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MASTL kinase is a master regulator of mitosis, essential for ensuring that mitotic
substrate phosphorylation is correctly maintained. It achieves this through the
phosphorylation of alpha-endosulfine and subsequent inhibition of the tumor suppressor
PP2A-B55 phosphatase. In recent years MASTL has also emerged as a novel
oncogenic kinase that is upregulated in a number of cancer types, correlating with
chromosome instability and poor patient survival. While the chromosome instability is
likely directly linked to MASTL’s control of mitotic phosphorylation, several new studies
indicated that MASTL has additional effects outside of mitosis and beyond regulation
of PP2A-B55. These include control of normal DNA replication timing, and regulation
of AKT/mTOR and Wnt/β-catenin oncogenic kinase signaling. In this review, we will
examine the phenotypes and mechanisms for how MASTL, ENSA, and PP2A-B55
deregulation drives tumor progression and metastasis. Finally, we will explore the
rationale for the future development of MASTL inhibitors as new cancer therapeutics.
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THE MASTL-ENSA-PP2A AXIS

In 2010, MASTL (microtubule-associated serine/threonine kinase-like) was identified as the human
orthologue of Drosophila Greatwall (Gwl) kinase (Burgess et al., 2010), a protein essential for
mitosis (Bettencourt-Dias et al., 2004; Yu et al., 2004). Since then, MASTL has established itself
as a critical regulator of cell cycle control and maintenance of mitotic integrity (Bettencourt-Dias
et al., 2004; Yu et al., 2004; Burgess et al., 2010; Mochida et al., 2010; Álvarez-Fernández et al.,
2013; Diril et al., 2016). Its roles in regulating mitosis have been extensively reviewed (Voets and
Wolthuis, 2012; Lorca and Castro, 2013; Vigneron et al., 2016), and hence only a brief summary of
these functions is described below.

Cellular entry into mitosis relies on the phosphorylation of thousands of proteins (Burgess
et al., 2017), a process which is primarily driven by cyclin-dependent kinase 1 (CDK1), a major
component of the M-phase-promoting factor (MPF). Prior to mitosis, Cyclin B-CDK1 dependent
phosphorylation on substrates is rapidly removed by the PP2A-B55 phosphatase (Mochida
et al., 2009). During mitosis, the activity of PP2A-B55 must be suppressed to ensure CDK1
phosphorylation sites on key proteins, such as MPS1 (Diril et al., 2016), remain phosphorylated.
This is achieved by MASTL, which indirectly inhibits PP2A-B55 through phosphorylation of
alpha-endosulfine (ENSA) and the highly related cAMP-regulated phosphoprotein 19 (Arpp-19)
on a single site [S67/62, respectively (Gharbi-Ayachi et al., 2010; Mochida et al., 2010)]. ENSA
is in significant excess to PP2A-B55 and acts as an unfair competitive inhibitor, preventing
PP2A-B55 from dephosphorylating other substrates (Williams et al., 2014). Interestingly,
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multisite phosphorylation of ENSA modulates its PP2A-B55
inhibition, with CDK phosphorylation on T28 creating a
weak PP2A-B55 inhibitor, while PKA phosphorylation at S106
antagonizes T28 phosphorylation thereby preventing inhibition
of PP2A-B55 (Mochida, 2014). To exit mitosis, cells must
reactivate PP2A-B55 and sequentially dephosphorylate substrates
in a highly ordered manner (Bouchoux and Uhlmann, 2011).
This is achieved by a PP1-PP2A relay switch (Grallert et al.,
2014), where loss of CDK1 activity is driven by APCcdc20

