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P H Y S I C S

A fault-tolerant non-Clifford gate for the surface code 
in two dimensions
Benjamin J. Brown

Fault-tolerant logic gates will consume a large proportion of the resources of a two-dimensional quantum com-
puting architecture. Here we show how to perform a fault-tolerant non-Clifford gate with the surface code; 
a quantum error-correcting code now under intensive development. This alleviates the need for distillation or 
higher-dimensional components to complete a universal gate set. The operation uses both local transversal 
gates and code deformations over a time that scales with the size of the qubit array. An important component 
of the gate is a just-in-time decoder. These decoding algorithms allow us to draw upon the advantages of 
three-dimensional models using only a two-dimensional array of live qubits. Our gate is completed using parity 
checks of weight no greater than four. We therefore expect it to be amenable with near-future technology. As 
the gate circumvents the need for magic-state distillation, it may reduce the resource overhead of surface-code 
quantum computation considerably.

INTRODUCTION
A scalable quantum computer is expected to solve difficult problems 
that are intractable with classical technology. Scaling such a machine 
to a useful size will necessarily require fault-tolerant components that 
protect quantum information as the data is processed (1–4). If we are 
to see the realization of a quantum computer, its design must respect 
the constraints of the quantum architecture that can be prepared in 
the laboratory. In many cases, for instance, superconducting qubits 
(5–7), this restricts us to two-dimensional architectures.

Leading candidate models for fault-tolerant quantum computa-
tion are based on the surface code (3, 8) due to its high threshold (9) 
and multitude of ways of performing Clifford gates (10). Universal 
quantum computation is possible if this gate set is supplemented by 
a non-Clifford gate. Among the most feasible approaches to realize 
a non-Clifford gate is by the use of magic-state distillation (11). 
However, this is somewhat prohibitive as a large fraction of the re-
sources of a quantum computer will be expended by these protocols 
(12, 13).

Here, we provide a promising alternative to magic-state distillation 
with the surface code. We show that we can perform a fault-tolerant 
non-Clifford gate with three overlapping copies of the surface code 
that interact locally. Each of the two-dimensional arrays of live qubits 
replicates a copy of the three-dimensional generalization of the surface 
code over a time that scales with the size of the array. We use that 
the full three-dimensional model is natively capable of performing a 
controlled-controlled-phase gate (14, 15) to realize a two-dimensional 
non-Clifford gate. The procedure makes essential use of just-in-time 
gauge fixing, a concept recently introduced by Bombín in (16). This 
enables us to recover the three-dimensional surface code model using 
parity measurements of weight no greater than 4. Research on such 
technology is presently under intensive development (6, 7), as these 
are the minimal requirements to realize the surface code model.

The non-Clifford gate presented here circumvents fundamental 
limitations of two-dimensional models (17–21) by dynamically pre-
paring a three-dimensional system using a two-dimensional array 
of active qubits. In the past, there has been a significant effort to 

realize a non-Clifford gate with two-dimensional quantum error–
correcting codes (22–24). However, these proposals are unlikely to 
function reliably as the size of the system diverges. It is remarked in 
(16) that we should understand fault-tolerant quantum operations, 
not in terms of quantum error–correcting codes but, instead, by the 
processes they perform. Notably, in our scheme, error-detecting mea-
surements are realized dynamically. This is in contrast to the more 
conventional approach where we make stabilizer measurements on 
static quantum error–correcting codes to identify errors. The process 
is well characterized by connecting the surface code with the topolog-
ical cluster-state model (9, 25); a measurement-based model with a 
finite threshold error rate, below which it will function reliably at a 
suitably large system size. As we will see, the cluster state offers a natu-
ral static language to characterize the dynamical quantum process us-
ing a time-independent entangled resource state.

We begin by connecting measurement-based model to the three- 
dimensional surface code, and we explain how we project the non- 
Clifford gate onto a two-dimensional surface. We lastly discuss the 
just-in-time decoder that permits a two-dimensional implementa-
tion of the gate. Microscopic details of the system and proof of its 
threshold are deferred to Materials and Methods.

RESULTS
The topological cluster state
The topological cluster-state model (25) is described in three dimen-
sions. However, we need only maintain a two-dimensional array of 
its qubits at a given moment to realize the system (9). Specifically, we 
destructively measure each qubit immediately after it has interacted 
with its neighboring qubits that are specified by the cluster state. This 
method of generating the model on the fly gives rise to a time-like 
direction (see Fig. 1A).

We use the topological cluster state to realize the three-dimensional 
surface code. We define the surface code on a lattice with arbitrary 
geometry with one qubit on each edge (e). The model is specified by 
two types of stabilizers, star and plaquette operators, denoted as Av 
and Bf. Stabilizers specify the code states of the model, ∣〉, such that 
Av∣〉 = Bf∣〉 = ∣〉 for all code states. Star operators are associated 
to the vertices, v, of the lattice such that Av = ∏∂e∍vXe where ∂e is the 
set of vertices at the boundary of e and Xe and Ze are Pauli operators 

Centre for Engineered Quantum Systems, School of Physics, University of Sydney, 
Sydney, New South Wales 2006, Australia. Email: b.brown@sydney.edu.au

Copyright © 2020 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
NonCommercial 
License 4.0 (CC BY-NC).



Brown, Sci. Adv. 2020; 6 : eaay4929     22 May 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 13

acting on e. Plaquettes lie on lattice faces f such that Bf = ∏e∈∂fZf 
where ∂f are the edges that bound f. We give details on explicit lattice 
geometries that we might use in the “Lattices” section.

To connect the three-dimensional surface code with the topo-
logical cluster state (25), we consider initializing the surface code in 
the +1 eigenvalue eigenstate of the logical Pauli-X operator by mea-
surement. We consider initializing all the physical qubits in the ∣+〉e = 
Xe∣+〉e state and then measure all the plaquette operators. Up to an 
error correction step, this completes initialization. To measure a 
plaquette operator Bf, we prepare an ancilla qubit, a, in the ∣+〉a state 
and couple it to the qubits that bound f with controlled-phase gates, 
i.e., we apply U = ∏e∈∂fCZe,a with CZj,k = (1 + Zj + Zk − ZjZk)/2, the 
controlled-phase gate.

It is helpful to imagine placing the ancilla qubit on the face f to 
measure its corresponding plaquette operator Bf. After this entangling 
operation, measuring an ancilla qubit at face f in the Pauli-X basis will 
recover the value of Bf. However, we observe that if we place one ancilla 
at every face f and entangle it to its corresponding edges to measure the 
plaquette operator Bf, then before any ancillas are measured, we have 
the topological cluster-state model (25). Specifically, the qubits of 
the surface code give the qubits of the primal lattice of the cluster state, 
and the ancilla qubits lying on faces make up the qubits of its dual 
lattice.

We require that the surface code lies in the +1 eigenvalue eigen-
state of its face operators. However, measuring all the dual qubits of 
the cluster state projects its primal qubits into a random gauge of the 
three-dimensional surface code where, up to certain constraints, all 
the face measurements take random values. Henceforth, unless there 
is ambiguity, we refer to the model with face operators fixed onto 
their +1 eigenvalue eigenstate as the surface code; otherwise, we call it 

the random-gauge surface code. It is important to realize the fixed-
gauge surface code to perform the controlled-controlled-phase gate (15).

We use error correction to recover the surface code from the 
random-gauge model (26–28). We note that the product of all the 
face operators that bound a cell returns identity, i.e., ∏f ∈ ∂cBf  = 1 where 
∂c is the set of faces that bound cell c. Hence, supposing that all the 
measurements are made noiselessly, there must be an even parity of 
measurements that return the −1 outcome about each cell. This, in 
turn, constrains the plaquette operator measurements to respect loop- 
like configurations on the dual lattice (see Fig. 1B). To recover the 
fixed-gauge surface code, we apply a Pauli-X operator with a membrane- 
like support whose boundary terminates at each component of the 
loop configuration.

Further, we can initialize the surface code in an arbitrary state 
fault tolerantly if, before face measurements are made, we replace 
the unentangled qubits on one side of one boundary of the lattice 
with an encoded surface code, for instance, the gray face shown to 
the left of Fig. 1B (29). We refer to this face as the initial face. Impos-
ing that the face operators of the surface code are fixed in the +1 
eigenvalue eigenstate means that no loop configurations will ter-
minate at this boundary. This method of initialization is a type of 
dimension jump (30).

Embedding the non-Clifford gate in two dimensions
We can now explain how we can embed the three-dimensional sur-
face code that performs a non-Clifford gate in two dimensions. There 
are several constraints the system must satisfy if we realize a controlled- 
controlled-phase gate with a two-dimensional system. We first point 
out that the orientation of boundaries of the topological cluster state 
is important for the transmission of logical information (29). More 
precisely, they constrain the temporal directions of the model. We 
consider again the cluster state in terms of the three-dimensional sur-
face code. We require two types of surface code boundaries; rough 
and smooth (31). If we couple ancilla to the surface code to recover 
the topological cluster state as specified above, then the rough (smooth) 
boundaries of the surface code give rise to the primal (dual) boundaries 
of the cluster state. If we only maintain a two-dimensional array of 
qubits, the plane must contain two distinct primal boundaries that 
are well separated by two distinct dual boundaries to support the en-
coded information. The gray plane in Fig. 1A is suitable, for example.

