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Abstract

The standard anatomical brain template provides a common space and coordinate system for 

visualizing and analyzing neuroimaging data from large cohorts of subjects. Previous templates 

and atlases for the common marmoset brain were either based on data from a single individual or 

lacked essential functionalities for neuroimaging analysis. Here, we present new population-based 

in-vivo standard templates and tools derived from multi-modal data of 27 marmosets, including 

multiple types of T1w and T2w contrast images, DTI contrasts, and large field-of-view MRI and 

CT images. We performed multi-atlas labeling of anatomical structures on the new templates and 

constructed highly accurate tissue-type segmentation maps to facilitate volumetric studies. We 

built fully featured brain surfaces and cortical flat maps to facilitate 3D visualization and surface-

based analyses, which are compatible with most surface analyzing tools, including FreeSurfer, 

AFNI/SUMA, and the Connectome Workbench. Analysis of the MRI and CT datasets revealed 

significant variations in brain shapes, sizes, and regional volumes of brain structures, highlighting 

substantial individual variabilities in the marmoset population. Thus, our population-based 

template and associated tools provide a versatile analysis platform and standard coordinate system 
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for a wide range of MRI and connectome studies of common marmosets. These new template 

tools comprise version 3 of our Marmoset Brain Mapping Project and are publicly available via 

marmosetbrainmapping.org/v3.html.
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1. Introduction

The common marmoset (Callithrix jacchus), a New World primate, has rapidly emerged as a 

promising animal model for biomedical and neuroscience research (Okano et al., 2012). 

Marmosets are one of the smallest non-human primates, featuring lissencephalic brains, 

which provide practical advantages for comprehensively mapping brain circuits both in 

health and disease models (Lin et al., 2019; Majka et al., 2016). Because they are 

phylogenetically closer to humans, marmosets allow for studying higher cognitive brain 

function and human brain disorders that rodents cannot adequately model (Buckner and 

Margulies, 2019). With a shorter life span and higher reproduction rates than macaques, the 

marmoset offers strategic advantages in the development of non-human primate models for 

human brain diseases, such as autism (Zhao et al., 2018), multiple sclerosis (Lee et al., 

2018), stroke (Le Gal et al., 2018), Parkinson’s disease (Hikishima et al., 2015), and 

Alzheimer’s disease (Philippens et al., 2017). Neuroimaging techniques, including magnetic 

resonance imaging (MRI) (Silva, 2017), are essential for translational and preclinic studies 

with animal models. However, as a relatively new animal model, neuroimaging tools 

currently available for the marmoset are far from well developed.

One of the essential tools in urgent need of development for studies of the marmoset brain is 

a population-based template and surface-based data analysis tool. The human brain has been 

well-known for its large inter-individual variabilities (Mueller et al., 2013; Reardon et al., 

2018). Because each individual has a different brain size, shape, and gyrification, cross-

subject analyses require the spatial normalization of individual brains into a common 

template space. The template is usually constructed by averaging the images of many 

subjects to represent the neuroanatomical features of the population. For humans and 

macaques, various kinds of population-based templates and atlases were developed to serve 

different purposes, ranging from volumetric structural templates (Evans et al., 1993; Lv et 

al., 2020; Seidlitz et al., 2018) to surface-based templates (Glasser et al., 2016; Van Essen, 

2005). Compared to the abundantly available template tools designed for humans and 

macaques, population-based tools for marmosets are scarce (Hikishima et al., 2011). 

Because they are outbred, marmosets have a diverse genetic background and present 

substantial individual variability in brain shape, size, and regional structural volumes (Fig. 

1). While one population-averaged template was developed for common marmosets 

(Hikishima et al., 2011), this template lacks many essential features that limit its 

applications, including few MRI contrasts, inaccurate tissue segmentation, and no surface-
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based analysis tools. Thus, a comprehensive population template and surface-based tool for 

marmosets is of pressing need to facilitate data analyses in neuroimaging studies.

The Marmoset Brain Mapping Project (marmosetbrainmapping.org) aims to develop 

comprehensive brain atlases and tools to promote neuroimaging and connectome studies of 

marmosets. The project has already released two versions of the atlases, one focused on the 

cortex (Liu et al., 2018) and the other on white matter pathways (Liu et al., 2020). However, 

these two previous versions were based on only a few marmoset brain samples and are more 

suited for high-detailed neuroanatomical analyses than for in-vivo studies of large cohorts of 

animals. To address this problem, we present here the “populational multi-modal standard 

volumetric and surface-based templates.” We collected in-vivo multi-modal MRI and CT 

data of 27 marmosets from our colony at the NIH and constructed population-averaged 

templates and surface-based analyzing tools. This new template set features the most 

comprehensive image modalities, accurate (manually corrected) tissue segmentation maps, 

multi-atlas labeled template space, and fully featured brain surface and flat maps for surface-

based analysis. These templates and associated tools comprise version 3 of our Marmoset 

Brain Mapping Project. They are publicly available via https://marmosetbrainmapping.org/

atlas.html and will significantly aid in a wide range of neuroimaging and connectome studies 

that involve across-subject analysis.

