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Abstract: This research investigated real-time fingertip detection in frames captured from the increas-
ingly popular wearable device, smart glasses. The egocentric-view fingertip detection and character
recognition can be used to create a novel way of inputting texts. We first employed Unity3D to build
a synthetic dataset with pointing gestures from the first-person perspective. The obvious benefits of
using synthetic data are that they eliminate the need for time-consuming and error-prone manual
labeling and they provide a large and high-quality dataset for a wide range of purposes. Following
that, a modified Mask Regional Convolutional Neural Network (Mask R-CNN) is proposed, consist-
ing of a region-based CNN for finger detection and a three-layer CNN for fingertip location. The
process can be completed in 25 ms per frame for 640 × 480 RGB images, with an average error of
8.3 pixels. The speed is high enough to enable real-time “air-writing”, where users are able to write
characters in the air to input texts or commands while wearing smart glasses. The characters can be
recognized by a ResNet-based CNN from the fingertip trajectories. Experimental results demonstrate
the feasibility of this novel methodology.

Keywords: air-writing; fingertip detection; region-based convolutional neural network; smart glasses

1. Introduction

Wearable devices have become increasingly popular nowadays. These portable yet
powerful gadgets may significantly benefit humans in the near future due to their tight
connection with users. Several interesting scenarios can thus be realized, especially when
wearable devices are equipped with a variety of sensors or cameras to acquire a large
amount of information around users. One of the highly regarded wearable devices is
smart glasses, with which egocentric or first-person-perspective views can be collected.
Advanced image and video processing methods can be utilized to deal with large volumes
of imagery data and facilitate real-time applications. Nevertheless, unlike a keyboard or
mouse for a computer or a touch screen on a smartphone, lacking an ideal human–device
interface in smart glasses could be a serious concern that limits their use. Although speech
commands could be used to control smart glasses, interference from environmental noises
may pose challenges to accurate command recognition. Besides, users may be reluctant
to talk to machines for a variety of reasons. In the absence of a suitable way of inputting
texts or commands, smart glasses are often regarded as only a type of devices for collecting
visual information from users’ surrounding areas.

To make the human–device interface of smart glasses more user-friendly, hand ges-
tures were considered in this research to provide necessary commands to smart glasses

Sensors 2021, 21, 4382. https://doi.org/10.3390/s21134382 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9831-5622
https://orcid.org/0000-0002-7457-8409
https://doi.org/10.3390/s21134382
https://doi.org/10.3390/s21134382
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21134382
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21134382?type=check_update&version=2


Sensors 2021, 21, 4382 2 of 16

by pointing or sliding subjects with fingers and viewed from a user’s perspective. To be
more specific, we aimed at allowing users to write in the air by their index fingers as the
text input since such “air-writing” is quite a natural way for users to conveniently apply
and can be read by users themselves. If the fingertip can be detected correctly, the writing
trajectories will be formed and further recognition can be applied to correctly determine
the written characters. It should be noted that many smart glasses are equipped only
with RGB cameras, rather than depth cameras, due to potential cost and weight concerns.
However, without the depth information, it is quite difficult to distinguish the foreground
(the finger in our scenario) from the background in the smart glasses-captured scenes.
Therefore, the major challenge here is to efficiently detect the fingertip in RGB images
while overcoming the interference from the complex background, various illuminations,
the motion-blurriness caused by fast-moving fingers or cameras, etc.

Deep-learning approaches are adopted to achieve the above-mentioned objectives. To
effectively detect the small object, i.e., fingertip, we propose a modified Mask R-CNN [1]
for locating the fingertip with high accuracy in real-time. Figure 1 illustrates the proposed
procedures. To begin, the finger region is identified by a bounding box detected via a
region-based CNN to filter out the majority of the irrelevant background interference. Then,
a second-level CNN is formed to generate a mask for determining the fingertip coordinate.
The detected writing trajectories can then be used to recognize written characters.

Figure 1. The steps of locating the fingertip in the proposed scheme.

The paper is organized as follows. Section 2 reviews the related work of hand or
finger detection. Section 3 details our CNN-based fingertip detection architecture and the
generation of the synthetic dataset. Section 4 describes the integration of fingertip detection
with smart glasses. A character recognition model is also presented as an example to
demonstrate the feasibility of the proposed scheme. Section 5 shows the experimental
results. Finally, the conclusion and future work are discussed in Section 6.

