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Abstract

Background: The KRAS gene is mutated in about 40 % of colorectal cancer (CRC) cases, which has been clinically
validated as a predictive mutational marker of intrinsic resistance to anti-EGFR inhibitor (EGFRi) therapy. Since nearly
60 % of patients with a wild type KRAS fail to respond to EGFRi combination therapies, there is a need to develop
more reliable molecular signatures to better predict response. Here we address the challenge of adapting a gene
expression signature predictive of RAS pathway activation, created using fresh frozen (FF) tissues, for use with more
widely available formalin fixed paraffin-embedded (FFPE) tissues.

Methods: In this study, we evaluated the translation of an 18-gene RAS pathway signature score from FF to FFPE in
54 CRC cases, using a head-to-head comparison of five technology platforms. FFPE-based technologies included
the Affymetrix GeneChip (Affy), NanoString nCounter™ (NanoS), Illumina whole genome RNASeq (RNA-Acc), Illumina
targeted RNASeq (t-RNA), and Illumina stranded Total RNA-rRNA-depletion (rRNA).

Results: Using Affy_FF as the “gold” standard, initial analysis of the 18-gene RAS scores on all 54 samples shows
varying pairwise Spearman correlations, with (1) Affy_FFPE (r = 0.233, p = 0.090); (2) NanoS_FFPE (r = 0.608, p < 0.0001);
(3) RNA-Acc_FFPE (r = 0.175, p = 0.21); (4) t-RNA_FFPE (r = −0.237, p = 0.085); (5) and t-RNA (r = −0.012, p = 0.93). These
results suggest that only NanoString has successful FF to FFPE translation. The subsequent removal of identified
“problematic” samples (n = 15) and genes (n = 2) further improves the correlations of Affy_FF with three of the five
technologies: Affy_FFPE (r = 0.672, p < 0.0001); NanoS_FFPE (r = 0.738, p < 0.0001); and RNA-Acc_FFPE (r = 0.483,
p = 0.002).

Conclusions: Of the five technology platforms tested, NanoString technology provides a more faithful translation of
the RAS pathway gene expression signature from FF to FFPE than the Affymetrix GeneChip and multiple RNASeq
technologies. Moreover, NanoString was the most forgiving technology in the analysis of samples with presumably poor
RNA quality. Using this approach, the RAS signature score may now be reasonably applied to FFPE clinical samples.

Keywords: Colorectal cancer, FF (fresh-frozen), FFPE (formalin-fixed, Paraffin embedded), Microarray, NanoString, RAS
pathway signature, RNASeq
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Background
Colorectal cancer (CRC) is the third most common cancer
in men and women [1]. Nearly one-third of the patients
will eventually die of the disease. Hyperactivation of the
RAS signaling pathway is a driver of many cancers, includ-
ing CRC [2, 3]. Activating mutations in the K-ras proto-
oncogene (KRAS) are found in approximately 40 % of
colorectal tumors [4]. Thus, the RAS pathway activation
has become a major focus of drug targeting efforts, in-
cluding prediction of response to targeted therapies [5–8].
For example, the epidermal growth factor receptor (EGFR)
is a major therapeutic target in metastatic colorectal
cancer [7–14]. The fact that nearly 60 % of patients with a
wild type KRAS fail to respond to combination therapies
involving EGFRi [5, 15], however, strongly suggests that
there are additional genes, beyond KRAS, that contribute
to RAS pathway activation. It has been recently reported
that mutations in BRAF and NRAS that also activate the
RAS pathway may account for EGFRi therapy resistance
in some of the wild-type KRAS CRCs [7, 10, 12, 14].
A number of gene expression signatures have been