2. Materials and methods

2.1. Animals and data collection

All procedures were approved by the Animal Care and Use Committee of the National 

Institute of Neurological Disorders and Stroke. Twenty-seven healthy adult marmosets (20 

males and 7 females) were recruited for the study (detailed information shown in 

Supplementary Table S1). The animals fasted for 12 h before MRI scanning. The animals 

were anesthetized with an intramuscular injection of 10 mg/kg ketamine, orally intubated, 

and ventilated with 1.5% - 2% isoflurane. The animals were placed in an MR-compatible 

cradle, and their heads were held to a stereotaxic frame by two ear bars coated with 2% 

lidocaine jelly. Vital signs, including heart rate, end-tidal CO2, SPO2, and rectal temperature 

(maintained at 38.5°C with a water heating pad), were monitored and maintained at 

physiological values throughout the MRI scanning.

MRI scanning was performed in a 7T/300 mm magnet (Bruker, Billerica, USA) equipped 

with a 150 mm gradient set (450 mT/m strength and 150 μs rising time; Resonance Research 

Inc., Billerica, USA), a 16-rung high-pass birdcage radiofrequency coil for transmission, and 

a custom-built 8-channel phased-array coil for reception (Silva, 2017). Multi-modal images 

were collected using the following sequences:

a. T1-weighted images were collected with a 3D MP3RAGE sequence: TR = 6 s, 

TE = 2.8 ms, flip angle = 12°, FOV = 36 × 28 × 24 mm, matrix size = 144 × 112 

× 96, three inversion times (TI1 = 1200 ms, TI2 = 2600 ms, and TI3 = 4000 ms), 

and the scanning duration was 9 min 42 s. The image with T1 = 1200 ms was 

used as the T1w contrast. Five to six images were scanned and averaged for each 
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animal. Thus, the total scanning time for each animal was about 50 min to 60 

min.

b. T2-weighted images were collected with a 2D RARE sequence: TR = 30 s, TE = 

8 s with three effective TE (TE1 = 16 ms, TE2 = 48 ms and TE3 = 80 ms), FOV 

= 36 × 28 × 24 mm, matrix size = 144 × 112, slice thickness = 0.25 mm, and the 

scanning duration was about 10 min 30 s. Three different effective TEs provided 

different levels of T2-w contrasts. Five to six images were scanned and averaged 

for each animal. Thus, the total scanning time for each animal was about 50 min 

to 60 min.

c. Multishell diffusion MRI data were collected with a 2D diffusion-weighted spin-

echo EPI sequence: TR = 5.1 s, TE = 38 ms, number of segments = 88, FOV = 

36 × 28 mm, matrix size = 72 × 56, slice thickness = 0.5 mm, a total of 400 DWI 

images for two phase encodings (blip-up and blip-down) and each has three b 

values (8 b = 0, 64 b =2400, and 128 b = 4800), and the scanning duration was 

about 34 min. The multishell gradient sampling scheme was generated by the Q-

shell sampling method (Caruyer et al., 2013).

d. Large-FOV whole head images were collected with a 3D FLASH sequence: TR 

= 10 s, TE = 1.6 ms, flip angle = 6°, FOV = 64 × 51.2 × 64 mm, matrix size = 

160 × 128 × 160, and the scanning duration was 27 min 18 s.

Also, whole head CT images were collected with a SkyScan 1276 Micro-CT (Bruker, 

Billerica, USA), with an isotropic resolution of 0.288 mm and scanning time of one minute 

per animal.

