towards a more ‘quantitative’ appraisal of the brain

structural connectome, COMMIT application allowed the identifica-

tion of a significant difference in density between patients and HC

and the exploration of network topology in the COMMIT-weighted

connectome. Differences observed in network global and local prop-

erties suggest that preserved connections undergo a topological

reorganization in MS. Within such reorganization of the brain

connectome, decreased local efficiency in key areas of the SMN rep-

resent the most relevant correlates of motor disability. Based on these

results, we believe that COMMIT may help characterize the topologi-

cal organization of structural networks in pathological conditions, all-

owing a fair comparison of connectomes which takes into account

discrepancies in network density. More importantly, our study shows

that discrepancy-corrected network properties are clinically meaning-

ful and, therefore, may help guide prognosis assessment and treat-

ment choice.
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