developed using multiple types of cancer cell lines and
human fresh frozen (FF) samples to predict RAS path-
way dependence in association with drug response [2, 3].
For example, a 147-gene RAS pathway signature has
been reported to be superior to KRAS mutation status
alone for the prediction of dependence on RAS signal-
ing, and it could predict response to PI3K and RAS
pathway inhibitors in lung and breast tumors [3]. Low
RAS pathway signature score was associated with a
higher cetuximab response rates in a retrospective
analysis of metastatic CRC [3]. Another RAS pathway
signature (18 genes) was developed from multiple types
of cancer cell lines and human tumors, including CRC,
to specifically assess MEK functional output and activa-
tion of the RAS/RAF/MEK/ERK pathway [2]. While
measuring mutations in individual genes such as KRAS
and NRAS can predict EGFRi response, their level of
accuracy is low with up to 60 % of patients still not-
responding [15]. For this reason, multi-gene expression
signatures hold promise in being able to more robustly
assess pathway activation than single gene mutations,
and thus there is an interest in translating them for use
with FFPE clinical samples.
One of the challenges in using these gene expression

signature scores is that many have been developed using
fresh-frozen (FF) tissues on the Affymetrix GeneChip
(microarray) platform. In order for these signature scores
to be clinically useful, they need to be adapted to the more
commonly available archival formalin-fixed paraffin-
embedded (FFPE) tissues [16, 17]. However, microarrays
that can assess thousands of transcripts are not only
expensive but also lack reproducibility, especially when
evaluating FFPE samples having low RNA quality [18, 19].

Determinants of RNA quality from FFPE samples have
been reported to include storage time and conditions,
fixation time and specimen size [20]. RT-qPCR and
NanoString technologies have been reported to be
useful for gene expression quantification in FFPE tissues
[17, 21–23]. However, the recently developed, probe-
based NanoString method was shown to be superior to
the RT-qPCR approach in archived FFPE samples [22].
To date, the RAS pathway signatures developed in FF

samples for prediction of drug response have not been
validated in CRC using FFPE samples. Thus, in this study,
we elected to evaluate the translation of an 18-gene RAS
signature score [2] from FF to FFPE in 54 selected CRC
cases in a head-to-head comparison of five technology
platforms: Affymetrix GeneChip (Affy), NanoString
nCounter™ (NanoS), whole genome RNASeq (Illumina
RNA-Access (RNA-Acc), targeted RNASeq (t-RNA), and
Illumina Total stranded RNA-rRNA-depletion (rRNA).

Methods
Tissue sample selection
Fifty-four (54) FFPE evaluable tumor specimens were
selected from a larger multi-center cohort of 468 well-
characterized colorectal adenocarcinoma patients whose
tissues were obtained between October 2006 and
September 2010 [24]. In all cases, tissue and clinical data
were collected on patients with the University of South
Florida institutional review board approval [25]. All
tumors were collected from curative survival resections
and snap frozen in liquid nitrogen within 15–20 min of
extirpation. The sample cohort was composed of tumor
samples that were available as matched fresh-frozen (FF)
and formalin-fixed paraffin-embedded (FFPE) pairs. As
shown in Additional file 1, the 54 samples had mutant
KRAS (25/54 or 46 %) and BRAF (2/54 or 4 %), but no
NRAS mutations.
The Affymetrix GeneChip, NanoString, whole genome

RNASeq, and targeted RNASeq assays on the 54 FFPE
samples were performed at LabCorp, Inc., Seattle, USA.
Whole genome RNASeq was further comprised of two
library preparation methods: Illumina RNA-Access
(RNA-Acc) and Illumina Total stranded RNA-rRNA-
depletion (rRNA), which were analyzed as separate data-
sets. Targeted RNA sequencing data (t-RNA) was based
on the RAS 18-gene signature [2].
The flowchart (see Fig. 1) below shows the steps followed