2.2. Construction of volumetric templates

2.2.1. Creation of population-averaged templates—Fig. 2 shows the processing 

pipeline for creating the multi-modal population-averaged templates. The population-

averaged templates of the MRI and CT data were constructed using the ANTs software 

(Avants et al., 2009). A multimodal template of the marmoset brain was first created by all 

T1w (TI = 1200 ms) and T2w (TE = 16 ms) images using the 

antsMultivariateTemplateConstruction2.sh function. The function created initial templates 

by averaging all raw individual images and then updated the templates iteratively using 

multivariate information from different image modalities. The final outputs included the 

multivariate templates and the transformation information from subject spaces to the 

template space. The transformation information was applied to all MP3RAGE images (TI = 

1200 ms, 2600 ms, and 4000 ms) and all RARE (TE = 16 ms, 48 ms, and 80 ms) images, 

and the transformed images were averaged to create the template for each modality. The 

default averaging method of the ANTs script involved inversion of both the average 

diffeomorphism and the blurring induced by intensity averaging (soft sharpening), which 

produced a sharper template (Avants et al., 2010).

The MRI and CT whole head templates were constructed separately by the same function as 

above. The brain of the whole head MRI template (FLASH sequence) was manually 

extracted and nonlinearly registered to the brain of the MP3RAGE-TI2 template, which 
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shared similar contrasts. The resulting transformation was applied to the whole head MRI 

template, including a linear transformation on the whole image and a non-linear warp on the 

brain part so that the whole head image would be in the same template space as the T1w and 

T2w brain templates. We then reversed the contrast of the whole head MRI templates and 

manually delineated the bone area to create a sham CT-like image, to which the CT whole 

head template was registered.

The DTI template was created using TORTOISE (Pierpaoli et al., 2010), one of the few 

software packages that provide a complete pipeline of DTI data preprocessing and tensor-

based template construction. In brief, all DTI data were preprocessed by DIFF_PREP and 

DR_BUDDI, which incorporated eddy-current distortion and EPI distortion correction. The 

DR_BUDDI routine utilized pairs of diffusion data sets acquired with opposite phase 

encoding (blip-up and blip-down) and the T2w image for the EPI distortion correction and 

merged the preprocessed pairs into one dataset. After data preprocessing, the DTI template 

was created by DR_TAMAS and non-linearly transformed into the T1w template.

All templates were resampled to 0.2 mm isotropic resolution and co-registered to the same 

coordinate space, which was defined by the “eye-bars and ear-bars” axis. The origin was set 

at the intersection between the “eye-bars and ear-bars” plane and the mid-line plane. The 

two ear bars were visible in MRI whole head images, and the location of the ear bars was 

estimated based on the skull CT images. By combining information from MRI and CT data, 

the templates were rotated so that the eye-bars and the ear-bars were on the same plane.

2.2.2. Tissue segmentation and probability maps—A “myelin map ” was created 

from the ratio of T1w (TI = 1200 ms)/T2w (TE = 16 ms) templates (Glasser and Van Essen, 

2011), which corrected intensity inhomogeneity and enhanced contrasts between the gray 

matter (GM) and the white matter (WM). The initial automatic segmentation was conducted 

on the “myelin map” by the Atropos algorithm of the ANTs software (Avants et al., 2011b), 

which segmented the image into three tissue types – the GM, the WM, and the cerebrospinal 

fluid (CSF). As the automatic method was inaccurate for the marmoset data, we had to 

correct the initial results manually and segment images into three tissue types (the GM, the 

WM, and the CSF) and six tissue types (the cortical GM, the subcortical and cerebellar GM, 

the WM, the CSF, the major vasculature, and the skull). These manually corrected tissue 

segments were then transformed into the image space of each animal by using the 

transformation files generated from the previous template creation. Automatic segmentation 

was performed on the “myelin map” of each animal by the Atropos algorithm with the 

manually corrected segments as the prior probability images (weight = 0.25). For each tissue 

type, the resulting probability maps of all animals were transformed back into the template 

space and averaged to generate the final template tissue probability maps.

2.2.3. Atlases fusion—We fused different brain atlases into the template space, 

including the Marmoset Brain Mapping Atlas V1 (MBM-V1) atlas (Liu et al., 2018) and the 

Riken Brain/MINDS cortical brain atlas (Riken) (Woodward et al., 2018). The MBM-V1 

included four different types of cortical atlases (cortical parcellation into 13-, 54-, and 106-

areas, as well as the Paxinos parcellation). It also included a coarse subcortical atlas (Liu et 

al., 2018). The MTR template of the MBM-V1 atlas and the T2w template of the Riken atlas 
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were transformed to the T1w and T2w template of this study, respectively, by the 

antsRegistrationSyn.sh function of ANTs (Avants et al., 2011a). Based on the resulting 

transformation files, atlas labeling images were fused into the template space by the 

antsApplyTransforms function with the MultiLabel interpolation method.