2. Related Work of Hand Detection

Traditional methods for locating hands or fingers in images rely on manually designed
feature extraction from pixel values. Skin colors, hand shapes, etc. are employed to
detect the appearance of targeted objects. Since the diversity of skin colors and changes
in illumination can affect the detection accuracy, Girondel et al. [2] found that Cb and Cr
color channels are more suitable for the skin detection task. Sigal et al. [3] proposed the
Gaussian mixture model that performed quite well under varying illumination conditions.
However, the methods based on skin colors may not work if the background also has
similar colors. M. de La Gorce et al. [4] pre-processed incoming frames to convert images
into 3D models for hand detection and positioning. Its applications are limited due to the
high computational load. Certain methods resorted to the additional depth information
in frames. P. Krejov et al. [5] employed a depth camera to help remove backgrounds and
then used the Dijkstra algorithm to determine possible fingertip positions. The Kalman
filter was adopted to locate more accurate fingertip locations. H. Liang et al. [6] also used
depth information to obtain the rough areas of targeted hands and utilized the distance
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transform to calculate palm contour. Three depth-based features were used to locate the
coordinates of fingertips. Chen et al. [7] located and tracked the center of hands using a
region-growing technique.

Deep-learning-based approaches have become increasingly popular in recent years.
Despite the fact that many deep neural networks for object detection have been developed,
detecting tiny objects remains challenging. In order to reduce the interference of complex
backgrounds on small objects, studies have been conducted to take images and their depth
information as input to train deep neural networks. For example, J. S. Supancic et al. [8]
proposed using a depth camera to estimate hand pose. J. Tompson et al. [9] achieved
real-time puppeteering using hand detection. L. Baraldi et al. [10] presented a method for
monocular hand gesture recognition in ego-vision scenarios that can work in nearly real
time on wearable devices. Wetzler et al. [11] used a CNN-based fingertip detection model
with a Kinect camera. A global orientation regression approach was proposed and depth
images were used to predict the position of fingertips. We can see from these examples that
depth information helps to remove backgrounds while retaining meaningful foregrounds.
However, the requirement of depth cameras is undoubtedly a burden, especially for current
smart mobile devices that demand low cost and lightweight. In addition, some depth
cameras acquire the depth information by calculating the distance between the object and
the lens through estimating the return time of infrared. When such devices are operated
outdoors, the natural light may also contain infrared and affect their functions.

The research on deep-learning-based hand or finger detection based on RGB images
is gaining more attention. S. Bambach et al. [12] used a region-based CNN model to detect
hands. It appears that the repeated computation of redundant overlapping proposals is
computationally expensive. C. Xu et al. [13] proposed another CNN-based model and used
a Generative Adversarial Network (GAN) to produce more realistic hand appearances
to improve the detection performance. X. Liu et al. [14] used a two-stage CNN model to
detect index fingertips and joint coordinates. The first-layer CNN model is responsible
for detecting the bounding box of the hand, while the second layer of the CNN regression
model calculates index fingertips and joint coordinates. Y. Huang et al. [15] designed a
two-stage model, with the first stage using Faster R-CNN to detect the bounding box of
hands in images and the second stage trying to locate index fingertips and joint coordinates.
Mukherjee et al. [16] also used Faster R-CNN to select hand areas with a bounding box.
An additional step was taken to find fingertip location using traditional image processing
methods. M. M. Alam et al. [17] identified finger classes and positions using a single neural
network. The model used ensemble averaging to obtain the final positions after regressing
the positions of fingertips from a fully convolutional network.

It should be noted that, in the absence of depth information, the detection of small
objects in images will be influenced by several environmental factors easily. Therefore,
many models tend to be two-stage approaches, with the first step roughly finding hand
areas in images, eliminating most of the background noises and the second step using
another CNN model to further detect and locate fingertips. Thus, the benefit is similar to
the function of depth information in reducing the negative effects of backgrounds.