in the pre-processing and analysis of the data. The statis-
tical methods used include [1] the Robust Microarray
Average (RMA) method [26] for the normalization of
Affy_FF and Affy_FFPE samples; [2] principal component
analysis (PCA) [19, 27] to identify “bad” samples from the
Affy_FFPE data; [3] correlation analyses among the data-
sets; and [4] the nearest shrunken centroids algorithm for
predicting the mutation type of a sample.
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Data pre-processing
Both the 54 Affy_FF and matching Affy_FFPE samples
were normalized using the RMA method [26]. For the
NanoString data, we used the reference (housekeeping)
gene normalization method, as described in the
nCounter® Expression Data Analysis Guide (available at
http://www.nanostring.com/media/pdf/MAN_nCounter_-
Gene_Expression_Data_Analysis_Guidelines.pdf). The 11
housekeeping genes were BIRC6, EMC8, HADHA, MAEA,
MRPL18, ORMDL1, PSMD11, RBM4, STX6, TRIM39, and
UBE2K. The geometric mean of these reference genes was
obtained for each sample (lane) and the average of these
means across all samples calculated. The normalization
factor for each sample was the overall mean divided by the
geometric mean. We multiplied this factor by the mRNA
transcript count for each of the 18 RAS genes in the
sample. For the targeted RNA data, we used median
normalization. For that platform, we obtained the median
for each of the samples and subtracted this number from
each of the gene counts for the sample. Notably, global
normalization using median-centering is commonly used
to correct for sample-specific bias (due to experimental

artefacts) and render the gene expression levels compar-
able in differential gene expression analysis in microarrays
[28]. With the advent of RNASeq technology, the method
has been adopted to render counts from different samples,
which may have been sequenced to different depths,
comparable [29]. Thus, gene expression values could be
positive or negative numbers relative to a reference (e.g.
median). For the whole transcriptome RNASeq (RNA-Acc
and rRNA) platforms, the data was first processed by
STAR aligner [30] and cufflinks [31], then the resulting
FPKM was log2-transformed and z-score-normalized.

Probe filtration
After normalization, filtration of probes was performed
for both the Affy_FF and Affy_FFPE data. Probes were
retained if they had at least 1.5-fold change in either direc-
tion of the median expression level in at least 20 % of the
samples and if they had at most 50 % missing values
across the samples. The entire probe filtration process was
implemented by the BRB-ArrayTools software [32]. The
NanoS_FFPE, RNA-Acc_FFPE, t-RNA and rRNA_FFPE

Fig. 1 Flow-chart of the procedure followed in the pre-processing and analysis of the data. Six datasets (1 FF and 5 FFPE, each with 54 samples
and 18 genes) underwent quality control procedures before analysis. Thirty-nine [39] “good” samples and 16 “good” genes were retained.
Correlation analyses were performed using mean scores from the sample pairs. The predictive ability of the 16–gene set was validated using
the Affymetrix FF, Affymetrix FFPE and NanoString gene expression data, by the PAM method
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datasets did not have probe-level data and so were not
subjected to the probe filtration process.

Calculation of RAS pathway activation scores before
probe filtration
The next step was to calculate the RAS pathway activation
scores from the normalized 54 Affy_FF and Affy_FFPE
samples. For genes with multiple probes/probesets in the
dataset, probes/probesets from the same gene were averaged
to yield one value of the expression level for each gene. The
mean of these expression levels across the 18 RAS genes
was calculated for each sample to yield the sample mean
score. The sample mean scores for the NanoS_FFPE, RNA-
Acc_FFPE, t-RNA_FFPE and rRNA_FFPE were obtained by
averaging across the 18 RAS genes.

Calculation of RAS pathway activation scores after probe
filtration
The probe filtration resulted in a reduction of probes
from 60,607 to 23,765. Some genes that were repre-
sented by only one probe in the dataset were filtered out
in this filtration process. For the remaining genes with
multiple probes/probesets, the probes/probesets were re-
duced to one per gene by selecting the probe with the
highest mean signal strength across the samples. The
mean expression levels across the remaining 16 RAS genes
were calculated for each sample to yield the sample mean
score. The sample mean scores for the NanoS_FFPE,
RNA-Acc_FFPE, t-RNA_FFPE and rRNA_FFPE were ob-
tained by averaging across the 16 RAS genes.