ubiquitination and destruction of cyclin B. Interestingly, MASTL
promotes cyclin B recruitment to the APC/C, which likely
helps ensure a robust bistable switch at the metaphase-anaphase
transition (Voets and Wolthuis, 2015). Loss of CDK1 activity
relieves its inhibitory phosphorylation of T320 on PP1, allowing
PP1 to auto-dephosphorylate T320 and subsequently partially
dephosphorylate and reduce MASTL activity (Heim et al.,
2015; Ma et al., 2016; Rogers et al., 2016a). This releases
inhibition of PP2A-B55, which in turn begins removing CDK1
phosphorylation events, including those on MASTL (Rogers
et al., 2016a) and MPS1 (Diril et al., 2016), thereby creating
a positive feedback loop and a bistable mitotic exit switch.
PP2A-B55 and FCP1 then complete the dephosphorylation and
deactivation of MASTL during mitotic exit (Hégarat et al.,
2014; Monica Della et al., 2015). Importantly, disrupting the
MASTL-ENSA-PP2A-B55 (MEP) axis results in multiple mitotic
errors, including chromosome segregation and cytokinesis
defects (Burgess et al., 2010; Voets and Wolthuis, 2010; Cundell
et al., 2013; McCloy et al., 2014). This in turn can drive
chromosome instability (CIN), a hallmark of cancer (Bakhoum
and Swanton, 2014). Consequently, MASTL is now recognized
as a master regulator of mitosis (Vigneron et al., 2016), and a
critical and essential component of MPF in eukaryotic cells (Hara
et al., 2012). However, until recently, the role of MASTL in human
diseases, such as cancer, were poorly understood. In this review,
we will explore the recent publications on the role of MASTL
deregulation in cancer, the mechanisms by which MASTL may
directly and indirectly promote tumorigenesis, and its potential
as a therapeutic target.

DEREGULATION OF THE
MASTL-ENSA-PP2A AXIS IN CANCER

PP2A phosphatase is a multimeric complex consisting of a
catalytic (C) subunit, a scaffolding (A) subunit, and a regulatory
B subunit for which there are 4 members (B, B’, B” and
B”’), which each have multiple isoforms. Together, the trimeric
(C-A-B) complex can form up to 100 different combinations
that regulate a vast number of signaling pathways (Wlodarchak
and Xing, 2016). For simplicity, we have limited the remainder
of our review to the B55α subunit (herein referred to as
B55), as it is a potential tumor suppressor (Ruvolo, 2016) and
the primary target of MASTL in human cells. Consequently,
overexpression of MASTL could provide an oncogenic growth
advantage by functionally repressing the tumor suppressor
activity of PP2A-B55. In support, the current provisional TCGA
datasets show that the MEP axis is commonly disrupted in a

wide-variety of cancer types (Gao et al., 2013). Amplification
and deletion are the most commonly observed alterations,
while mutations, although present, are rare in most cancer
types (Figure 1A). Breast cancer is one of the top cancers
that show deregulation of the MEP axis, and this deregulation
is further exacerbated from 20 to over 50% by the inclusion
of RNA seq and RPPA protein expression data (Figure 1B).
There is a clear enrichment for upregulation/amplification of
MASTL-ENSA and a corresponding deletion or downregulation
of PP2A-B55, matching their proposed oncogenic and tumor
suppressor functions. The mutational rate for MASTL across
all cancers is low and the mutations are evenly spread across
the length of the gene (Figure 1C). Most of these mutations
have unclear functional consequences, however, there is one
annotated breast tumor with a K72R mutation, which may
cause hyperactivity similar to the K72M mutant in drosophila
(Archambault and Zhao, 2007). There are also several mutations
located in or near the N-terminal kinase domain and C-terminal
active site tether region, which are known to disrupt activity
(Vigneron et al., 2011; Blake-Hodek et al., 2012). There are also
several truncating mutations, including a potential truncating
hot-spot at K391, which is found in stomach, oesophageal and
colon cancers (Figure 1C). A single case of the E167D mutation,
which has been linked to thrombocytopenia (Johnson et al.,
2009; Hurtado et al., 2018), is annotated in lung squamous
cell carcinoma. Understanding what functional impact these
mutations and truncations have on MASTL function in cancer
will be of interest for future research.