3. The Proposed Fingertip Detection Scheme

The proposed fingertip detection method adopts a two-stage methodology as the
reasons mentioned above. Figure 2 shows the adopted deep learning structure, which
is divided into four parts, including the backbone network, the FPN (Feature Pyramid
Network) [18], the RPN (Region Proposal Network) [19], and the three-layer CNN branch
network to detect the fingertip.
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Figure 2. Proposed structure of fingertip detection [20].

3.1. Design of Backbone Network

The purpose of the backbone network is to extract the feature maps from input images
using convolution operations. Current mainstream architectures, such as ResNet [21],
DenseNet [22], and Inception networks [23], tend to adopt “deeper” designs. Such de-
signs, however, indicate that more parameters and computations are required. To build a
lightweight backbone network, we adopted the depth-wise separable convolution because
it effectively reduces the computational load while sacrificing only a small amount of
accuracy. To address the degradation issue, the bottleneck design in MobileNetV2 [24] is
adopted. The basic idea is to expand the features first and then compress them at the end
of the bottleneck block. We also observed that trimming bottleneck layers further improves
the processing speed while maintaining the detection accuracy, as deeper layers may only
extract redundant features in our considered cases. Figure 3 shows the feature maps from
different bottleneck layers when the scheme is used to detect a hand for better illustration.
Figure 3a demonstrates a clear hand in a relatively shallow layer, while Figure 3b shows
less obvious features in a deeper layer. Therefore, fewer layers are used in the proposed
scheme to reduce the number of trained parameters and detection time as well.

(a) (b)

Figure 3. Feature maps from different bottleneck layers: (a) bottleneck layer No. 9; and (b) bottleneck layer No. 12.
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Our backbone network was set to have 9 + 1 layers after experiments. The design
details are shown in Table 1, in which t, c, n, and s indicate the expansion factor, the
number of output channels, the repeating number, and the stride, respectively. The
first layer is a 1 × 1 convolution layer that adjusts the input size to allow the network
to adapt to multi-scale inputs. The following nine layers are composed of five-dimensional
bottleneck blocks.

Table 1. Design of the backbone network design.

Input Operator t c n s

640 × 640 × 3 Conv2D - 32 1 2
320 × 320 × 32 Bottleneck 1 16 1 1
320 × 320 × 16 Bottleneck 6 24 1 2
160 × 160 × 24 Bottleneck 6 32 2 2

80 × 80 × 32 Bottleneck 6 64 3 2
40 × 40 × 64 Bottleneck 6 96 2 2

3.2. Design of Object Detection Network

Feature Pyramid Networks (FPN) were employed to create multi-scale feature maps
to deal with the variation of object sizes. As is known, the layers closer to the input can
extract low-level features such as edges and location information, whereas the layers closer
to the output tend to extract high-level features with more semantic information. It should
be noted that smaller objects are more likely to vanish in deeper layers. FPN improve the
accuracy of detecting small objects and may help in achieving a balance between processing
speed and accuracy. The proposed scheme involves up-sampling the feature map B5 to
higher resolution and then merging it with the low-level feature maps B2 and B3 based on
the five-dimensional bottleneck blocks. Our FPN design outputs the feature maps with
three scales, which are combined with features from various layers.

Region Proposal Networks (RPN) output a set of finger proposals with sliding anchors.
This is followed by the region of interest align (RoIAlign) [1] to convert valid regions into
fixed-size feature maps without quantization and preserve exact spatial location. This
strategy can speed up the detection and maintain the localization accuracy, as illustrated in
Figure 4.

3.3. CNN-Based Fingertip Detection

The objective of the second-level network is to determine the accurate location of
fingertips. We added a branch network at the end of the RoIAlign layer. Figure 5 shows
the design of our three-layer CNN. Each feature map will go through a three-layer CNN
and a 56 × 56 mask will be generated to identify the exact fingertip location based on the
finger region.