Statistical analysis
The FF - FFPE sample pairs of mean scores were used in
the correlation analyses, using SAS software version 9.4
(SAS Institute, Cary, NC, USA). There were 15 possible
combinations of the sample pairs, among the six datasets
(Affy_FF, Affy_FFPE, NanoS_FFPE, RNA-Acc_FFPE, t-
RNA-FFPE, and rRNA_FFPE), yielding 15 pairwise
Spearman correlations. We also assessed the effect of
removing “bad” samples and probes on the Spearman
correlations across the five platforms. To identify the
“bad” samples, we performed a principal component
analysis (PCA) of the 54 Affy_FFPE samples, with the
entire set of 60,607 probes, to generate the first two
principal components (PC1 and PC2), using the SAS
software version 9.4. The PC1 and PC2 scores were
identified as the eigenvectors of the covariance matrix
of the 54 Affy_FFPE samples that accounted for the
highest and the second-highest variation in the data,
respectively. A scatterplot of PC2 vs PC1 was used to
show the location of the possibly “bad” samples.
Samples were classified as either KRAS/BRAF mutant

or KRAS/BRAF wild-type (WT). The nearest shrunken
centroids algorithm [33] was employed in predicting the

mutation type of a sample, based on the gene expression
profiles of the 16 genes from the 18-gene RAS signature.
This algorithm was implemented by the Prediction
Analysis of Microarrays (PAM) tool in BRB-ArrayTools
software [32]. The algorithm builds several linear models
(classifiers) containing up to 16 genes and selects the
model with the minimal prediction error. The prediction
error of the models are estimated using leave-one-out
cross-validation (LOOCV) as described in [34]. For each
leave-one-out training set, the entire model building
process was repeated, including the gene selection process.
The proportion of times when classifiers incorrectly pre-
dicted the class (miss-classification rate) of the excluded
samples was recorded for the entire training set of samples.

Results
NanoString effectively translates the 18 gene RAS scores
from FF to FFPE in all 54 samples
A gene expression RAS pathway signature [2], com-
prised of 18 genes (DUSP4, DUSP6, ELF1, ETV4, ETV5,
FXYD5, KANK1, LGALS3, LZTS1, MAP2K3, PHLDA1,
PROS1, S100A6, SERPINB1, SLCO4A, SPRY2, TRIB2 and
ZFP106), was used to evaluate FF to FFPE translation on
the 54 samples (see Table 1A). Results show the pairwise
Spearman correlations of Affy_FF scores (“gold” standard)
with five sets of scores obtained from [1] Affy_FFPE; [2]
NanoS_FFPE; [3] RNA-Acc_FFPE; [4] t-RNA_FFPE; and
[5] rRNA_FFPE. Only NanoS_FFPE appeared to have suc-
cessful FF to FFPE translation for the 18-gene RAS scores
(r = 0.608, p < 0.0001) when all samples were utilized. Not-
ably, among the five FFPE technology platforms, pairwise
correlations between Affy_FFPE and each of NanoS_FFPE,
RNA-Acc_FFPE and t-RNA_FFPE were significant.

Identification and removal of 15 “poor” quality samples
improves the FF - FFPE correlations
Sfakianos et al. used the PCA procedure to detect out-
liers and showed that the outliers were associated with
poor quality samples [19]. More recently, Guinney et al.
performed quality control analysis for outlier detection
using PCA [11]. We adopted this procedure to identify
samples that could possibly have “poor” RNA quality. A
scatterplot (see Fig. 2) of the first and second principal
component (PC1 and PC2) scores identified fifteen
samples with low PC1 scores (hereby less than - 0.10)
that were considered to be “outliers”, or samples likely
to have “poor” RNA quality. Notably, as compared to
other 39 “good” samples (see Table 1B), most of 15 sam-
ples identified also had low standard deviations (signal-
to-noise ratios) across probes (data not shown). Further-
more, these 15 samples all had below average Affy_FFPE
mean scores in contrast to their wide-spread pattern for
Affy-FF scores (see Fig. 3a). Thus, these data support the
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notion that low PC1 scores were likely associated with
“poor” RNA quality, However, these 15 “bad” samples
did not stand out among the NanoS_FFPE mean scores
(see Fig. 3b), suggesting that NanoString technology may
be more forgiving of poor RNA quality inherent to these
samples. The 15 samples identified with potential “poor”