Second, the boundaries of the three surface codes must be cor-
rectly configured to perform a transversal controlled-controlled- 
phase gate (14, 15). Figure 1C shows the boundaries configured such 
that the qubit at coordinate P = (x, y, z) of each code interacts with the 
respective qubit at the same location of the other codes via transver-
sal controlled-controlled-phase gates. To perform the gate locally, 
these three lattices must overlap while maintaining these boundary 
conditions.

Last, if we only maintain a two-dimensional array of the three- 
dimensional system, it is important that all the qubits that need to 
interact with one another must be live at the same time. We show a 
system that satisfies all of these constraints in Fig. 2. The figure 
shows a three-dimensional spacetime diagram of two overlapping 
codes moving orthogonally to one another. We omit the third code 
as it can travel in parallel to one of the codes already shown. The 
first code that has rough boundaries on the top and bottom of its 
volume and the live plane of qubits moves right across the page. The 
second code has rough boundaries on the left and right sides of its vol-
ume and moves upward in the figure. The controlled-controlled-phase 
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Fig. 1. The three-dimensional surface code in spacetime. (A) The topological 
cluster-state model is a three-dimensional model that propagates quantum infor-
mation over time with only a two-dimensional array of live qubits at any given 
moment. We show a gray plane of live qubits that propagates in the direction of 
the time arrow. (B) Gray loops show the connectivity of plaquette measurements 
that returned the −1 outcome. An arbitrary state is initialized fault-tolerantly by 
initializing the system with an encoded two-dimensional fixed-gauge surface code 
on the gray face at the left of the image. (C) The boundary configurations of the 
three copies of the surface code are required to perform a local transversal controlled- 
controlled-phase gate. The first code has rough boundaries on the top and the 
bottom of the lattice. The middle (right) code has rough boundaries on the left and 
right (front and back) sides of the lattice. The orientation of the boundaries deter-
mines the time direction in which we can move the planes of live qubits.



Brown, Sci. Adv. 2020; 6 : eaay4929     22 May 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 13

gate is made at the cubic region where the codes intersect. We find 
that all the appropriate qubits are active at the right moment by 
choosing two diagonal planes of live qubits for each code. We can 
also see that the planes we choose all have two well-separated 
rough and smooth boundaries within their respective volume.

We are now ready to consider an embedding of the three-dimensional 
spacetime shown in Fig. 2 onto a two-dimensional manifold. We find 
that one of the codes has to move with respect to the other. This can 
be naturally incorporated in the procedure to generate layers of the 
topological cluster state (see the “Gauge fixing” section). We consider a 
point P in the spacetime diagram in the region where the controlled- 
controlled-phase gate is performed such that a qubit of each of the 
two models must interact. The coordinates of the locations of the two 
codes change differently with time. The first code that travels upward 
in the spacetime diagram has coordinates P = (x′, t′), and the other 
that moves from left to right has coordinates P = (t, y) with time t = 
t′. We neglect the z coordinate as this is static. We imagine projecting 
the three-dimensional system onto a two-dimensional plane such 
that y = t′ = 0; we now observe that t = x′. We conclude that one code 
must move with respect to the other two static codes to ensure all the 
qubits that must interact are local at the right moments in time. We 
discuss the protocol in more detail, and we give estimates of the re-
source cost of the gate in the “Implementing the non-Clifford gate” 
section.

Just-in-time gauge fixing
We use a decoder to fix the topological cluster-state model onto the 
surface code using data from the ancilla qubit measurements. In the 
case that there are measurement errors, we will necessarily intro-
duce small Pauli errors onto the system that will translate into Clifford 
errors upon application of the transversal non-Clifford gate. Measure-
ment errors in this model take the form of strings that are detected by 
measuring the defects that lie at their endpoints. A decoder must at-
tempt to close these endpoints. We can pair the defects with conven-
tional decoders for topological codes such as minimum-weight perfect 
matching (3) or clustering (32). We then fix the gauge by applying a 
membrane-like Pauli-X operator whose boundary is the union of both 
the error and the correction.

Small discrepancies in the correction compared with the actual 
measurement error will lead to gauge-fixing errors. Then, applying 
the transversal operation to the system whose gauge has been fixed 
incorrectly will introduce controlled-phase gates between pairs of 
qubits of different surface codes that have been involved in the same 
controlled-controlled-phase interaction. Provided that the errors that 
are introduced during gauge fixing are small and are supported on a 
correctable region, the errors the transversal gate will introduce are 
also correctable. When we infer the values of the star operators, we 
project the Clifford errors that are diagonal in the computational basis 
onto Pauli-Z errors. After the projection, these errors also manifest as 
strings on the three-dimensional surface code. Again, we detect the 
string-like errors by measuring defects at the endpoints of the strings. 
Once more, we can correct these errors with any suitable algorithm 
that pairs the defects. We can therefore prove a fault-tolerance thresh-
old under the gauge-fixing procedure by showing that the errors we 
introduce during gauge fixing are small in comparison to the distance 
of the code.

We aim to fix the gauge of a three-dimensional model. However, 
we will only maintain a two-dimensional array of live qubits. Hence, 
the decoder has a limited amount of information available to make 
decisions about how to pair defects. To overcome this issue, we defer 
correcting pairs of defects to a later time once we have more certainty 
that two defects should be matched. This leads the errors to spread 
over the time during which matching is deferred (see Fig. 3). We pro-
pose a renormalization group (32) just-in-time decoder (16) that will 
defer the pairing of defects such that the spread of errors is controlled. 
Broadly speaking, we find that a just-in-time decoder will work if the 
pairing of two defects is deferred until both defects have existed for a 
time proportional to their separation in spacetime. We make this 
statement precise in the “Error correction with just-in-time gauge 
fixing” section and prove that it controls the spread of errors. More-
over, we discuss how the decoder is modified to find a correction 
close to the boundary of the surface code.

Supposing an independent and identically distributed error model 
that is characterized in terms of chunks (32), we can show that the 
just-in-time decoder will not spread a connected component of the 
error by more than a constant factor of the size of the component. We 
further find that this spread error model can be decoded by a renor-
malization group decoder. We prove a threshold against the spread 
error model using a renormalization group decoder in the “A thresh-
old theorem with a spread error” section (see Lemma 2). We then 

Fig. 2. The non-Clifford gate shown in spacetime. Two codes traveling in differ-
ent temporal directions cross. The third code is omitted as it can run in parallel with 
one of the two shown. Live qubits of the spacetime history are shown on light gray 
planes. The transversal gate is applied in the cubic region in the middle. It will be 
applied on the qubits shown at the dark gray plane where the two-dimensional 
arrays of qubits are overlapping.

Fig. 3. Just-in-time gauge fixing. The spacetime diagram of an error on the dual 
qubits of the topological cluster state where time travels upward. The gray area 
shows the two-dimensional area of live qubits at a given moment. At the point 
where an error is found on the left diagram, it is unlikely that the defects should be 
paired because of their separation. We therefore defer matching the defects to a 
later time after more information emerges as decoding progresses, as in the mid-
dle figure. After enough time, the most likely outcome is that the defects we found 
in the left figure should be paired. The error we introduce fills the interior of the 
error and the chosen correction.
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prove that the just-in-time decoder will give rise to spread errors with 
a constant spread (see Lemma 3 in the “Just-in-time gauge fixing” sec-
tion), thus justifying the noise model. In contrast, the threshold theorem 
for just-in-time decoding given by Bombín (16) uses a minimum- 
weight perfect matching decoder (3).

One should worry that the just-in-time gauge-fixing process will 
add errors that may decrease the logical failure rate of the system. 
We argue that we can make this effect relatively benign in postpro-
cessing. The errors introduced by the just-in-time decoder are twofold. 
First, it may directly introduce a logical failure by incorrectly match-
ing defects, and second, if the decoder does succeed, then it will intro-
duce large errors to the primal qubits of the system that need to be 
decoded globally once the gate is complete. This will increase the 
failure probability of the decoder that corrects the errors on the pri-
mal lattice.

The two problems highlighted above can be alleviated be using 
the gate offline to produce high-fidelity magic states by inputting 
logical Pauli-X eigenstates into the gate. These input states can be 
prepared fault-tolerantly. By using the system offline, we can per-
form additional error detection diagnostics on the output state be-
fore using the magic state to complete the algorithm. Specifically, 
once gauge fixing is completed, we can simulate gauge fixing again 
with a high-performance global decoder, e.g., in (9), that has access to 
the complete set of syndrome data and compare it with the correction 
returned by the just-in-time decoder. For simplicity, we assume that 
the set of errors that are correctable by the just-in-time decoder are in-
cluded in the set of correctable errors of the high-performance decoder.