Multiple reports have shown that MEP axis deregulation
correlates with various measures of patient outcome in numerous
cancer types. Specifically, overexpression of MASTL has been
linked with tumor progression and poor outcomes in breast
(Álvarez-Fernández et al., 2018; Rogers et al., 2018; Yoon et al.,
2018), oral (Wang et al., 2014), gastric (Sun et al., 2017)
and colon cancer (Vera et al., 2015; Uppada et al., 2018).
The majority of research to date is in breast cancer, where
MASTL overexpression correlates significantly with increased
chromosome instability, mitotic index, nuclear pleomorphism,
histological grade and poor overall survival, (Álvarez-Fernández
et al., 2018; Rogers et al., 2018; Yoon et al., 2018), and with
a high risk of metastatic relapse in estrogen receptor (ER)
positive patients (Zhuge et al., 2017). In contrast, PP2A-B55 is
frequently downregulated or deleted in multiple cancer types
including AML (Shouse et al., 2016), lung (Kalev et al., 2012),
ovarian (Zhang et al., 2018) prostate (Cheng et al., 2011)
and breast cancer (Curtis et al., 2012; Beca et al., 2015). In
breast cancer, PP2A-B55 inactivation is associated with negative
estrogen and progesterone receptor expression, positive HER2
expression, increased proliferative index, higher AKT and ERK
phosphorylation, higher grade tumors, faster relapse (Watt et al.,
2017), and significantly worse patient outcomes (Figure 1D).
Surprisingly, in pancreatic cancer, PP2A-B55 appears to act
as an oncogene, with overexpression hyperactivating the AKT,
ERK, and Wnt signaling pathways (Hein et al., 2016), indicating
that the tumor suppressive role is likely tissue-specific. In
contrast, increased expression of ENSA, while common in
cancer, has not yet been strongly linked with any cancer patient
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FIGURE 1 | The MASTL-ENSA-PP2A axis in breast cancer. (A) The alteration frequencies of MASTL, ENSA, Arpp-19 and PP2A-B55α currently reported in the
TCGA provisional tumor datasets for each cancer type are shown and visualized using cBioPortal (http://www.cbioportal.org). Inset pie-charts show the proportion
of mutations (green), amplifications (red), and deletions (blue) seen for each gene across all cancers. (B) Alterations observed for MASTL, PP2A-B55α (PPP2R2A),
ENSA, Arpp-19 and p53 (TP53) in the current TCGA, Provisional dataset for all complete tumors with RPPA protein data and RNASeq V2 Data (892 samples) in the
TCGA provisional Breast Invasive Carcinoma cohort. Significant p-values for co-occurrences between gene alterations are shown. (C) All known MASTL mutations
currently annotated across the entire 184 TCGA studies (51908 samples). Colored lines indicate possible and known functional sites, circled colors indicate mutation
type (truncation, missense, or in-frame). (D) Kaplan-Meier plots for relapse-free survival were generated using KMPlot (http://kmplot.com) for MASTL, ENSA,
Arpp-19, PP2A-B55α (PPP2R2A) either alone or in combination for all breast cancer types. Note the hazard ratio (HR) values for PP2A-B55α were inverted in all
analyses. Consequently, here low expression of PP2A-B55α correlates with poor survival, while MASTL and ENSA and Arpp-19 HR values correspond to high
expression. Non-significant P-values are highlighted in red.
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outcomes. For example, in breast cancer, its overexpression does
not affect relapse-free survival (Figure 1D; Gyõrffy et al., 2010).
However, when combined with MASTL overexpression, patient
outcomes are worse compared to MASTL overexpression alone
(Figure 1D). A possible explanation is that increased amounts
of both MASTL and ENSA could result in a larger pool of
phosphorylated ENSA, inhibiting PP2A-B55 further and creating
a functional loss of a tumor suppressor. Notably, the rate of
Arpp-19 deregulation is lower, with overexpression providing a
small positive advantage that counteracts MASTL (Figure 1D),
suggesting it does not play a significant oncogenic role. In
summary, MEP axis disruption is a common event in a variety
of cancers that correlates with poor patient outcomes. In the
following sections we will discuss the specific phenotypes and
potential mechanisms for how disruption to the MEP axis drives
cancer.