quality were removed, leaving 39 samples available for
subsequent analyses.
As shown in Table 1B, the removal of 15 “outlier”

samples resulted in increases in three pairwise correla-
tions among Affy_FF vs. [1] Affy_FFPE, [2] NanoS_FFPE
and [3] RNA-Acc_FFPE. Notably, the correlation

Table 1 Spearman correlations for the 18-gene RAS signature scores among six datasets, including Affy_FF, NanoS_FFPE, RNA-Acc_FFPE,
t-RNA_FFPE, and rRNA_ FFPE on 54 and 39 samples

Mean Score Affy FF Affy FFPE NanoS FFPE RNA-Acc FFPE t-RNA FFPE rRNA FFPE

A. 54 samples

Affy FF 1 0.233 (0.090) 0.608 (<0.0001) 0.175 (0.207) −0.237 (0.085) −0.012 (0.934)

Affy FFPE 1 0.399 (0.003) 0.760 (<0.0001) 0.278 (0.042) 0.260 (0.058)

NanoS FFPE 1 0.473 (0.0003) −0.207 (0.134) 0.033 (0.814)

RNA-Acc FFPE 1 0.262 (0.056) 0.225 (0.102)

t-RNA FFPE 1 0.142 (0.306)

rRNA FFPE 1

B. 39 samples

Affy FF 1 0.556 (0.0002) 0.631 (<0.0001) 0.261 (0.109) −0.287 (0.076) 0.123 (0.455)

Affy FFPE 1 0.832 (<0.0001) 0.778 (<0.0001) 0.006 (0.973) 0.091 (0.581)

NanoS FFPE 1 0.733 (<0.0001) −0.177 (0.282) 0.099 (0.551)

RNA-Acc FFPE 1 0.043 (0.797) 0.090 (0.587)

t-RNA FFPE 1 −0.071 (0.668)

rRNA FFPE 1

Fig. 2 Scatterplot of the second vs. first principal component (PC2 vs PC1) for the 54 Affymetrix FFPE samples. The 15 “bad” samples (with low
PC1 scores) are colored red and were excluded from subsequent analyses. Each sample was labeled using the last 3 digits of its name (barcode)
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between Affy_FF and Affy_FFPE changed from being
insignificant (r = 0.233, p = 0.090) to significant (r = 0.556,
p = 0.0002).
Notably, while the 39 “good” samples had mutant

KRAS (19/39) and BRAF (1/39), the 15 “bad” samples
had mutant KRAS (6/15) and BRAF (1/15). No significa-
tion association was seen between sample RNA quality
and KRAS/BRAF genotypes. For example, the Fisher’s
exact test of association of BRAF mutation status and
sample RNA quality was insignificant (p = 0.5711).
This suggests that the “badness” of the 15 samples is
likely not due to a biological reason (e.g. BRAF
V600E enrichment), but rather to a “technical aspect
of the sample preparation”.

Reduction of probes and associated genes in attempt to
improve further the FF-FFPE correlations
The 18 RAS signature genes were represented by
51 probes and 50 probesets, in the Affy_FF and
Affy_FFPE datasets, respectively, with 48 probes in com-
mon to both. Probe selection was performed to exclude
probes that were not sufficiently differentially-expressed
across the 39 samples. The selection was performed
from the entire set of 60,607 probes on 39 Affy_FFPE
samples. We first filtered out those probes with less than
1.5-fold change in either direction of the probe’s median
value and then filtered out those with at least 1.5 fold
change but in less than 20 % of the samples, resulting in
23,765 probes in 10,031 genes. We then reduced the