Comparing the corrections that are proposed by the high- 
performance decoder and the just-in-time decoder will allow us to im-
prove the fidelity of the output states to that of the high-performance 
decoder. If their results are not equivalent, then we discard the output 
of the state. We denote the failure rates of the high-performance (just-
in-time) decoder     ̄  P    HP  (   ̄  P    JIT  ) . Both decay rapidly with system size below 
threshold, but we suppose     ̄  P    HP   ≪    ̄  P    JIT   . In the event that the decoders 
disagree, we discard the state. To leading order, this occurs with likeli-
hood  ∼    ̄  P    JIT   . In the case that the decoders agree, the state that we output 
is logically incorrect with likelihood  ∼    ̄  P    HP   . The use of a high- 
performance decoder therefore improves the fidelity of the postselected 
output states. The failure rate of the just-in-time decoder then only 
determines the rate at which magic states should be discarded.

Assuming that the output of both the high-performance decoder 
and the just-in-time decoder agree, we can then use the output of 
the high-performance decoder to estimate the locations of the er-
rors spread to the surface code by just-in-time decoding. We can 
compare the output of the high-performance decoder with the cor-
rection produced by the just-in-time decoder. Specifically, we know 
that we introduced a membrane-like Pauli-X error whose boundary 
is the union of the measurement error itself, together with the cor-
rection that was proposed by the just-in-time decoder. Given that 
the low-weight correction produced by a high-performance decod-
er should approximate the locations of the measurement errors, we 
know that the union of the correction operator produced by both 
decoders should approximate the location of the boundary of the 
Pauli error we have introduced. This information can be fed to the 
decoder we use to decode the errors on the primal qubits. It can be 
used to flag the qubits that are highly likely to support an error. 
Bombín (16) treats these flagged qubits as erasure errors that, in 
general, can support linking charges (33, 34). The proof given in the 
“Error correction with just-in-time gauge fixing” section shows that 

we have a threshold without these considerations, but implementa-
tions of this protocol should use a decoder that accounts for these 
effects to improve its performance. After post-selection, we then 
might expect the system to perform as though it were gauge-fixed 
globally with some known erasure errors (16, 35).

DISCUSSION
To summarize, we have shown how to perform a fault-tolerant 
controlled-controlled-phase gate with a two-dimensional surface 
code architecture, and we have proved that it has a threshold. Next, 
it is important to compare the resource scaling of this scheme com-
pared with more conventional two-dimensional approaches to fault- 
 tolerant quantum computation, namely, surface code quantum 
computation with magic-state distillation (11). This will require 
blueprints that lay out how to implement the controlled-controlled- 
phase gate in the laboratory, together with numerical simulations, 
to find how the logical failure rate decays as a function of system size 
and physical error rate. Given that gauge-fixing errors will spread 
phase errors as we apply the three-qubit transversal gate, the logical 
error rate of this scheme is likely to decay more slowly than approaches 
using magic-state distillation where we do not rely on gauge fix-
ing. However, the spacetime volume of realizing a fault-tolerant 
controlled-controlled- phase gate, ∼96d3 (see the “Implementing the 
non-Clifford gate” section), is significantly smaller than a single dis-
tillation routine; hence, these schemes are clearly deserved of further 
comparison. It is likely that the optimal choice will depend on the 
error rate of the physical hardware.

It will also be interesting to compare the protocol introduced here 
to that presented by Bombín (16). This two-dimensional non-Clifford 
gate is based on the color code such that a transversal T = diag (1, i1/2) 
gate is performed over time via single-qubit rotations. This will make 
for a very interesting comparison since, although decoding technology 
for the color-code model (36, 37) remains lacking in comparison to 
the surface code (9), the fact that the non-Clifford operation is per-
formed using single-qubit rotations instead of a weight-three gate 
will mean that fewer errors will be spread during computational pro-
cesses. To begin comparing these protocols fairly, it will first be im-
portant to improve the decoding algorithms we have for the color code.

It is likely that there will be several ways to optimize the present 
scheme. Although we find transversal gates via a mapping between 
the color code and the surface code (14, 15) such that we arrive at 
quite a specific lattice, it will be unexpected if we cannot find ways 
of performing a constant-depth locality-preserving gate with other 
lattices (38) for the topological cluster-state model. History has 
shown that the gates a given model is able to achieve is connected 
with the macroscopic properties of a system, not its microscopic details. 
Developing our understanding of measurement- based quantum 
computation in three dimensions by decomposing it in terms 
of its topological degrees of freedom (16, 29) is likely to be a prom-
ising route toward better models of two-dimensional fault-tolerant 
quantum computation.

MATERIALS AND METHODS
Lattices and mobile qubits
Here, we describe the microscopic details and dynamics of the system. 
We describe the lattice and how the gauge fixing progresses. We lastly 
discuss the protocol over its entire duration to estimate its resource cost.
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Lattices
In (15), the authors describe three surface codes on different three- 
dimensional lattices. We give simple representations of the lattices 
here that help understand the steps of gauge fixing. The first of the 
three copies is well represented with the standard convention that 
we described in the main text where qubits lie on the edges of a cu-
bic lattice. We refer to this as the standard surface code lattice. The 
other two lattices are represented with qubits on the vertices of rhom-
bic dodecahedra in (15). We call this the alternative surface code. We 
offer an alternative description of this lattice in this section.

All the qubits of the alternative surface code are unified with the 
qubits of the standard surface code on the cubic lattice. We there-
fore find a straightforward way of representing the stabilizers of the 
alternative code with qubits on the edges of a cubic lattice. We show 
the stabilizers in Fig. 4 on a cubic lattice. To represent this model, 
we bicolor the cubes, as they support different stabilizers depending on 
their color (see Fig. 4A). The white primal cubes support Pauli-X “star” 
operators, and the gray dual cubes support the Pauli-Z “plaquette” op-
erators. We express their support with the following equations

   A  c   =   ∏ 
e∈∂c

     X  e  ,  B  c,v   =     ∏ 
∂e∍v

     
e∈∂c

    Z  e    (1)

where ∂c is the set of edges on the boundary of cube c and again, ∂e 
is the set of vertices v at the boundaries of edge e, i.e., its end points. 
The operators Ac and Bc,v are, respectively, defined on primal and 
dual cubes only. We also note that each vertex touches four dual 
cubes; hence, there are four Bc,v at each vertex. Further, there are 
eight vertices on a cube, there are therefore eight Bc,v stabilizers for 
each dual cube c. There is only one Ac operator for each primal cube. 
We also show the stabilizers added at the smooth and rough bound-
aries in Fig. 4 (D and E, respectively). See (15) for a more detailed 
discussion on the boundaries.

Last, we count the number of qubits in a single-unit cell (see 
Fig. 4A) as these will make up a site in the threshold theorem given 
in the “Error correction with just-in-time gauge fixing” section. As 
a function of volume in the bulk of the lattice, the standard and the 
alternative surface code both have three qubits per cube lying on the 
edges of the lattice, so over a unit cell of eight cubes, we have 24 qubits.

We also include ancilla qubits to measure the plaquette operators 
of each model. In the standard surface code, we make one plaquette 
measurement for each face of the lattice. There are three faces per 
cube of the lattice; we therefore have 24 ancilla qubits per unit cell to 
measure the faces of the cubic lattice model. For the alternative sur-
face code, we make eight measurements per dual cube of the unit cell. 
We have four dual cubes per unit cell; we therefore arrive at 32 ancilla 
qubits for each unit cell of the alternative surface code shown in 
Fig. 4.

The discussion above concludes that we have 48 qubits in total 
per unit cell of the standard surface code and 56 qubits per unit cell 
of the alternative surface code. We lastly consider a unit cell of the 
total system with three overlapping lattices. Each unit cell includes 
one copy of the cubic lattice model and two copies of the alternative 
model. We therefore find that we have 160 qubits per unit cell in 
total. The unit cells at the boundary of the system can be regarded as 
bulk cells with some of the qubits removed. Hence, when we ac-
count for the boundary, we can take this value as an upper bound. 
Last, we note that each of these unit cells contributes two units of 
distance to the system.
Gauge fixing
Having specified the lattices, we now discuss how to perform the 
gauge-fixing process. Gauge fixing moves three two-dimensional surface 
codes through a three-dimensional spacetime volume to reproduce 
three overlapping three-dimensional surface codes over time. This motion 
proceeds by repeatedly producing a thin layer of three-dimensional 
surface code and then measuring some of its qubits in a product basis to 
collapse the system onto a two-dimensional surface code that has been 
displaced through spacetime. Gauge fixing and transversal controlled- 
controlled-phase gates are applied at the intermediate step where 
the system is in the state of a thin slice of three-dimensional surface 
code. We show one period of the process for two lattices in Fig. 5. 
Each panel of the figure shows the region in which the transversal 
controlled-controlled-phase gate is conducted within the black cube. 
The top figures show the progression of a lattice moving from left to 
right through the region over time, and the lower figures show a lattice 
moving upward through the region. Time progresses from left to right 
through the panels. The columns of the diagram are synchronized.