3.4. Synthetic Training Dataset

The quality of training dataset has a significant impact on neural network performance.
The size of datasets, the diversity of content, and the human efforts devoted to constructing
a dataset, are all important factors. Creating a large training dataset can be a tedious and
time-consuming task. Moreover, manual labeling errors are inevitable and may affect the
results considerably.
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Stephan R. Richter, Vibhav Vineet, Stefan Roth, & Vladlen Koltun. [25] proposed
to use modern computer games to rapidly create pixel-accurate semantic label maps for
training images. Inspired by this work, we decided to create our synthetic training dataset
using Unity3D. The main idea is to synthesize the 3D hand model into real-world scenes.
The major advantage here is that we can use the predefined joint coordinates from the 3D
hand model to generate accurate annotations, avoiding poor labeling by human annotators.
Figure 6 depicts an example of a synthesized hand superimposed on an image. Since
the objective of this research is to enable air-writing for smart glasses, the first-person-
perspective view is considered, and it usually shows one hand with varying backgrounds.
Using Unity3D to create a large volume of labeled fingertips in various images is thus a
good match for the proposed scheme.

(a) (b) (c)

Figure 4. The results of finger and fingertip detection in images of: (a) blurred finger; (b) lighter scene; and (c) darker scene.
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Figure 5. Design of the three-layer CNN.

Figure 6. Creation of the egocentric fingertip dataset using Unity3D.

The downside of using synthetic images is that the neural network is more likely to
overfit such training images and may perform poorly on real-world images. There are two
strategies to solve this issue. The first method is to generate the synthetic images that are as
close to real-world images as possible. In other words, the lightness, shadows, and finger
positions should all be reasonable. The other different method is to generate synthetic
images without considering the reasonableness and to try to increase the diversity of data
as much as possible. Our experiments indicated that using diverse images has a greater
influence on training the network and results in better performance than using reasonable
images. Increasing diversity can effectively prevent the network from overfitting the
synthetic images as well.

We changed the background brightness of each training image by applying random
grey masks. We also randomized the light positions and directions to create different
shadows. In addition, 13 skin colors and 4 skin textures were used to increase the diversity
of synthetic hands, as shown in Figure 7. Furthermore, we randomly changed the hand
model in 3D positions and directions. Motion blurriness was also added to the finger to
simulate the cases of the fast-moving hand. Finally, we stored the images using lossy JPEG
compression with the quality factor 50 to deal with potentially low-quality input.
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Figure 7. Employing different skin colors and textures to increase diversity of synthetic hands.

During the experiments, we found that the detection network may fail in some extreme
environments, such as the cases shown in Figure 8. In Figure 8a, the smart glasses user
operates hand writing towards lights. The hand becomes very dark and the detection of
the fingertip may fail if the training dataset does not include such cases. On the other hand,
Figure 8b shows that the user operates in a dark environment and the color of the skin may
look different. To increase the robustness of the detection scheme, we generated training
images to simulate such environments. This appeared to be an advantage of using synthetic
images as we can create the corresponding cases according to different difficult scenes. This
strategy improves the adaptability of the proposed network model to various situations.

(a) (b)

Figure 8. Challenging cases of fingertip detection in: (a) a very light environment; and (b) a very dark environment.

Our dataset contains 311,972 images for training and 188,732 images for validation
with a resolution of 640 × 480 pixels. All images have fingertip annotations with high
accuracy. Figure 9 shows some samples from our dataset. The background images are from
ImageNet [26].
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Figure 9. Image samples from our synthetic dataset.

4. System Integration
4.1. Integration of Fingertip Detection in Server with Smart Glasses

After the fingertip can be traced successfully, air-writing for smart glasses can be
implemented. Building a neural network for fingertip detection directly on smart glasses
is currently not feasible due to hardware constraints. There are thus two options. One
option is to detect the fingertip in a smart phone that is connected wirelessly to the smart
glasses. The other option is to send the captured scenes to the a backend server for the
fingertip detection. We adopted the latter option because the former may still raise concerns
about the power consumption of the smart phone. To reduce the computational burden of
smart glasses, each frame is streamed using Motion JPEG. Our server platform is equipped
with a single GTX 1080 Ti GPU (manufactured by NVIDIA Corp., Santa Clara, CA, USA).
The frame is sent to the server by the smart glasses via wireless networks for subsequent
detection and recognition. After the frame is acquired by the server, the model will locate
the fingertip in real time and store the current coordinate of fingertips into an array. When
the model does not detect a fingertip in a few frames, the process of storing the coordinates
is halted. If the user finished writing and would like to see the results, what he or she needs
to do is to move the fingertip away from the camera. The points on the writing trajectories
are represented by the stored coordinates, and the character can be formed by connecting
these points.