Fig. 3 Scatterplots of the Affymetrix FF vs. Affymetrix FFPE (a) and NanoString FFPE (b) mean scores for the 54 samples. The red circles represent
the 15 samples with “poor” RNA quality
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number of probes to one per gene, by selecting the probes
with the highest mean expression values. Due to the probe
selection, all probes from the genes LZTS1 and ZFP106
were dropped, yielding a 16-gene signature that was then
applied to the 54 and 39 samples, respectively.
Removal of 2 “problematic” probes/genes, while

retaining all 54 tumors, resulted in a modest increase
in two pairwise correlations among Affy_FF vs. [1]
Affy_FFPE and [2] NanoS_FFPE (comparing Table 1A
vs. Table 2A). Of interest, the performance of
t-RNA_FFPE and rRNA_FFPE were also improved with
probe reduction.
Building to improve the model, the removal of both 15

samples and 2 probes/genes further enhanced the corre-
lations of Affy_FF vs. Affy_FFPE, NanoS_FFPE, and
RNA-ACC_FFPE (comparing Table 1A vs. Table 2B).

Using a PAM classifier to predict KRAS/BRAF mutation
status using the 16-gene expression data
The Affy_FF gene expression score might be considered
a new “gold” standard because of its potential capacity
to more inclusively identify tumors with RAS pathway
activation not necessarily linked to RAS mutation. RAS
mutation status, however, taken by itself, could also be
considered a “gold” standard, and in fact is the current
clinical standard used to qualify the administration of
EGRFi therapies. We therefore sought to validate the
known mutational status of previously sequenced CRC
samples (n = 54) using our Affy_FF, Affy_FFPE and
NanoS_FFPE datasets in conjunction with the modi-
fied 16-gene RAS signature score. In this regard, the
samples were classified as either KRAS/BRAF mutant
or KRAS/BRAF wild-type, resulting in two classes.

Notably, no NRAS mutation was detected in the 54
samples (Additional File 1). For each dataset, we devel-
oped linear models utilizing gene expression profiles of
the 16 genes to predict the class (mutation type) of future
samples. Table 3 shows the sensitivity and specificity
values for the classifier, together with the LOOCV miss-
classification rates. Class prediction was performed using
the gene expression data (n = 54) from the Affy_FF,
Affy_FFPE and NanoS_FFPE samples. The 16-gene
Affy_FF classifiers performed best in predicting KRAS/
BRAF mutation status (error rate = 19 %), with an optimal
sensitivity of 0.852 and specificity of 0.778. Reduction in
sample size was ineffective in improving KRAS/BRAF
mutation status predictions (results not shown). Table 4
shows the reduced gene sets in the selected predictive
model (one with the minimal error of prediction) for each
of the validation datasets (Affy_FF, NanoS_FFPE and
Affy_FFPE) out of the 16 genes.

Discussion
Gene expression signatures have been identified for pre-
diction of RAS pathway dependence and drug response
[2, 3]. One obstacle to clinical translation is that these
signatures were developed using cell lines and fresh
frozen (FF) tissues, whereas usually only formalin-fixed,
paraffin embedded (FFPE) tissue of lower quality is read-
ily available for clinical use [19–22]. A number of studies
have been reported on gene expression quantitation in
FFPE samples using FF as a standard, usually employing
one or two technologies, including RT-qPCR, Nano-
String, and/or Affymetrix GeneChip [19, 21, 22, 35–37].
In this study, we simultaneously compared five technol-
ogy platforms: [1] Affymetrix GeneChip; [2] NanoString;

Table 2 Spearman correlations for the 16-gene RAS signature scores among six datasets, including Affy_FF, NanoS_FFPE, RNA-Acc_FFPE,
rRNA_FFPE, and t-RNA_ FFPE on 54 and 39 samples

Mean Score AffyFF Affy FFPE NanoS FFPE RNA-Acc FFPE t-RNA FFPE rRNA FFPE

A. 54 samples

Affy FF 1 0.300 (0.028) 0.707 (<0.0001) 0.264 (0.054) −0.195 (0.157) 0.019 (0.890)