We now describe the microscopic details of a single period of the 
gauge-fixing process. We perform similar processes on all three sur-
face codes involved in the gate in unison. The three surface codes 
only differ in the direction they move through the spacetime vol-
ume and the lattice we use to realize the surface code. Hence, we will 
only focus on a single surface code, say that shown in Fig. 5A.

A period of the gauge-fixing process begins with a two-dimensional 
surface code supported on the qubits shown at time t to the left of 
Fig. 5A, and it ends at time t + 1 with a displaced surface code, shown 
in the right column of the figure. It is helpful to label the subsets of 
qubits of the spacetime volume that support a surface code at time 
t(t + 1) with the label Qt (Qt+1). The thin three-dimensional surface 
code that we produce at the intermediate step is shown in the central 
column of Fig. 5A at time t + 1/2. We denote the qubits that support 
the three-dimensional surface code at this time by Qt+1/2. The subsets 
of qubits we have defined are such that   Q  t  ,  Q  t+1   ⊂  Q  t+1/2    and the inter-
section of Qt and Qt+1 is nonempty.

We map the surface code at time t onto the three-dimensional 
surface code shown at time t + 1/2 by measurement. We initialize 
the qubits in the subset   Q  t+1/2  \ Q  t    in the ∣+〉 state. We then measure 
all the plaquettes supported on   Q  t+1/2    that have not been measured 

A

D E

B C

Fig. 4. A lattice geometry for a surface code. (A) A unit cell is composed of four 
primal cubes and four dual cubes configured as shown with primal and dual cubes 
shown in white and gray, respectively. (B) A Pauli-X “star” operator supported 
on a primal cube. (C) A plaquette operator supported on the corner of a dual cube. 
(D) A smooth boundary stabilizer. (E) A rough boundary stabilizer.
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previously. Plaquettes supported entirely on Qt have already been 
measured at an earlier period. It is therefore unnecessary to mea-
sure these stabilizers again.

The plaquette measurements will return random outcomes and 
may include errors. We must fix the gauge of the plaquettes of the 
active layer of the surface code to their +1 eigenstate. This is described 
in more detail in the “Error correction with just-in-time gauge fixing” 
section. For now, we assume that it is possible to accomplish this. 
Once we make the gauge-fixing correction, we apply the controlled- 
controlled-phase gate between the qubits of subset   Q  t+1/2  \ Q  t+1    of each 
of the three systems involved in the gate.

We lastly recover a two-dimensional surface code on the subset 
of qubits Qt+1 by measuring the qubits of the subset   Q  t+1/2  \ Q  t+1    in 
the Pauli-X basis. We use the outcomes of the destructive single-qubit 
Pauli-X measurements to infer the values of the star operators of the 
three-dimensional surface code. As measurement errors that occur 
when we make single-qubit measurements are indistinguishable from 
physical errors, the readout of the star operators of the three-dimensional 
surface code is fault tolerant.

In a sense, we can consider this as a dimension jump (30) where 
a two-dimensional model is incorporated into a three-dimensional 
model to leverage some property of the higher-dimensional system. 
In this case, we prepare a very thin slice of the three-dimensional sur-
face code model where, once all the physical operations have been 
performed, we can collapse the three-dimensional model back onto 
a two-dimensional model again. The latter dimensional jump where we 
go from the three-dimensional surface code to its two-dimensional 
counterpart has been demonstrated by Raussendorf, Bravyi, and 

Harrington (25), where they fault-tolerantly prepare a Bell pair be-
tween two surface codes using the topological cluster state.

It is worth remarking that the method we have discussed here 
enables us to produce other three-dimensional structures that go 
beyond foliation (38). Much research has sought to map quantum 
error–correcting codes into measurement-based schemes (29, 39) 
through a system called “foliation” to access favorable properties of 
exotic quantum error–correcting codes. Conversely, some fault-tolerant 
measurement-based schemes have been developed that are not ex-
pected to have a description in terms of a quantum error–correcting 
code. Really though, we should expect that we can implement any 
fault-tolerant protocol independent of the architecture that we choose 
to realize our qubits. The scheme presented here gives us a way to 
realize these models that are beyond foliation with a two-dimensional 
array of static qubits. Given their promising thresholds (38), it may 
be worth exploring the practicality of some of these higher-dimensional 
models on two-dimensional architectures.

In a similar vein, we point out that the two-dimensional surface 
code that is propagated by the code deformations of the alternative 
lattice is described naturally on the hexagonal lattice. This lattice 
has been largely dismissed because of its weight-six hexagonal sta-
bilizer terms. However, we measure its stabilizers using only weight-
three measurements, and the higher-weight stabilizers are inferred 
from single-qubit measurements. Hence, it may be worth revisiting 
this model as the scheme presented here offers a method of stabiliz-
er extraction that does not require measurements of weight greater 
than three. Further, as no qubit supports more than four plaquette 
stabilizers, the topological cluster state that realizes this surface code 
has vertices that are no more than four valent. We may therefore 
expect this model to have a high threshold with respect to the gate 
error model.
Implementing the non-Clifford gate
We lastly describe the entire protocol which is summarized in Fig. 6 
and discuss its spacetime resource cost as a function of the code 
distance of the system, d. Each panel of the figure shows three ar-
rays, each of which supports a code. It may be possible to embed the 
qubits of all three codes on one common array, but for visualization 
purposes, we imagine three stacked arrays that can perform local 
controlled-controlled-phase gates between nearby qubits on separate 
arrays. Parity measurements are performed locally on each array.

The code on the lower array will move from left to right along 
the page as we undergo code deformations. For a strictly local sys-
tem, we consider an extended array that we refer to as the long ar-
ray. However, as we discuss toward the end of this section, we can 
reduce the size of this array by simulating a system with periodic 
boundary conditions. We proceed with the discussion where the pro-
cess is strictly local. To evaluate the resource cost, we refer to a single 
unit of time as a cycle. The resource cost is measured in units of 
qubit cycles.

Before the gate begins, we must copy the encoded information 
onto the arrays where the gate is performed. We might accomplish 
this with lattice surgery (10, 40). Figure 6A shows three surface codes 
that have been moved close to the edges of the arrays where the gate 
will be performed. One logical qubit is copied to the far left of the 
long array. Initializing the system will take time that scales like the 
code distance, ∼d cycles.

We might also consider using the system offline to prepare high- 
fidelity magic states. With this setup, we apply the gate to three sur-
face codes initialized fault-tolerantly in an eigenstate of the Pauli-X 

A

B

Fig. 5. Microscopic details of the gauge-fixing procedure. One period of the 
gauge-fixing process for the models undergoing the controlled-controlled-phase 
gate. Time progresses between the figures from the left to the right from time t to 
t + 1 via an intermediate step at time t + 1/2. (A) The lattice above shows the code 
moving from left to right through the spacetime volume of the controlled- 
controlled-phase gate, marked by the black cube, and (B) the lower figures show a 
code moving upward through the black cubic region. The live surface codes are 
overlapping at all points in time. The figures at the left show a two-dimensional 
surface code. In the middle figures, we produce a thin layer of three-dimensional 
surface code by adding additional qubits and measuring the plaquette operators 
that are supported on the displayed qubits. The gauge-fixing correction is made be-
fore transversal controlled-controlled-phase gates are applied. Once the controlled- 
controlled-phase gates are applied, qubits are measured destructively to recover 
the system at the right of the figure.
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operator. While this will mean that we do not need to copy informa-
tion onto the three arrays, it will still be necessary to fix the gauge of 
the system such that all the plaquette operators of the initial face are 
in their +1 eigenvalue eigenstate. To the best of our knowledge, this 
will still take  O(d)  time to prepare the system such that its global 
charge is vacuum.

We remark that using the protocol offline to produce magic states 
may offer some advantages. For instance, as we discussed in the main 
text, we can postselect high-quality output states by comparing the 
result of the just-in-time decoder with a high-performance decoding 
algorithm. Moreover, the required connectivity of the gate with the 
rest of the system will be reduced. This is because we need only copy 
the magic states out of the system, and we do not need to input arbi-
trary states into the system that may require additional routing.

Once the system is initialized, we begin performing the code de-
formations as discussed in the previous section. The code deforma-
tions move the code on the long array underneath the other two codes 
(see Fig. 6B) and out the other side (see Fig. 6C). Assuming that one 
step, as shown in Fig. 5, takes one cycle, moving the lower code all 
the way under the other two and out the other side will take 2d units 
of time. The final state of the protocol is shown in Fig. 6D.