EFFECTS OF MASTL OVEREXPRESSION

Multiple studies spanning Drosophila, Xenopus, and mammalian
(mouse and human) systems, have examined MASTL loss of
function, clearly establishing its essential role in controlling
mitosis (Yu et al., 2004; Burgess et al., 2010; Mochida
et al., 2010; Álvarez-Fernández et al., 2013). However, the
effects of overexpression are less well understood. Early work
in Drosophila embryos showed that like loss-of-function,
excess MASTL activity could also disrupt mitosis. Work
by Archambault et al showed that a K97M hyperactivating
mutation (K72M in humans) caused severe developmental
defects, characterized by detachment of one centrosome during
early prophase (Archambault and Zhao, 2007). Similarly,
we recently demonstrated that overexpression of wild-type
MASTL in immortalized human MCF10A breast epithelial
cells was sufficient to increase the rate of chromosome
bridges and micronuclei formation (Rogers et al., 2018).
These defects lead to an increase in DNA damage foci and
a p38-dependent G2 delay, without disrupting replication
dynamics. In addition, MASTL overexpression also disrupted
contact inhibition, causing unrestrained growth of MCF10A
cells in 3D culture, along with altered migration and a partial
epithelial–mesenchymal transition (EMT). In support, Vera et al
showed that overexpression in MDA-MB-231 breast cancer cells,
which express ∼three-fold more MASTL than MCF-10A cells
(Rogers et al., 2018), could drive additional hyperproliferation,
invasion and migration in these cells (Vera et al., 2015),
suggesting a positive correlation between levels of MASTL and
severity of the phenotypic outcomes.

EFFECTS OF ENSA OVEREXPRESSION

Overexpression of ENSA has been reported to have no
proliferative or invasive phenotype in breast cancer cells (Vera
et al., 2015) and surprisingly it suppresses tumor growth in
liver cells (Chen et al., 2013). These contradictory results
combined with the general lack of effect seen in patient data

(Figure 1D), suggests that ENSA overexpression is likely to
be biologically inert in most cell types and requires activation
or inhibition by MASTL or other upstream kinases such as
CDK1 and PKA (Mochida, 2014). Despite this, knockdown of
ENSA does disrupt normal DNA replication timing (Charrasse
et al., 2017), while reduced ENSA expression has been associated
with neurodegenerative disease (Ysselstein et al., 2017) and
impaired insulin secretion (Bataille et al., 1999). In the case
of DNA replication timing, this is dependent on MASTL and
PP2A-B55 (Charrasse et al., 2017), highlighting the importance
of maintaining an optimal balance between the levels of
MASTL-ENSA and PP2A-B55 in mitosis and throughout the cell
cycle.

EFFECTS OF PP2A-B55 LOSS

In contrast to ENSA, loss of PP2A-B55 has been widely
implicated in regulating diverse biological pathways, including
neurodegeneration (Taleski and Sontag, 2018), metabolism (Reid
et al., 2013), diabetes (Goldsworthy et al., 2016), DNA repair
(Kalev et al., 2012; Wang et al., 2015), the cell cycle (Burgess
et al., 2017), and of course tumor suppression (Ruvolo, 2016).
Importantly, knockdown of PP2A-B55 closely phenocopies
MASTL overexpression, with loss of PP2A-B55 in MCF10A cells
inducing excessive proliferation resulting in the formation of
large lobular acini in 3D culture (Watt et al., 2017). Knockdown
of PP2A-B55 also disrupts mitotic exit, with cells delaying during
anaphase due to a failure to efficiently dephosphorylate key
mitotic substrates, such as PRC1 (Schmitz et al., 2010; Cundell
et al., 2016), leading to a disruption to the normally highly
ordered dephosphorylation of mitotic substrates (Rogers et al.,
2016b). These defects can be mimicked by disrupting the balance
between CDK1 and PP2A (McCloy et al., 2014), and importantly
the co-knockout of MASTL and PP2A-B55 cancels each other’s
mitotic defects (Álvarez-Fernández et al., 2018). However, it
should be noted that inhibition of PP2A-B55 has also been
reported to suppress mitotic defects and CIN induced by Plk1
overexpression (Cunningham et al., 2016). This could be related
to the earlier findings in Drosophila, which showed Gwl and
Polo (MASTL and Plk1 in humans) play antagonistic mitotic
roles (Archambault and Zhao, 2007). Taken together these results
highlight the importance of maintaining a tight control over
the balance between PP2A-B55 and MASTL to ensure that
mitotic phosphorylation and mitotic fidelity is maintained. In
support, we showed using mathematical modeling, that MASTL
overexpression disrupts PP2A-B55 reactivation timing, delaying
mitotic exit (Rogers et al., 2016a; Rogers et al., 2018).