2.3. Construction of brain surfaces and flat maps

2.3.1. Brain surfaces by the AFNI/SUMA and Connectome Workbench—The 

cortical GM mask, the WM mask, and the skull mask of the CT template were used to 

generate the pial surface, the WM surface, and the skull surface, respectively, by the 

Isosurface function of AFNI/SUMA (Saad et al., 2004). The pial and WM surfaces were 

further smoothed and inflated by the Connectome Workbench Command (Marcus et al., 

2011). All surfaces were converted into GIFTI format to provide compatibility with different 

software.

2.3.2. Brain surfaces and flat maps by FreeSurfer—The T1w templates, tissue 

segmentation maps, and atlases were modified to conform to the requirements of FreeSurfer 

(Fischl, 2012), including i. resampling the orientation to RSP, ii. adding planes to make the 

image matrix to 256 × 256 × 256, and iii. modifying the resolution information in the image 

header to 1 mm x 1 mm x 1 mm.

We combined the WM segment and the subcortical GM, manually created hemispheric 

cutting planes, and filled WM with specific values for subsequent surface tessellation 

(equivalent to mri_fill). The original WM surfaces were created from the manually filled 

image. FreeSurfer, which is optimized for the human brain, could not act appropriately on 

our marmoset data with the default settings for the creation of the pial surface. Thus, we had 

to manually combine the GM and WM segments, assign specific values for each tissue type, 

and smooth the combined image. We then called the mris_make_surfaces command (Dale et 

al., 1999) with modified parameters to allow the WM surface to expand to the pial surface of 

the combined image. The WM surface and the pial surface were smoothed (by mris_smooth) 

and inflated (by mris_inflate) to create the inflated version of each surface. For the flat map 

creation, we mapped the atlas labels to the surface as a guide for the surface cutting. We 

followed a similar cutting strategy as the flat map of the marmoset brain connectivity atlas 

(Majka et al., 2016), where one cut was placed along the calcarine sulcus, and the other cut 

was along the edge of the orbitofrontal cortex until these cuts met the middle wall. With the 

cut patches, flat maps were created by the mris_flatten function (Fischl et al., 1999).

Generally, the average inter-vertex spacing of a surface should match or exceed the spatial 

resolution of its corresponding volume image (Autio et al., 2020; Glasser et al., 2013). Our 

FreeSurfer-based surfaces had about 38K vertices per hemisphere. The spacing of the pial 

and the white surface (estimated by Connectome Workbench “wb_command - surface-

information”) was about 0.2 mm and 0.18 mm, respectively, which matched the spatial 

resolution of the volumetric templates (0.2 mm isotropic).

We converted all FreeSurfer-based surfaces back to the original template space using the 

ConvertSurface function of AFNI. Thus, users can use these surfaces directly from our 

original multi-modal volumetric template space “without” modifying their data into 
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FreeSurfer-conformed formats. GIFTI format for these surfaces was provided for software 

compatibility.

2.3.3. Examples of surface-mapping applications—Our surfaces were made 

compatible with multiple software for surface-based analysis and visualization. In the first 

example, we used the “Ball & Box” approach (“@measure_bb_thick”) of AFNI to estimate 

the cortical thickness from our cortical template mask. The resulting volumetric thickness 

map was mapped to AFNI/SUMA-based pial surfaces by AFNI’s “3dVol2Surf” (using the 

“max” mapping function and 3 normal lengths) and visualized in SUMA software. In the 

second example, we used AFNI/SUMA to analyze and visualize visual task fMRI data of the 

marmosets. The detailed information of the data and fMRI preprocessing pipeline was 

described in our previous study (Liu et al., 2019). The resulting T-statistical map was 

mapped to AFNI/SUMA-based pial surfaces by AFNI’s “3dVol2Surf” (using the “nzave” 

mapping function and 3 normal lengths). In the third example, we projected the Paxinos 

parcellation of the MBM_V1 atlas to CT skull surface by AFNI’s “3dVol2Surf” (using the 

“nzmax” mapping function and 6 normal lengths). In the fourth example, we extracted the 

cortical part of the myelin-map template and converted it to a FreeSurfer-conforming format. 

The converted myelin map was mapped to the FreeSurfer-based surfaces by the “myelin-

style” method of the Connectome Workbench command (wb_command - volume-to-surface-

mapping) and visualized in the Connectome Workbench GUI.