Affy FFPE 1 0.361 (0.007) 0.773 (<0.0001) 0.296 (0.030) 0.369 (0.006)

NanoS FFPE 1 0.487 (0.0002) −0.155 (0.264) 0.039 (0.779)

RNA-Acc FFPE 1 0.262 (0.056) 0.295 (0.031)

t-RNA FFPE 1 0.194 (0.159)

rRNA FFPE 1

B. 39 samples

Affy FF 1 0.672 (<0.0001) 0.738 (<0.0001) 0.483 (0.002) −0.228 (0.163) 0.174 (0.290)

Affy FFPE 1 0.845 (<0.0001) 0.754 (<0.0001) 0.014 (0.934) 0.170 (0.301)

NanoS FFPE 1 0.802 (<0.0001) −0.096 (0.560) 0.150 (0.361)

RNA-Acc FFPE 1 0.053 (0.750) 0.182 (0.269)

t-RNA FFPE 1 −0.018 (0.915)

rRNA FFPE 1
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[3] Illumina whole genome RNASeq RNA-Access; [4]
Illumina Total RNA-stranded rRNA-depletion; and [5]
targeted RNASeq. Analyses of 54 CRC samples were
performed in a head-to-head comparison to identify the
optimal method(s) for translating the RAS signature
score [2] to FFPE tissues. For this purpose, we chose to
calculate and compare individual tumor composite
(multi-gene) scores rather than compare gene-level mea-
surements in order to derive a more robust comparison
of available technology platforms. Here, we found that
while NanoString technology is the most forgiving in the
analysis of samples with poor RNA quality, Affymetrix
and RNA-Access may have potential for FF to FFPE
translation upon removal of “outlier” samples.
The poor quality of RNA extracted from FFPE samples

is thought to result from fixing procedures that cause
RNA cross-linking and from RNA degradation over
time in FFPE blocks depending on storage temperature
[20, 21, 35–38]. While Lebbe and co-workers used the ex-
pression levels of a set of reference genes to construct a
statistic for differentiating “bad” melanoma samples from
“good” ones [36], Sfakianos et al. used PCA analysis to
identify “bad” samples in ovarian cancer FFPE samples
[19]. We adopted the PCA method to identify and filter
out 15 “outlier” samples with “poor” RNA quality. The re-
moval of the “outlier” samples improved the correlations
of Affy_FF (as a “gold” standard) significantly with
Affy_FFPE, but only slightly with NanoS_FFPE; the 15
“outlier” samples identified for the Affy_FFPE platform
did not appear to be outliers for NanoS_FFPE. A plausible
explanation is that in contrast to Affymetrix and RNASeq
technologies, NanoString is a more “direct” technology
(hybridization-based) to detect the number of RNA
transcripts, so it does not need steps of mRNA reverse-
transcription into cDNA and subsequent cDNA amplifica-
tion. Reverse-transcription and cDNA amplification are

known to be sensitive to the RNA quality issue caused by
RNA cross-linking in FFPE samples.
Since multiple different gene-specific probes (used in

Affymetrix technologies) may have different sensitivities
to the RNA quality of FFPE samples [21], we used the
mean signal scores for the probes coupled with their
fold-change information, to filter out 2 genes that were
insufficiently expressed across the 39 samples. Notably,
our probe filtration approach here differs from the filtra-
tion methods used previously in the literature [39]. The
removal of these two genes improved the FF to FFPE
translation by both Affymetrix and NanoString methods.
This indicates that the RNA quality and probe problems
are two different confounding factors for the translation
of the RAS signature scores. Notably, we observed poor
correlations and no significant improvement upon
removal of the “outlier” samples and/or “bad” probes for
Illumina Total RNA-stranded rRNA-depletion, and
targeted RNASeq. However, the cause was not clear.
Moreover, NanoString mean scores were most signifi-