REGULATION OF ONCOGENIC KINASE
SIGNALING BY THE MEP AXIS

MASTL overexpression or loss of PP2A-B55 have been associated
with increased proliferation, EMT and invasion in several
cancer types including breast, lung and colon cancer. Notably,
deregulation of the PI3K/AKT/mTOR pathway, a key regulator of
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proliferation and EMT, has been directly linked to both MASTL
overexpression and PP2A-B55 loss (Kuo et al., 2008), providing
a potential mechanistic link. In support, the MEP axis is a
well-established regulator of the AKT/mTOR pathway in yeast
(Pérez-Hidalgo and Moreno, 2017). In human cells, Vera et al
showed that MASTL overexpression led to AKT hyperactivation
through increased S473 phosphorylation. However, a recent
publication by Álvarez-Fernández et al. (2018) was unable to
find a correlation between MASTL overexpression and S473
phosphorylation in breast cancer cell lines, while we did observe
a small, weak correlation in a larger panel of breast cancer cell
lines and tumor samples (Rogers et al., 2018). The answer is likely
to be highly dependent on additional genetic defects present
in individual cancer cells. The AKT pathway contains multiple
positive and negative feedback loops that are often disrupted in
cancer (Janku et al., 2018), potentially explaining the differential
correlation between MASTL overexpression and AKT activation.
For example, PP2A-B55 has been reported as a negative regulator
of AKT activity in acute myeloid leukemia (Shouse et al., 2016),
and a positivity regulator in pancreatic cancer (Hein et al., 2016).

Adding to the confusion is that it is still unclear exactly
how MASTL regulates the AKT pathway. Vera et al proposed
an indirect mechanism, independent of PP2A-B55, whereby
S473 phosphorylation is increased through GSK3β dependent
degradation of the S473 phosphatase PHLPP (Vera et al.,
2015). The mechanism for MASTL regulation of GSK3β is
currently unknown. To add further confusion, PP2A was
recently implicated in dephosphorylation of S9 on GSK3β (Chu
et al., 2016), suggesting that this pathway could still be partly
dependent on PP2A-B55 inhibition. Interestingly, MASTL was
also recently shown to promote Wnt/β-catenin signaling in
colon cancer by regulating GSK3β S9 phosphorylation (Uppada
et al., 2018). Further highlighting the substantial signaling
cross-talk, PP2A-B55 has also been implicated as a negative
regulator of β-catenin phosphorylation, with knockdown of
PP2A-B55 resulting in increased β-catenin phosphorylation and
decreased Wnt signaling (Zhang et al., 2009). We also observed
significant disruption to members of the Wnt pathway upon
MASTL overexpression, including increased phosphorylation of
β-catenin and mislocalization of E-cadherin. It will be important
in future research to tease apart the specific signaling pathways
and cross-talk to determine if these effects are dependent
on MASTL’s inhibition of PP2A-B55, or through the as yet
undetermined mechanism for regulation of GSK3β.