The above discussion explains that the three arrays will be occu-
pied for 3d cycles. Each array will support a code that will consist of 
∼d × d unit cubes that collectively can produce a thin slice of the 
three-dimensional surface code. Arrays of unit cubes are shown in 
Fig. 5 at time t + 1/2. The long array must be able to support unit 
cubes in 3d × d locations. We include the idle qubits of the long array 
in the resource cost over the entire protocol. We count the qubits of 
each unit cube we need to realize each of the three-dimensional sur-
face codes, including an ancilla qubit for each plaquette measure-
ment we make on a given unit cube. We note that we have chosen 
the term “unit cube” here, as distinct from the “unit cell” that was 
defined in the “Lattices” section. The unit cell is a single element of 

a translationally invariant lattice that we use in the “Error correc-
tion with just-in-time gauge fixing” section. A unit cube, as defined 
here, contributes one unit of distance to the system in both the spa-
tial and temporal directions.

We consider two different lattices that have been discussed in the 
“Lattices” section: the standard surface code and the surface code on 
the alternative lattice that we show in Fig. 4. Both lattices include qubits 
lying on the edges of a standard cubic lattice. There are 12 edges on 
the boundary of each unit cube, but as we see in Fig. 5, the unit cubes 
are such that there are ∼d × d edges that are shared between two 
cubes, as well as ∼d × d faces, each consisting of four edges, that are 
shared between pairs of cubes. We therefore find seven qubits per 
unit cube lying on the edges of the cubic lattice.

We also assume that there is a single qubit for each plaquette 
measurement needed to produce the lattices shown in Fig. 5 at time 
t + 1/2. For the standard lattice surface code, there are six plaquette 
measurements associate to each unit cube, one for each of its faces. 
However, as shown in Fig. 5 at time t, two of the faces have already 
been measured during an earlier cycle. Further, two-face measure-
ments of each unit cube are shared with other unit cubes; we there-
fore count three measurement ancilla qubits per unit cube for the 
standard surface code. In total, including the qubits on the edges of 
the lattice, we find 10 qubits per unit cell of the standard lattice sur-
face code. A similar analysis finds that we need to perform four 
plaquette measurements per unit cube to produce a slice of the al-
ternative surface code at time t + 1/2. The alternative surface code 
thus includes 11 qubits per unit cell.

To conserve resources, we assume that the two stationary qubit 
arrays support the two alternative lattice surface codes. Each of these 
arrays therefore requires 11d2 qubits to produce d × d unit cells. Sim-
ilarly, the resource cost of 3d2 unit cells of the conventional cubic 
lattice surface code on the long array uses 10 · 3d2 qubits. In total, all 
three arrays support ∼[30 + 2 · 11]d2 = 52d2 qubits. Assuming that 
the full protocol is completed in 3d cycles, we arrive at a total re-
source cost of 156d3 physical qubit cycles for a single implementation 
of the gate.

The conservative estimate given above assumes that 10 · 2d × d 
qubits are idle for 3d units of time. We would obtain a resource 
saving of 60d3 qubit cycles by making use of these idle qubits or al-
tering the protocol such that they are not needed. An easy way to 
achieve this is by simulating periodic boundary conditions on the 
long array. We can achieve the same protocol by replacing the long 
array with a d × d array with cylindrical boundary conditions such 
that all three arrays have a size ∼d × d unit cells.

Periodic boundary conditions are easily achieved given a distrib-
uted architecture (41), where we are not constrained to strictly local 
interactions. One could also imagine approximating periodic bound-
ary conditions with a strictly local system using a line of L gates that 
share one very long array. The very long array has size (L + 2)d × d 
and supports L disjoint d × d surface codes. All L gates proceed in 
parallel where all L codes move synchronously along the very long 
array. In both cases, in the latter where L diverges, we arrive at a re-
source cost of ∼96d3 qubit cycles per controlled-controlled-phase 
operation. Over the course of the gate, we must perform ~3d3 
controlled-controlled phase gates.

At this stage, one might be willing to make speculations on how 
the resource cost of the gate proposed here compares with well-studied 
magic-state distillation protocols. Let us take a recent example (12) 
where a magic-state distillation protocol is proposed that occupies 

A

B

C

D

Fig. 6. A two-dimensional layout for the non-Clifford gate. The progression of 
the controlled-controlled-phase gate. (A) Qubits are copied onto the stacked arrays 
of qubits from other surface codes using lattice surgery. (B) The thick black qubits 
are passed under the other two arrays and controlled-controlled-phase gates are 
applied transversally between the three arrays where the qubits overlap. (C) and 
(D) show later stages in the dynamics of the gate.
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12d′ × 6d′ qubits over 5.5d′ cycles, giving a total resource cost ap-
proaching ∼400d′3 qubit cycles. We deliberately choose to quantify 
the qubit cycles of this example with units of d′3 instead of d3. This 
is because, without numerical simulations, we cannot accurately cal-
culate how the failure rate of the gate presented in this work decays 
with d as compared with d′.

Optimistically, we might hope that the logical failure rates of both 
protocols decay comparably in distance. In which case, we might com-
pare resources whereby d ∼ d′, and we find that the gate presented 
here can outperform magic-state distillation using a small fraction of 
the resources. In practice, gauge fixing will introduce additional errors 
while the controlled-controlled-phase gate proceeds. In contrast, a 
magic-state distillation procotol that uses only logical Clifford oper-
ations will not experience gauge-fixing errors. Hence, we should ex-
pect that d > d′ to obtain comparable logical failure rates. Presently, 
little work has been done to calculate the logical failure rate of gates 
that make use of gauge fixing. The extent of this problem will be 
very sensitive to the error rate of the plaquette measurements. In 
principle, errors introduced by gauge fixing are of a different nature 
to errors introduced by the environment. As we have discussed in 
the main text, an appropriately chosen decoder might be able to 
mitigate the errors introduced by gauge fixing.

Another reason one should anticipate that we should choose d > 
d′ is that the application of noisy controlled-controlled-phase gates 
on the physical qubits will introduce additional errors to the system. 
Of course, the noise introduced by these entangling gates depends 
on the implementation of these gates. For the discussion here, it is 
simpler to remain agnostic about the physical implementation of the 
logical gate. Further work needs to be done to determine the magni-
tude of these sources of noise.

Error correction with just-in-time gauge fixing
Here, we prove that the non-Clifford operation will perform arbi-
trarily well as we scale the size of the system, provided that the physical 
error rate on the qubits is suitably low. We outline an error correction 
procedure as we undergo the controlled-controlled-phase operation. 
The argument requires two main components. We require a just-in-
time decoder that controls the spread of an error during the gauge 
fixing. We then show that the spread errors are sufficiently small that 
we can correct them at a later stage. We first show that we can decode 
a spread error model globally during postprocessing using a renormal-
ization group decoder before arguing that the error model is justified 
by the just-in-time decoder.
Notation and terminology
We suppose a local error model acting on the qubits of the space-
time of the non-Clifford process. For suitably low error rate, we can 
characterize the errors as occurring in small, local, well-separated 
regions (32). The just-in-time gauge-fixing decoder will spread this 
error. Given that the spread is controlled, we can show that a global 
renormalization group decoder will correct the errors that remain 
after the gauge-fixing process. Our argument follows a similar ap-
proach to that presented in (32). Hence, we will adopt several defi-
nitions and results presented in (32). We will also keep our notation 
consistent with this work where possible.

We divide the system into sites: small local groups of qubits spec-
ified on a cubic lattice. We consider an independent and identically 
distributed error model where a Pauli error occurs on a site with prob-
ability p0. We say that a site has experienced an error if one or more 
of the qubits has experienced an error. Given a constant number of 

qubits per site, N, then, the likelihood a site experiences an error p0 = 
1 − (1 − )N is constant where each qubit of the system experiences an 
error with constant probability . We consider a Pauli error E drawn 
from the probability distribution described by the noise model. We 
will frequently abuse notation by using E to denote both a Pauli op-
erator and the set of sites that support E.

The syndrome of an error E is denoted as (E). It denotes the set 
of defects caused by E. We say that a subset of defects of a syndrome 
can be neutralized if a Pauli operator can be applied such that all the 
defects are neutralized without adding any new defects. We may also 
say that any such subset of the syndrome is neutral.

Defects lie at locations, or sites, u = (ux, uy, ut) in 2 + 1–dimensional 
spacetime. The separation between two sites is measured using the 𝓁∞ 
metric where the distance between sites u and v, denoted as ∣u − v∣, is 
such that ∣u − v∣= max (∣ux − vx∣, ∣uy − vy∣, ∣ut − vt∣). We will be 
interested in regions of spacetime that contain a collection of points M. 
The diameter of M is equal to   max  u,v∈M   ∣ u − v ∣ . We say that a subset 
of points M is r-connected if and only if M cannot be separated into 
two disjoint proper subsets separated by a distance more than r. The 
δ-neighborhood is the subset of sites that lie up to a distance δ from 
a region  together with the sites enclosed within region  itself. 
Given that we have a local model in spacetime, defects appear on 
sites within the one neighborhood of the sites of the error E. The 
following argument relies heavily on the notion of a chunk at a given 
length scale Q.