3. Results

3.1. Multimodal volumetric templates

We constructed multimodal population-averaged templates by using the Multivariate 

Template Construction method of ANTs (for MRI and CT data) and the tensor-based 

method of the TORTOISE software (for DTI data). The template set includes multiple 

modalities (Fig. 3). The MP3RAGE (TI = 1200 ms) provides T1w contrast (Fig. 3A), and 

the other TIs (TI = 2600 ms and 4600 ms) can be used for the registration of images with 

low contrast. With different effective TEs, we provide templates with varying levels of T2w 

contrast (Fig. 3B). We can estimate the T1 map based on the multi-TI MP3RAGE images 

and the T2 map on multi-echo RARE images, respectively. Based on the ratio between T1w 

and T2w images, we generated the “myelin map” template, which enhances contrasts 

between the GM and the WM (Fig. 3D). The diffusion tensor template allows for tensor-

based registration and can generate multiple DTI contrasts, such as fractional anisotropy 

(FA) and mean diffusivity (MD) (Fig. 3E and F). Also, we include two types of large FOV 

whole head template: one is MRI-based (Fig. 3G), and the other is CT-based (Fig. 3H). The 

rich template modalities facilitate a wide range of neuroimaging applications, as we can 

choose the matched template contrast for spatial normalization.

We co-registered all templates to the same coordinate space that was defined by the “eye-

bars and ear-bars” (Fig. 4). During the MRI scanning, we used two ear-bars to constrain 

animals, and these ear-bars were visible in the MRI whole head template (Fig. 4A). As there 

were no real eye-bars, we estimated the eye-bars plane based on the skull CT head template 

(Fig. 4A). We rotated templates so that ear-bars and estimated eye-bars were in the same 
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plane (the “eye-bar and ear-bar” plane) (Fig. 4B). The origin of the template space is defined 

at the intersection of the “eye-bars and ear-bars ” plane (z = 0), the mid-line plane (x = 0), 

and the center plane of the ear bars (y = 0). Combining information from the MRI with that 

of the CT dataset, the template space allows a more accurate estimation of stereotaxic 

coordinates of different brain regions than the AC-PC coordinates used in our previous ex-

vivo brain atlases (Liu et al., 2020; Liu et al., 2018).

3.2. Tissue-type segmentation

Tissue-type segmentation is an essential procedure for volumetric analysis of MRI data, such 

as voxel-based morphometry, and a prerequirement for brain surface reconstruction. 

Although state-of-art automatic segmentation algorithms can produce reasonable results, the 

final segmentation highly depends on the MRI image quality and may not always guarantee 

accuracy. Additionally, most MRI segmentation tools are optimized and tested for the human 

brain, but not for small marmoset brains. Thus, it is hard to avoid segmentation errors by 

automatic segmentation.

After initial automatic segmentation, we manually segmented the marmoset brain template 

to correct many common segmentation errors existing in previously published ones. Here, 

we demonstrate examples of these errors (Fig. 5). (1) Due to its relatively higher intensity 

than the cortical GM, parts of subcortical GM were commonly mislabeled as the WM (Fig. 

5, red arrow and yellow arrow). (2) The WM in the temporal pole, including parts of the 

uncinate fasciculus, was too thin to be classified as the WM (Fig. 5, blue arrow). (3) Due to 

the high intensity, major blood vessels were misclassified as the WM (Fig. 5, green arrow, 

and purple arrow). (4) The cerebellum WM was poorly segmented (Fig. 5, orange arrow).

We provided two versions of manual hard segmentation (Fig. 6A-B). The three-tissue-type 

segmentation includes the GM, the WM, and the other tissues (including CSF). The six-

tissue segmentation consists of the cortical GM, the subcortical and cerebellum GM, the 

WM, the CSF, the blood vasculatures, and the skull. We transformed these manually 

corrected segments into each animal and used them as the prior images for automatic 

segmentation. The resulting tissue probability maps were converted back to the template 

space and averaged to form the template probability maps (Fig. 6C). Without the errors 

mentioned above, our new template tissue segmentation maps are more accurate and reliable 

than other published maps.

3.3. Atlases, brain surfaces, and flat maps

As brain atlases are indispensable tools for defining regions of interest (ROI), the usability 

of a population template highly depends on the atlas-labeling of its template space. 

Currently, several different 3D digital brain atlases are available for the marmoset brain, 

such as the Marmoset Brain Mapping Atlas (MBM) and the Riken Brain/MINDS atlas 

(Riken). We fused them into our new template space (Fig. 7), including four cortical 

parcellations (A-D) and subcortical labels (F) from the MBM-V1 atlas and the cortical 

parcellation from the Riken atlas (E). We did not fuse our previous WM atlas (MBM-V2) to 

the template because the in-vivo template reported here had insufficient resolution to capture 

all WM structures defined in our ex-vivo atlas. By registering image data to our template 
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space, we can directly access these GM atlases for region identification and ROI-based 

analysis.