An alternative possibility is that MASTL may have additional
substrates beyond ENSA and regulation of PP2A-B55. In
yeast, Rim15p, the orthologue of human MASTL, is capable
of phosphorylating additional substrates, including the
nutrient-responsive transcription factors Msn2p/4p and
Hsf1p, during starvation (Lee et al., 2013). Here, Rim15 plays
an important role in negatively regulating TORC1 (mTOR
in humans) signaling under nutrient stress conditions by
promoting degradation of G1 cyclins, stabilization of mRNA and
promoting a G0 transitional program through phosphorylation
of Msn2/4 and Hsf1p (Pérez-Hidalgo and Moreno, 2017). We
did observe decreased phosphorylation of mTOR and increased
phosphorylation of its downstream targets p70S6 kinase and

RPS6 (Rogers et al., 2018), supporting the possibility that MASTL
may directly regulate the mTOR pathway in human cells. It will
be of great interest to determine if and how well conserved this
function is in higher eukaryotes and human cells, and if this can
explain how MASTL overexpression results in deregulation of
the AKT/mTOR pathway in cancer.

WORKING MODEL OF MASTL DRIVEN
CANCER EVOLUTION

It is clear that upregulation of MASTL and or loss of PP2A-B55
can promote CIN, cancer growth and invasion. However, an
explanation for how MASTL in particular is upregulated by
cells remains a mystery. A recent publication by Pfister et al
proposed an inviting model for how overexpression of mitotic
genes can drive CIN in breast cancer (Pfister et al., 2018).
Specifically, simply overexpressing the mitotic gene transcription
factors E2F1, MYBL2, FOXM1, and DREAM (DP, RB-like,
E2F4, and MuvB), significantly increased the rate of mitotic
defects and micronuclei in Xenopus embryos. This provides an
elegant explanation for how mitotic gene overexpression drives
CIN without the need for direct mutation. While the MASTL
transcription factor is currently unknown, MASTL is a potential
DREAM target (Fischer et al., 2016) and recent evidence also
suggests that MASTL transcription can be increased by E2F8 in
ER positive breast cancer cells (Tian et al., 2017). E2F8 was noted
by Pfister et al to strongly correlate with high levels of functional
aneuploidy in tumor samples (Pfister et al., 2018). In addition,
they also noted that overexpression of mitotic genes strongly
correlated with p53 mutations in breast cancer, a correlation we
also observed with MASTL overexpression (Rogers et al., 2018;
Figure 1B). Normally, p53 would arrest defective mitotic cells in
the following G1 phase, thereby preventing further proliferation
(Hinchcliffe et al., 2016). Consequently, mutating p53 provides
a significant growth advantage by allowing defective cells to
continue proliferating. This in turn drives further mitotic errors
resulting in ongoing CIN and increased tumor heterogeneity
(Figure 2).

Taken together, we propose a classic two hit model for
how MASTL overexpression drives cancer. One hit occurs at
the level of cell cycle gene transcription resulting in MASTL
overexpression. Disruption of gene transcription is a hallmark
of cancer that can occur through multiple mechanisms, such
as oncogenic growth factor signaling, oncogenic viruses, loss of
tumor suppressors like Rb, p16 and PTEN or as shown above,
through increased expression of oncogenic transcription factors
(Hanahan and Weinberg, 2011). Increased MASTL expression
then disrupts timely reactivation of PP2A-B55 during mitotic exit
(Rogers et al., 2018), leading to mis-segregation of chromosomes
and aneuploidy (Figure 2). A second hit to p53 allows these
aneuploid cells to continue proliferating, which in turn enables
and promotes further CIN. In parallel, MASTL overexpression
disrupts AKT/mTOR and potentially Wnt/β-catenin signaling,
promoting invasion and metastasis (Figure 2). In combination,
this produces tumors that are highly proliferative, unstable and
malignant resulting in reduced patient survival.
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FIGURE 2 | Two-hit model of MASTL-driven cancer evolution. Hit one occurs at the G1/S level leading to disruption of DREAM and potentially E2F8 mediated
increased transcription of MASTL. Overexpression of MASTL then maintains phosphorylation of ENSA, delaying the correct timing of PP2A-B55 reactivation during
mitotic exit leading to increased mis-segregation of chromosomes. A second hit that mutates p53 then allows these defective cells to continue to proliferate, thereby
creating further mitotic defects and ongoing CIN, driving tumor heterogeneity. In parallel, overexpression of MASTL deregulates AKT/mTOR signaling, driving
proliferation and metastasis. The mechanism for deregulation of AKT/mTOR signaling are still unclear but appears to involve increased phosphorylation of S9 on
GSK3β. This could be through inhibition of PP2A-B55, or may involve MASTL phosphorylation of novel, unknown substrates.