Definition 1 (Chunk). Let E be a fixed error. A level-0 chunk is 
an error at a single site u ∈ E. A nonempty subset of E is called a 
level-n chunk if it is the disjoint union of two level–(n − 1) chunks 
with diameter ≤Qn/2.

We express errors in terms of their chunk decomposition. We 
define En as the subset of sites that are members of a level-n chunk 
such that

  E =  E  0   ⊇  E  1   ⊇… ⊇  E  m    (2)

where m is the smallest integer such that Em+1 = ∅. We then define 
subsets Fj = Ej\Ej+1 such that we can obtain the chunk decomposi-
tion of E, namely

  E =  F  0   ∪  F  1   ∪ … ∪  F  m    (3)

A level-m error is defined by the smallest value of m such that 
Em+1 = ∅.

Expressing an error in terms of its chunk decomposition enables 
Bravyi and Haah (32) to prove that a renormalization group decod-
er will decode any level-m error with a sufficiently large system. The 
proof relies on the following lemma.

Lemma 1. Let Q ≥ 6 and M be any Qn-connected component of 
Fn. Then, M has a diameter at most Qn and is separated from other 
errors En\M by a distance greater than Qn+1/3.

The proof is given in (32) (see proposition 7). We note also that 
all the defects created by a Qn-connected component of Fn lying 
in the one neighborhood of the connected component are neutral. 
With this result, it is then possible to show that a renormalization 
group decoder that finds and neutralizes neutral 2p-connected com-
ponents at sequentially increasing length scales p will successfully 
correct an error, provided that Qm is much smaller than the size of 
the system. A threshold is then obtained using that for a sufficiently 
low error rate, the likelihood that a level-m + 1 chunk will occur is 
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vanishingly small. The renormalization group decoder is defined as 
follows.

Definition 2 (Renormalization-group decoder). The renormaliza-
tion group decoder takes a syndrome (E) as input and sequentially 
calls the level-p error correction subroutine ERROR CORRECT(p) 
and applies the Pauli operator returned from the subroutine for p = 
0,1, …, m with m ∼ log L.

The subroutine ERROR CORRECT(p) returns correction oper-
ators for neutral 2p-connected subsets of the syndrome. If the syn-
drome has not been neutralized after ERROR CORRECT(m) has 
been called, then the decoder reports failure.
A threshold theorem with a spread error
In the following section, we will show that the just-in-time gauge- 
fixing process will spread each disjoint Q j-connected component of 
Fj such that the linear size of the area it occupies will not increase by 
more than a constant factor s ≥ 1. Once the error is spread during 
the gauge-fixing process, we must show that the error remains cor-
rectable. Here, we show that the spread error model can be corrected 
globally with the renormalization group decoder. We first define a 
level-m spread error.

Definition 3 (Spread errors). Take a level-m error E drawn from 
an independent and identically distributed noise model with a chunk 
decomposition as in Eq. 3. The spread error takes every Q j-connected 
component Fj, ⊆ Fj for all j and spreads it such that this component 
of the error, together with the defects it produces, are supported with-
in a container Cj, centered at Fj, with diameter at most sQ j .

We use the term “container” so that we do not confuse them with 
boxes used in the following section, although containers and boxes 
both perform similar tasks in the proof.

In the proof given in (32) the authors make use of Lemma 1 to 
show that the renormalization group decoder will not introduce a 
logical failure. This is assured given that all the errors are small and 
well separated in a way that is made precise by Lemma 1. With the 
errors of the spread error model now supported in containers as much 
as a factor s larger than the initial connected components of the error, 
the connected components are now much closer together and, in 
some cases, overlap with one another. We have to check that the 
noise will not introduce a logical failure, given sufficiently low-noise 
parameters. We will argue that we can still find a threshold error rate, 
provided that (s + 2)Qm is suitably small compared with the system 
size. The following definition will be helpful.

Definition 4 (Tethered). Consider errors supported within spread 
containers Cj, and Ck, with j ≤ k. We say that the error in container 
Cj, is tethered to the error in a different container Ck, if the two 
containers are separated by a distance no greater than j where j = 
[r(s + 2) + 2]Q j . We say that Cj, is untethered if it is not tethered to 
any containers Ck, for k ≥ j.

We include an r term to parameterize the separation we wish to 
maintain between untethered containers compared to the diameter 
of the containers. This should be of the order of the factor by which 
renormalization group decoder increases its search at each level. We 
defined the renormalization group decoder to search for 2p-connected 
components at level p, so we can take r ≥ 2.

Fact 1. Let Q ≥ 3[r(s + 2) + s + 1]. Two distinct containers of the 
same size, Cj, and Cj,, are not tethered.

Proof. Errors Fj,, Fj, ⊆ Fj at the center of spread errors con-
tained in containers Cj, and Cj, are separated by more than Q j+1/3 
(Lemma 1). After expansion, the boundaries of Cj, and Cj, are sepa-
rated by a distance greater than Q j+1/3 − (s − 1)Q j . We have j ≤ 

Q j  + 1/3 − (s − 1)Q j  for Q ≥ 3[r(s + 2) + s + 1]. Therefore, two boxes 
of the same size are not tethered for Q ≥ 3[r(s + 2) + s + 1]. 

The constant expansion of the diameter of the errors means that 
some large errors expand such that smaller errors are not locally 
corrected. Instead, they become tethered to the larger errors that 
may cause the renormalization group decoder to become confused. 
We will show that the small errors that are tethered to larger ones 
are dealt with at larger length scales as tethering remains close to the 
boundary of the larger containers with respect to the length scale of 
the larger container. We illustrate this idea in Fig. 7.

We will say that a decoder is successful if it returns a correction 
operator that is equivalent to the error operator up to an element of 
the stabilizer group. Given that the logical operators of the model of 
interest are supported on containers with diameter no smaller than 
L, we say that a decoder is successful if an error and its correction is 
supported on a collection of well-separated containers where each 
container is smaller than L/3. It will be helpful to define fattened 
containers     ̃  C    j,    that enclose the Q j-neighborhood of Cj,. The fat-
tened containers have diameter Dj ≤ (s + 2)Q j . We also define the 
correction operator R(p), which is the product of the correction op-
erators returned by ERROR CORRECT(p) for all levels up to level 
p. We are now ready to proceed with the proof.

Lemma 2. Take Q ≥ 3[r(s + 2) + s + 1]. The renormalization group 
decoder will successfully decode a level-m error with constant spread 
factor s ≥ 1 provided Dm < L/3.

Proof. We follow the progression of the renormalization group 
decoder inductively to show that the correction is supported on the 
union of containers     ~ C    j,   . We will prove that the renormalization group 
decoder satisfies the following conditions at each level p.

1) The correction operator R(p) returned at level p is supported 
on the union of fattened containers     ~ C    j,   .

2) For the smallest integer l ≥ 0 such that Ql > 2p, modulo stabi-
lizers, the error R(p)E is supported within a Ql-neighborhood of an 
error contained in a container Ck, for any k such that its diameter 
is at least sQl.

3) The restriction of E and the level-p correction operator R(p) is 
the same up to stabilizers on fattened containers     ~ C    j,    of diameter 
Dj ≤ 2p for untethered containers Cj,.

A B C

Fig. 7. Error correction with just-in-time gauge fixing. Not to scale. The diagram 
sketches the proof of a threshold for the controlled-controlled-phase gate. (A) An 
error described by the chunk decomposition acting on the qubits included on the 
spacetime of the controlled-controlled-phase gate. See Lemma 1. The image shows 
connected components of the error contained within black boxes. Errors are shown 
at two length scales. One error at the larger length scale is shown to the top right 
of the image. (B) After just-in-time gauge fixing is applied, errors are spread by a 
constant factor of the size of the connected components. This is shown by the gray 
regions around each of the initial black errors. (C) Given a sufficiently large Q, the 
spread is not problematic since smaller untethered spread errors are far away from 
other components of equal or greater size. They are therefore easily dealt with by 
the renormalization group decoder. Small components of the error that lie close to 
a larger error will be neutralized with the larger error close to its boundary.
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We prove the case for p = 0. By definition, errors are supported 
on containers Cj,; therefore, 1-connected components of the syn-
drome contained within Cj, are supported on     ~ C    j,   . This verifies 
condition 1. Condition 2 holds by definition as follows. Since Q1 > 1, 
tethered containers C0, of size no greater than s are separated from 
at least one container Cj, for j ≥ 1 by a distance no more than 0; 
otherwise, it is untethered. This verifies that all tethered containers 
C0, lie entirely within the Q-neighborhood of some container Cj, 
since s + 0 ≤ Q. The containers Cj, that tether the errors in con-
tainers C0, are necessarily such that j > 0 by Fact 1. This verifies 
Condition 2 as we have shown that containers C0, are only tethered 
to containers with diameter at least sQ. Condition 3 is trivial for p = 
0 since all containers have diameter larger than 1.