Brain surfaces and flat maps are fundamental tools for surface-based morphometry and 

fMRI analysis, as well as 3D visualization of MRI results. However, there were no fully-

featured surface-based atlas tools available for the marmoset neuroimaging studies. Here,

We present two sets of brain surfaces and flat maps. The first set of surfaces was generated 

by FreeSurfer (Fig. 8A). As the original FreeSurfer pipeline is highly optimized for human 

data and incompatible with the marmoset data, we modified the marmoset templates to 

conform to the FreeSurfer requirement (see Materials and Methods for details). The 

FreeSurfer-based set includes original, smoothed, and inflated white matter surfaces, pial 

surfaces, surface spheres, surface cutting patches, flat maps, and all annotation files of 

cortical atlases. By following the FreeSurfer stream, all these elements have node-to-node 

correspondence and can be used simultaneously for surface-based analysis.

The second set of surfaces, which was generated directly from segmentation images by 

AFNI/SUMA (Fig. 8B), includes the pial and white matter surfaces, the inflated pial and 

white matter surfaces, and the skull surface (based on CT data). Due to the limitation of 

AFNI/SUMA, we created these surfaces separately, and thus these surfaces cannot be used 

simultaneously as pairs for volume-to-surface mapping. However, AFNI/SUMA provides 

flexible functions (for example, 3dVol2Surf) to map volumetric data to brain surfaces by 

using the surface normal to solve this practical issue.

We mapped all cortical atlases onto the surfaces and flat maps as annotation (label) files, 

which improved the functionality of our template in data visualization. For example, in our 

previous study (Liu et al., 2018), we had estimated the inconsistency rate between two 

different Paxinos-style atlases. Now, with our new surface tools, we can directly visualize 

and compare both atlases on the flat map (Fig. 8C), highlighting their differences. With the 

support for generic GIFTI formats, our surfaces are compatible with multiple surface-

analyzing software, including FreeSurfer, Connectome Workbench, and AFNI/SUMA (Fig. 

8D). For example, we used AFNI/SUMA to analyze and map the cortical thickness, the 

visual task fMRI results, the cortical atlas onto different surfaces, and adopted Connectome 

Workbench to visualize the myelin map on brain surfaces and flat maps. With the 

completeness and compatibility, our surface set will be a versatile tool for surface-based 

analysis and visualization of the marmoset neuroimaging data.

4. Discussion

The population templates and surface-analyzing tools comprise the third version of the 

Marmoset Brain Mapping project. Previously, we constructed full 3D brain atlases of the 

marmoset by ultra-high resolution MRI: version 1 about the cortical parcellation (Liu et al., 

2018), and version 2 about the white matter pathways (Liu et al., 2020). The two previous 

versions focused on the fine-detailed neuroanatomy of the marmoset brain, and thus we 

conducted long-duration scans on only a few brain samples, which allowed much higher 

resolution than the in-vivo data. However, ex-vivo data impose limitations on their 
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application in neuroimaging studies, in particular, to analyze large cohorts of in-vivo MRI 

data. To overcome this limitation, we developed here “population multi-modal standard 

volumetric and surface-based templates”, which will significantly facilitate a wide range of 

volumetric and surface-based analysis of group-based marmoset neuroimaging data.

Brain extraction, or skull-stripping, is usually an early preprocessing step for most 

neuroimaging studies. Most existing automatic brain extraction tools, e.g., BET of FSL 

(Smith, 2002) and 3dSkullStrip of AFNI (Cox, 1996), were mainly tailored for the human 

brain and do not perform robustly for animal data. Template-based brain extraction is 

another popular (semi-) automatic approach for skull-stripping (Lohmeier et al., 2019). By 

spatial normalization of individual images to a template, one can warp the brain mask of the 

template nonlinearly to the individual data for brain extraction. This brain extraction method 

requires head templates (with skulls) and a brain mask, and the accuracy highly depends on 

the spatial normalization. Our previous atlases were based on ex-vivo data, and no head 

template was available for brain extraction (Liu et al., 2020; Liu et al., 2018). The previous 

in-vivo population template only provided low-contrast T1w and T2w modalities (Hikishima 

et al., 2011), which restricts their applications in other modalities. Here, we provided 

complete multi-modal templates, including multiple T1w and T2w templates, multiple 

contrasts from the DTI template, and large FOV head templates from MRI and CT data. The 

users can find the matched template modality to conduct template-based brain extraction, 

which ensures the accuracy of the spatial normalization and skull-stripping.