TARGETING MASTL IN CANCER

Inhibition of MASTL as a therapeutic strategy for cancer has
received growing interest in the last few years, with potential
for both single agent therapy and combination with current
standard of care treatments. As a single agent, MASTL inhibitors
could be used to reduce proliferation and metastasis in cancers,
such as triple negative breast cancer (TNBC), where MASTL is
significantly overexpressed. In support, knockdown of MASTL
in the TNBC MDA-MB-231 breast cancer cell line, blocked
tumor growth and metastasis in vivo (Rogers et al., 2018).
Similarly, CRISPR knockout or RNAi knockdown of MASTL
also reduced growth of some but not all breast cancer cell
lines in vitro and in vivo (Vera et al., 2015; Álvarez-Fernández
et al., 2018), suggesting that additional biomarkers will be
needed for successful monotherapy. Importantly, knockdown
of MASTL reduced viability of thyroid cancer cells without
significantly affecting normal cell proliferation (Anania et al.,
2015), suggesting that MASTL inhibitors may be relatively
non-toxic. The lack of toxicity is notable given that MASTL
knockout mice are embryonically lethal (Álvarez-Fernández
et al., 2013), and a point mutation of MASTL has been linked
with thrombocytopenia (Gandhi et al., 2003; Johnson et al.,
2009; Hurtado et al., 2018). Taken together, this suggests that

although MASTL inhibition possesses the potential for significant
side-effects in patients, there might be a therapeutic window
for inhibition of MASTL with small molecules. In support, the
mitotic state can be maintained in Xenopus extracts that have up
to ∼80% of MASTL depleted (Vigneron et al., 2011), indicating
that a small fraction of active MASTL might be sufficient for
normal proliferating cell homeostasis.

The second possibility for targeting MASTL is in combination
with DNA damaging agents. The rationale for this is based on
results showing that MASTL is critical for promoting checkpoint
recovery from DNA damage (Peng et al., 2010, 2011; Wong
et al., 2016). Consequently, overexpression of MASTL has been
associated with resistance to cisplatin (Wang et al., 2014) by
accelerating checkpoint recovery (Wong et al., 2016). Conversely,
knockdown of MASTL can sensitize cancer cells to cisplatin,
radiotherapy and 5-fluorouracil (5FU) in several cancer types
(Wang et al., 2014; Nagel et al., 2015; Uppada et al., 2018; Yoon
et al., 2018), most likely by preventing cells from re-starting the
cell cycle following damage. However, it is likely that combination
of MASTL inhibitors with mitotic chemotherapies will have the
opposite effect. MASTL knockdown was shown to be strongly
antagonistic with paclitaxel (Swanton et al., 2007) as it promotes
mitotic slippage and polyploidy. Interestingly, overexpression of
mitotic genes along with high levels of CIN are linked with
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resistance to paclitaxel in breast cancer (Swanton et al., 2009),
suggesting that overexpressed MASTL could potentially be used
as a biomarker for resistance to paclitaxel and other mitotic
chemotherapies.

In summary, it is clear that under specific conditions MASTL
is a highly promising target for several cancers including
breast, lung, colon and ovarian. With the recent identification
of a first-generation MASTL inhibitor (Ocasio et al., 2016),
the potential for a future therapeutic breakthrough is looking
promising and exciting.
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