We now suppose that the above conditions are true for p to show that 
the conditions hold at p + 1. We consider ERROR CORRECT(p + 1). 
We are interested in containers Cj, such that the diameter of its fattened 
counterpart is such that 2p < Dj ≤ 2p+1. We first find the smallest integer 
l such that Ql > 2p+1. Since Dj = (s + 2)Q j  ≤ 2p+1, we have l ≥ j + 1. There 
are two possible outcomes depending on whether Cj,  is tethered or not. 
We deal with each case separately.

If Cj, is tethered, then it lies at most j from another container 
Ck, of diameter sQk with k > j by Fact 1. Given that     ~ C    j,    has a diam-
eter no greater than Dj, we find that the error supported on     ~ C    j,    is 
supported entirely within the (Dj + j)-neighborhood of Ck,. Ex-
panding this expression, we have that Dj + j ≤ Qj+1 for Q ≥ [(s + 
2) + r(s + 2) + 2]. This confirms condition 2 for error correction at 
level p + 1.

In the case that Cj, is untethered, the fattened container     ~ C    j,   , 
which is Dj-connected, is separated from all other containers that 
support uncorrected errors     ~ C    k,    with Dk ≥ Dj by a distance greater 
than j − 2Qj  = r(s + 2)Qj  by the definition of an untethered container. 
Given that Dj > 2p, we have that r(s + 2)Q j  > 2p+1 for r = 2 at the level- 
(p + 1) error correction subroutine. Therefore, ERROR CORRECT(p + 1) 
will not find any components of E outside of the container     ~ C    l,   . 
Hence, a correction will be returned entirely on     ~ C    l,   , verifying 
condition 3.

We lastly consider the support of the correction operator. If the 
error is tethered, then the correction returned for Cj, lies on some 
container     ~ C    k,    with k > j to which it is tethered. In the case of 
untethered errors, the correction for each connected component 
supported on Cj,, and the correction for the smaller components 
tethered to it, is supported on its respective container     ~ C    j,   . This ver-
ifies condition 1.

The argument given above says that all errors are corrected on 
well-separated containers that are much smaller than the size of the 
system provided Dm < L/3. Given that there are no level-m + 1 errors, 
all the errors supported on containers of size Dm will be untethered 
and therefore corrected at the largest length scale. Therefore, we 
bound the failure probability by predicting the probability that an 
error of size Qm+1 occurs. Bravyi and Haah (32) gives a formula stat-
ing that the likelihood that a level-m chunk occurs on an L × L × L 
lattice is

   p  m   ≤  L   3   (3Q)   −6   (3Q  p  0  )    2   m    (4)

Demanding that (s + 2)Qm < L/3, we find m = [log(L/3) − log(s + 
2)]/log Q ≈ log L/log Q; we find the logical failure rate decays ex-
ponentially in L provided (3Q)6p0 < 1. This demonstrates a thresh-
old for p0 < (3Q)−6. Taking Q = 87 using s = 8 and r = 2, and we have 

that the number of qubits per site is N = 160 from the “Lattices” 
section, we obtain a lower bound on the threshold error rate of 
 ∼ 10−17.
Just-in-time gauge fixing
We use a just-in-time decoder (16) to fix the gauge of each topolog-
ical cluster state onto a copy of the surface code. We can deal with 
each of the three codes separately since the three codes are yet to 
interact. We suppose that we draw an error from the independent 
and identically distributed noise model that acts on the spacetime 
that is represented by the sites of the topological cluster state (see 
the “Lattices and mobile qubits” section for the definition of a site of 
the models of interest). Note that more than one defect can lie at a 
given site since each site supports several stabilizers. We also assume 
that the state of the two-dimensional surface code on the initial face 
is such that the plaquette operators are in their +1 eigenstate, although 
small errors may have been introduced to the qubits on the primal 
qubits of the initial face of the system. We defined the initial face in 
the main text (see Fig. 1B). We justify this assumption by showing 
how we fix the gauge of the two-dimensional input system in the 
“Gauge prefixing” section.

We briefly review the gauge fixing problem that we already sum-
marized in the main text. Face measurements that we obtain by 
measuring the dual qubits of the topological cluster state return 
random outcomes. However, because of the constraints among the 
stabilizers, these random outcomes are constrained to form loops if 
the system does not experience noise. To fix the gauge of the system, 
we need only find a Pauli operator that restores the plaquettes to 
their +1 eigenstate. This correction can be obtained trivially by find-
ing a Pauli operator that will move the loops to any smooth bound-
ary that is far away from the initial face. Because the plaquettes at 
this boundary are initialized in the +1 eigenstate, we cannot termi-
nate loops here. However, any other boundary is suitable. With the 
two-dimensional setup we have, it is perhaps a natural choice to 
move the loops toward the terminal face. The correction will fill the 
interior of the loop. Ensuring that the initial face is fixed means that 
the correction for the gauge-fixing process is unique. Otherwise, 
there can be two topologically distinct corrections from the gauge- 
fixing process that can lead to a logical fault.

In the case that errors occur when we measure the dual qubits, 
strings will appear in incorrect locations. Given that in the noiseless 
case the loops should be continuous, we can identify errors by find-
ing the locations where strings terminate. We refer to the endpoint 
of a broken string as a defect. Defects appear in pairs at the two 
endpoints of a given string. Alternatively, single defects can be cre-
ated at a smooth boundary. We attempt to fix the gauge where the 
errors occur by pairing local defects to close the loops, or we move 
single defects to smooth boundaries to correct them. We then cor-
rect the gauge according to the corrected loop. However, given that 
the correction may not be in the location of the error that caused the 
defects, the operator we apply to fix the gauge will introduce bit-flip 
errors to the surface code. Up to stabilizers, the error we apply 
during the gauge-fixing procedure will be equivalent to an error 
that fills the interior of the closed loop created by the measurement 
error and the correction. These errors are problematic after the trans-
versal non-Clifford gate is applied. However, provided that these er-
rors are sufficiently small, we can correct them at a later stage of the 
error correction process.

Correcting broken loops becomes more difficult still when we only 
maintain a two-dimensional layer of the three-dimensional system as 
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it will frequently be the case that a single defect will appear that should 
be paired to another that appears later in the spacetime but has not 
yet been realized. Hence, we will propagate defects over time before 
we make a decision on how to pair it. This deferral will cause the 
loop to extend over the time direction of the system, and this, in 
turn, will cause gauge-fixing errors to spread like the distance the 
defects are deferred. However, if we can make the decision to pair 
defects suitably quickly, we find that the errors we introduce during 
gauge fixing are not unmanageable. Here, we propose a just-in-time 
decoder that we can prove will not uncontrollably extend the size of 
an error. We assume that the error model will respect the chunk 
decomposition described above (see Eq. 3). We find that the just-in-
time decoder will spread each error chunk by a constant factor of its 
initial size. We give some more notation to describe the error model 
before defining the just-in-time decoder and justifying that it will 
give rise to small errors at a suitably low error rate.

We remember that the chunk decomposition of the error E = F1 
∪ F2 ∪ … ∪ Fm is such that a Qj-connected component of Fj has a 
diameter no greater than Qj and is separated from all other errors in 
Ej (see Eq. 2) by more than Qj+1/3. We define the syndrome of the 
error (E), i.e., the defects that appear because of error E. We also 
have that the error supported on Fj,, together with its syndrome, is 
contained in a box Bj, of diameter at most Qj + 2 to include syn-
dromes that lie at the boundary of a given error where Fj, is a Qj- 
connected component of Fj.

We denote defects, i.e., elements of (E) with coordinates u ac-
cording to their site. A given defect at u has a time coordinate ut. We 
denote the separation between two defects u and v in spacetime by 
∣u − v∣ according to the 𝓁∞ metric. At a given time t, which pro-
gresses as we prepare more of the topological cluster state, we are 
only aware of all defects u that have already been realized such that 
ut ≤ t. We neutralize the defects of the syndrome once we arrive at 
a time where it becomes permissible to pair them; otherwise, we 
defer their pairing to a later time. Deferral means leaving a defect in 
the current time slice of the spacetime by extending the string onto 
the current time without changing the spatial coordinate of the de-
fect. When we decide to pair two defects, we join them by complet-
ing a loop along a direct path on the available live qubits. In both 
cases, we fix the gauge according to the strings we have proposed 
with the correction or deferral. We are now ready to define the just-
in-time decoder that will accurately correct pairs of defects given 
only knowledge about defects u where ut ≤ t.

Definition 5 (Just-in-time decoder). The just-in-time decoder, 
JUST IN TIME(t), is applied at each time interval. It will neutralize 
pairs of defects u and v if and only if both defects have been deferred 
for a time t ≥ ∣u − v∣. It will pair a single defect u to a smooth 
boundary only if u has been deferred for a time equal to its separa-
tion from the boundary.