In addition to the rich modality, our population templates are associated with accurate tissue-

type segmentation. Brain segmentation is an essential preprocessing step for MRI data 

analysis, such as voxel-based morphometry and brain surface reconstruction. The 

performance of modern segmentation algorithms depends on image contrasts, and the 

accuracy varies in different areas. For example, the highly myelinated GM area and many 

subcortical regions have a relatively high intensity in T1w images, which may be 

misclassified as white matter. The thin white matter may be misclassified as gray matter due 

to insufficient resolution. It is also hard for algorithms to distinguish high-intensity blood 

vasculatures from the brain white matter. Thus, prior knowledge is required for the 

algorithms to avoid these errors. Our manually-corrected tissue segmentation will be useful 

as prior maps to guide brain segmentation and improve the accuracy of structural image 

analysis.

The population template could serve as a standard coordinate space for adopting different 

brain atlases and reporting neuroimaging results. For humans, the MNI space, originally 

defined by the MNI305 MRI template (Evans et al., 1993), has become the standard 

template space for human MRI studies. By referring to the MNI templates, we could access 

multiple human brain atlases and neuroimaging results. For marmosets, as no such a 

template space was available previously. Here, by fusing existing digital atlases into the 

same template space, we no longer have to register our data to distinct template spaces for 

using or comparing different brain atlases. By combining information of MRI and CT 

datasets, the template space also allows a more accurate estimation of stereotaxic 

coordinates of different brain regions, which can be used, for example, for a more precise 

surgical planning than our previous versions.
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In our previous V1 atlas, we released a basic version of a cortical surface (Liu et al., 2018), 

which has already been widely used to visualize MRI results (Hori et al., 2020; Liu et al., 

2019; Schaeffer et al., 2019a; Schaeffer et al., 2019b; Schaeffer et al., 2019c; Schaeffer et 

al., 2019d; Selvanayagam et al., 2019). However, this surface is not compatible with most 

modern software, and its functions are limited to visualization. Due to the high demand for 

better surface tools, we provide here a comprehensive set of brain surfaces and flat maps, 

which are fundamental tools missing in existing marmoset templates or atlases. Because of 

the inherent limitations of surface-generation tools, we generated two different surface sets: 

one generated by the AFNI/SUMA and the other by the FreeSurfer. The AFNI-based set was 

generated directly from the segmentation images, while the FreeSurfer-based set provided 

node-to-node correspondence of all surface elements. The two surfaces sets will meet 

different requirements of most neuroimaging applications, from basic 3D visualization to 

advanced functional connectivity analysis on surfaces.

The Marmoset Brain Mapping V3 solves many existing issues in previously published 

marmoset brain templates by providing comprehensive population templates and surface 

tools. However, the present version also faces limitations that require attention. First, the 

spatial resolution of the in-vivo data was insufficient to capture all anatomical details of the 

brain. For example, our previous V2 revealed fine-detailed white matter structures of the 

marmoset brain by ultra-high resolution ex-vivo dMRI (Liu et al., 2020), but many of which 

cannot be reflected in the in-vivo data. Thus, there will be much to be gained by improving 

the resolution of in-vivo data. Second, existing standard surface creation pipelines (e.g., 

FreeSurfer) are not tailored for small-animal data, including marmosets. Here, we 

circumvented many of the default settings for humans by manually modifying our marmoset 

templates, but it was not done in a fully automatic or robust way. Future work is needed to 

optimize the existing surface-based software packages to accommodate marmoset data. 

Finally, we were not able to obtain a balanced gender distribution in our marmoset 

population. Due to other competing experimental priorities at the NIH, we could only recruit 

seven females in our study, far fewer than the twenty males used. Future efforts to scan a 

larger cohort of females will significantly improve our understanding of individual 

variability and gender differences of the marmoset population.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Individual variabilities of adult common marmosets.
(A) Sagittal view of the marmoset brain size distribution in our marmoset population (N = 

27). The top row shows the intracranial volume mask (red) of the population-averaged 

template overlaid on CT images, and the bottom row shows the template brain mask (red) 

overlaid on T2w MRI. From left to right, the underlay images are population-averaged 

templates, the images from the animal with the smallest brain (a 4-year-old male), and the 

images from the animal with the largest brain (also a 4-year-old male). (B) Violin and box 

plots of brain volume distributions across the population. The box plot shows the first 

quartile to the third quartile and the median. The red point represents the mean value, and 

the gray points represent the volume of each animal. Plots are drawn for all animals (gray 

violin plots), as well as for females (red violins) and males (blue violins).
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Fig. 2. Pipeline for creating the population multi-modal volumetric and surface-based templates.
We used ANTs to create the population-averaged templates of structural MRI images and 