cantly and consistently correlated with Affymetrix FF,
Affymetrix FFPE and RNA-Access mean scores, in the
presence or absence of bad samples and probes. Further-
more, while our data suggest that removing “bad”
samples can improve the translation of a test from FF to
FFPE tissues in Affymetrix FFPE and RNA-Acces
platforms, identifying samples with poor RNA quality is
not always an easy and practical task. Within a potential
future diagnostic setting, it is impractical to perform a
PCA across multiple samples to identify “bad” samples.
Even if this were practical, it is far from ideal to exclude
patients from diagnostic assessment because their FFPE
samples happened to have lower quality RNA than
usual. In addition, attempting to identify and remove
poor quality samples adds an additional step to any
analysis. Thus, due to its lower apparent sensitivity to

Table 3 Performance of the 16-gene PAM classifier on the 54 samples

Validation dataset Class Sensitivitya Specificityb LOOCV error rate

Affy FF Mut 0.852 = 23/27 0.778 = 21/27 19 %

NanoS_FFPE Mut 0.704 = 19/27 0.741 = 20/27 28 %

Affy_FFPE Mut 0.519 = 14/27 0.889 = 24/27 30 %

Note: Samples were classified as either KRAS/BRAF mutant (Mut, n = 27) or KRAS/BRAF wild-type (WT, n = 27). Class prediction was performed using the Affy_FF,
Affy_FFPE and NanoS_FFPE samples sets
a = number of predicted mutants divided by number of true mutants
b = number of predicted WT divided by number of true WT

Table 4 Genes in the predictive models of the 54-tissue PAM analyses

Validation dataset Genes

Affy_FF DUSP4 DUSP6 ETV4 ETV5 PHLDA1 SERPINB1 TRIB2

NanoS_FFPE DUSP4 DUSP6 ETV5 SERPINB1

Affy_FFPE DUSP4 ETV5

Note: DUSP4 and ETV5 are the most common genes in the predictive models
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the RNA quality, NanoString technology is more practic-
ally useful in translation from FF to FFPE than are the
Affymetrix and RNASeq technologies.
In the assessment of the predictive ability for KRAS/

BRAF mutation status, the Affymetrix _FF 16-gene
classifier produced the lowest misclassification rate
(19 %) on the 54 samples. Our PAM analysis could
further reduce the modified RAS pathway signature gene
set from 16 to 7 genes in the Affy_FF classifier. Whereas
all 18 genes were selected for capacity to identify MEK
pathway activity independent of tumor genotype, the
majority of the selected genes have particularly strong
and direct relationships to the RAS/MEK/ERK pathway
activation. DUSP4/6 [40] and PHLDA1 (TGAD51) [41]
are known transcriptional targets of MEK/ERK. ETV4/5
[42] can replace RAS/MAPK pathway activation and
TRIB2 can enhance ERK phosphorylation [43]. These
relationships point to the strength of the signature genes
identified by the algorithms applied to our sample sets.
Of interest, SERPINB1 was retained in Affy_FF and
NanoS_FFPE sample sets but appeared to have no direct
relationship to RAS pathway activation.

Conclusions
Of the five technology platforms tested, NanoString tech-
nology was more adaptive to the translation of the RAS
pathway signature from FF tissues to commonly available
FFPE tissues than were the Affymetrix GeneChip and
RNASeq technologies. NanoString was the most forgiving
FFPE technology in reproducing the “gold” standard
analysis on matched FF tissues. NanoString technology
appears to rescue samples with poor RNA quality, permit-
ting more samples to be scored. These critical analyses
pave the way for a RAS pathway signature score to be
used to assess FFPE CRC samples for applications such as
prediction of EGFRi response to therapy.

Additional file

Additional file 1: The 18 gene RAS scores, and KRAS/BRAF/NRAS
mutation status for 54 CRC samples (15 “bad” samples are in bold; PC1:
the first principal component; PC2: the second principal component;
1 = mutation present, 0 = mutation absent; * = score based on 16 genes)
(XLSX 15 kb)
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