The definition we give captures a broad range of just-in-time 
decoders that could be implemented a number of ways. We could, 
for instance, consider clustering decoders (32) or possibly more so-
phisticated decoders based on minimum-weight perfect matching (3) 
to implement the decoder. A greedy decoder would suffice. Here, we 
only need a simple rule to demonstrate a threshold within the coarse-
grained picture of the chunk decomposition. We also remark that we 
might be able to find better decoders that do not satisfy the conditions 
of the just-in-time decoder proposed here. We make no attempt to 
optimize this; the goal here is only to prove the existence of a thresh-
old using the simplest possible terms.

Before we show that the just-in-time decoder will introduce a spread 
error with a constant spread factor s, we first consider how the decoder 
performs if we consider only a single Q j-connected component of the 
error Fj, ⊆ Fj. We first consider the Qj-connected component of the 
error well isolated in the bulk of the lattice, and then we consider how 
it is corrected close to the boundary.

Fact 2. The correction of an isolated Q j-connected component 
of the error, Fj,, that lies more than 2(Q j  + 2) from the boundary is 
supported on the (Q j  + 1)-neighborhood of Bj,. No defect will exist 
for a time longer than t ∼ 2(Q j  + 1).

Proof. Consider two defects u, v contained in Bj, at extremal 
points. These defects have separation at most Q j  + 2. Let us say that 
∣ut − vt∣ = Q j  + 2 with ut > vt. The defect v will be deferred for a 
time 2(Q j  + 2) before it is paired a distance Qj  + 1 from Bj, in the 
temporal direction. This correction is supported on the (Qj + 1)-  
neighborhood of Bj,. All defects of this component of the error will 
be paired before it is permissible to pair them to the boundary.

By this consideration, we obtain a constant spread parameter ∼3 
for boxes in the bulk of the model. We next consider the correction 
close to a smooth boundary. We find that this will have a larger 
spread parameter.

Fact 3. The correction of an isolated Qj-connected component 
of the error, Fj,, produced by the just-in-time decoder is supported 
on the 3(Qj + 2)-neighborhood of Bj,, if Bj, lies within 2(Q j  + 2) 
of a smooth boundary. All defects will be neutralized after a time at 
most 3(Q j  + 2).

Proof. A defect u lies at most 3(Q j  + 2) from the boundary. In the 
worst case, all defects will be paired to the boundary after a time at 
most 3(Q j  + 2). Considering a defect at an extremal location, then, 
the just-in-time decoder may defer the correction of a defect beyond 
Bj, at most 3(Qj + 2) in the temporal direction.

The above fact allows us to upper bound the spread factor to s = 8. 
So far, we have only considered how the just-in-time decoder deals with 
well-isolated Qj-connected components of the error. We find that, for 
sufficiently large Q, all errors are well isolated in a more precise sense. 
This is captured by the following lemma. We find, given that any defect 
supported on a box Bj, will be paired with another defect in the same 
box or to a nearby smooth boundary after a time at most 3(Qj + 2), it will 
never be permissible to pair defects contained in different boxes before 
they are terminated. In effect, all boxes are transparent to one another. 
This justifies the spread error model used in the previous section.

Lemma 3. Take a chunk decomposition with Q ≥ 33. The just-in-
time decoder will pair all defects supported on Bj, within the 3(Q j  + 
2)-neighborhood of Bj, to either another defect in Bj, or to the 
boundary.

Proof. By Facts 2 and 3, we have that all the defects of isolated boxes 
Bj, are paired to another defect in Bj, or to a nearby smooth boundary 
at most 2(Qj + 2) from Bj, after a time no more than 3(Qj + 2).

We may worry that the just-in-time decoder may pair defects 
within disjoint boxes if they are too close together. We consider the 
permissibility of pairing u contained within Bj, to v contained in 
Bk,. For Q ≥ 33, we find that such a pairing will never be permissi-
ble before all defects are paired locally within their isolated boxes. We 
suppose that, without loss of generality, the diameter of Bj, is less than 
or equal to the diameter of Bk,. Given that Bj, is separated from Bk, 
by a distance greater than Qj+1/3 − 2, it will not be permissible to 
pair u with v within the lifetime of u before it is paired to a boundary 
or another defect in Bj, provided 3(Qj + 2) ≤ Qj+1/3 − 2. This is sat-
isfied for all j ≥ 0 for Q ≥ 33.
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This Lemma therefore justifies our spread factor s = 8 used in the 
previous section.
Gauge prefixing
Last, we assumed that we can reliably prepare the plaquette opera-
tors on the initial face of the two-dimensional surface code in their 
+1 eigenstate. We can tolerate small errors on the edges of the ini-
tialized surface code, but a single measurement error made on a 
plaquette can cause a critical error with the just-in-time decoder as 
it may never be paired with another defect. This will lead to a large 
error occurring during gauge fixing (see Fig. 8A). It is therefore im-
portant to identify any measurement errors on the face measure-
ments of the initial face before the gauge fixing begins. We achieve 
this by prefixing the plaquettes of the initial face of the topological 
cluster state before the controlled-controlled-phase gate begins. We 
run the system over a time that scales with the code distance before 
we commence the controlled-controlled-phase gate procedure. In 
doing so, we can identify measurement errors that may occur on the 
dual qubits on the initial face of the topological cluster state using 
measurement data collected before we conduct the non-Clifford 
operation. Figure 8B shows the idea; the figure shows that measure-
ment errors can be determined by looking at syndrome data on both 
sides of a plaquette on the initial face. We need only look at one side, 
namely, the side of the initial face before just-in-time gauge fixing 
takes place.

Since we need only determine which face operators have experi-
enced measurement errors, and we do not need to actively correct 
the random gauge, gauge prefixing is accomplished globally using a 
renormalization group decoder on the three-dimensional syndrome 
data of the spacetime before the controlled-controlled-phase gate is 
performed. A threshold can be proved by adapting the threshold the-
orem for topological codes given in (32). Measurement errors close 
to the initial face before the controlled-controlled-phase gate takes 
place can then be identified easily by the decoder. We determine 
which plaquettes of the initial face have experienced errors by finding 
defects that should be paired to the initial face in the gauge-prefixing 
operation. Small errors in the global gauge-prefixing procedure can 
be contained within the boxes that contain the error syndrome. 
Hence, the errors that remain after the gauge-prefixing procedure 
are confined within small boxes, which respect the distribution we 
used to prove the threshold using the just-in-time decoder. Hence, 
we justify our error model used to bound the spread factor using 
just-in-time gauge fixing, even in the presence of initialization 

errors caused by gauge prefixing. We show an error together with its 
syndrome in Fig. 8C. The goal is only to estimate the plaquettes that 
have experienced measurement errors on the gray face at the top of 
the figure. This fixes the plaquettes of the initial face as we have as-
sumed throughout our analysis.

We remark that the proposal given in (16) avoids the use of gauge 
prefixing by orienting boundaries such that the boundary that is 
analogous to the initial face of the color code is created over a long 
time. This orientation allows for single defects created at the initial 
face to be corrected by moving them back to the initial face at a later 
time, or onto some other suitable boundary. In contrast, here, we 
have imagined that an initial face is produced at a single instant of 
time. Further work may show that we can apply the idea of Bombín 
to the surface code implementation of a controlled-controlled-phase 
gate presented here by reorienting the gate in spacetime. Such an 
adaptation will also require a modification of the just-in-time de-
coder to ensure that defects created at the initial face are paired to 
an appropriate boundary in a timely manner.

Conversely, gauge prefixing can be adapted for the proposal in (16). 
In this work, color codes are entangled with a transversal controlled- 
phase gate. The transversal gate is applied to a two-dimensional sup-
port on boundaries of the two color codes undergoing this operation. 
Let us call this boundary the entangling boundary, where the initial face 
of the second code lies on the entangling boundary. Let us briefly sum-
marize how we can prefix the gauge of the initial face of the second of 
the two color codes by error-correcting the first.

We note that the entangling operation allows us to use the eigen-
values of the error detection measurements at the boundary of the 
first code to infer the values of the face operators at the initial face of 
the second code. Small errors may cause us to incorrectly read the 
eigenvalues of the cells of the first code. This will lead us to infer the 
wrong eigenvalues of the face operators of the initial face of the sec-
ond code. However, error correction on the first code ensures that 
its entangling boundary is charge neutral, i.e., it has an even parity 
of string-like errors terminate at this boundary. If the first code is 
charge neutral at its entangling boundary, then errors in the eigen-
values of the face operators of the initial face of the second color 
code are necessarily created in locally correctable configurations. This 
means that they can be corrected without pairing any defects onto 
the initial face. This observation circumvents the need to orient the 
color code in a special configuration in spacetime. Relaxing this con-
straint may be of practical benefit. Moreover, the observation may 
allow us to remove certain rules that the decoder must otherwise re-
spect to ensure defects are paired to the initial face as required. This 
may lead to improvements in the performance of the decoder.
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