CT images, and TORTOISE to preprocess (eddy-current distortion and EPI distortion 

correction) and construct the template of DTI data. Different template modalities are co-

registered to the same coordinate space. Initial automatic segmentation (by ANTs/Atropos) 

followed by manual correction provides accurate tissue-type segmentation, and multiple 

atlases were fused into the template space. Finally, a complete set of brain surfaces and flat 

maps was generated by a customized FreeSurfer pipeline as well as by AFNI/SUMA and 

connectome workbench.
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Fig. 3. Multi-modal population-based standard templates.
The standard templates include the MP3RAGE with TI = 1.2 s (T1w contrast), 2.6 s, and 4 s 

(A), RARE with TE = 16 ms, 48 ms, and 80 ms for different T2w contrasts (B and C), 

myelin map (T1w/T2w), contrasts from diffusion tensor images (E and F), the MRI whole 

head profiles (G) and CT whole head profiles (H).
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Fig. 4. The coordinate space of our templates.
(A) The ear bar can be directly identified in the MRI head profile template, and the CT skull 

head profile can estimate the eye-bar location. (B) The “eye-bars and ear-bars” plane in 3D 

view of marmoset head. (C) The origin is located at the intersection between the mid-line 

plane and the ear-bars-eye-bars plane.
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Fig. 5. Examples of common segmentation errors.
Compared to the previously available marmoset population template (Hikishima et al., 

2011), our new templates provide images with not only better contrast but also more 

accurate tissue-type segmentation. Examples are highlighted by arrows, including the 

subcortical GM misclassified as WM (red arrow and yellow arrow), the WM misclassified as 

the GM (blue arrow), hyper-intensive tissue misclassified as the WM (green arrow and 

purple arrow), and cerebellum WM segmentation (orange arrow). These commonly 

misclassified regions are corrected in our tissue-type segmentation.
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Fig. 6. Fine-detailed tissue-type hard segmentations and probability maps.
(A) Hard segmentations of three-tissue types include the GM (magenta), the WM (orange), 

and the others (green). (B) Six-tissue segmentation consists of the cortical GM (magenta), 

the subcortical and cerebellum GM (orange), the WM (green), the cerebrospinal fluid (blue), 

the blood vasculatures (azure), the skull (dark purple). (C) Probability maps of three tissue 

types include the GM (top), the WM (middle), and the others (bottom). We also provide 

probability maps of six tissue types in our release (images not shown).
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Fig. 7. Atlas labeling of the templates.
The following atlases label our template space: Four different cortical parcellations from 

MBM-V1 atlas (Liu et al., 2018), including 13- (A), 54- (B), and 106 regions (C), and the 

Paxinos parcellation (D). The cortical parcellation from the Riken atlas (Woodward et al., 

2018), which also follows the Paxinos nomenclature (Paxinos et al., 2012) (E); and 

subcortical labels from MBM-V1 atlas (F).
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Fig. 8. Brain surfaces and flat maps.
(A) Surfaces generated by FreeSurfer. From left to right are the white matter surface, the 

mid-thickness cortical surface, the pial surface, and the flat map. Inflated versions of these 

surfaces are also available. (B) Surfaces generated by AFNI/SUMA. From left to right are 

the pial surface, the inflated pial surface, the white matter surface, and the skull surface 

(from CT data). (C) Cortical atlases mapped onto the flat map. The left image shows the 

Paxinos parcellation of the MBM_V1 atlas (Liu et al., 2018). The middle image shows the 

cortical parcellation from the Riken atlas (Woodward et al., 2018), which also follows the 

Paxinos nomenclature. The third image shows the outlines of the two atlases, where green 

outlines represent the Paxinos parcellation of the MBM_V1 and red outlines represent that 

of the Riken atlas. (D) Surface-based analysis and visualization. The left images show 

cortical thickness (estimated by the “Ball & Box” approach of AFNI) and the visual task 
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fMRI results (Liu et al., 2019) mapped to the pial surface, and the Paxinos parcellation of 

the MBM_V1 atlas projected to CT skull surface by AFNI/SUMA. The right images show 

the myelin map of our template, which is mapped to the mid-thickness cortical surfaces and 

the flat map by the “myelin-style” approach of the Connectome Workbench command. The 

outlines on the flat map display the “106-region” parcellation of the MBM_V1 atlas.
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