In this research, Chinese characters are considered the input to the smart glasses as an
example, given the observation that air-writing seems a more natural way for inputting
Chinese characters. Recognizing English letters from air-writing is certainly feasible, but
one may argue that selecting English letters from a visual keyboard may be preferred.
It is worth noting that air-writing cannot display the action of lifting pens. In other
words, all of the trajectories are drawn with a single curve or stroke. Some redundant or
unnecessary connections may thus appear in a character, which could cause recognition
errors. Therefore, we tried to eliminate the redundant or unnecessary connections in
written characters according to the following three principles. First, we removed the extra
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points introduced by the stopped finger during the writing process. Second, we eliminated
the connections from the bottom-right to the top-left, which are not common when writing
Chinese characters. Third, we cleared the connections from the bottom-left to the top-right
with a steep slope, for the same reason as in the second principle. Figure 10 illustrates the
detailed steps of removing redundant connections from the Chinese character, “I”.

(a) (b) (c) (d)
Figure 10. Steps involved in removing redundant connections from Chinese characters: (a) all trajectories appear in a single
curve or stroke; (b) all redundant connections are found (the green segments represent the connections from the bottom
right to the top left, while the red segments represent the connections from the bottom left to the top right with a steep
slope); (c) all of the green segments are removed; and (d) the final results after the red segments are removed.

Finally, we sent the processed fingertip trajectories to the traditional Chinese character
recognition scheme, which can return the recognized results of the top ten candidates back to
the smart glasses. The candidate characters are displayed on the screen of the smart glasses
for the user to select. After choosing one character, the user can move on to write the next
character. If the correct character does not appear in the candidate list, the user can simply
rewrite it. Figure 11 shows our overall system flow chart. The user applies air-writing and
the scene is captured by the smart glasses, which transmit the images to the server. The server
uses the fingertip detection model, trained by our synthetic dataset, to form the writing
trajectories. After removing some redundant connections, the server recognized the character
using another classification model, which is described below. The candidates are sent to
the user and shown on the screen of smart glasses. The user can select a correct character
(usually the first candidate) by using the button operated by the other hand, as we believe
that this could be the most convenient way for smart glasses users.

Figure 11. Diagram of proposed system architecture.

4.2. Chinese Character Recognition Scheme

After successfully detecting the position of the fingertip, the writing trajectories
through air-writing are available. One possible way is to transmit the trajectories to
character recognition services such as Google Cloud Vision API. In order to reduce the
dependence on using third-party software or tools, we designed our own deep learning-
based classification framework for traditional Chinese characters. It should be noted that
the network training requires a very large dataset with varying forms of characters. Here,
we employed “synthetic” characters with automatic labeling using several font families
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and a traditional Chinese handwriting dataset [27] to form a large dataset containing
1,202,564 images for network training and 300,641 images for validation. The resolution
of each character is 64 × 64 pixels. After removing certain rare characters, there are
4155 Chinese characters for classification, which are commonly used in daily life.

Since the number of types or classes of Chinese characters is much larger than that
of English letters, appropriate data augmentation in training is critical. We employed
a variety of transforms on the handwritten and printed characters, including random
rotations, shearing, translation and perspective transformations. Figure 12 shows some
examples after data augmentation, which significantly increases the diversity of characters.

Figure 12. Some samples from our Chinese character dataset after data augmentation.

The semantic and spatial information of the extracted feature map will affect the
performance of classification in the deep neural network. Properly deepening and widen-
ing the feature network can effectively increase the model accuracy. After a thorough
evaluation, we chose ResNeSt-50 [28] as our network architecture as it adopts a split-
attention block structure, which does not require additional calculations when compared
to the existing ResNet variants. It also incorporates the channel-wise attention strategy
as well as multipath network layouts. ResNeSt also performs exceptionally well in image
classification tasks.

5. Experimental Results
5.1. Experimental Results of Fingertip Detection

In order to compare the proposed scheme with existing methods, we used the same
test dataset as in [14,15], which is known as the EgoFinger dataset, containing 12,974
images. Average Pixel Error (APE) was used as the evaluation metric, which indicates
the pixel distance between the detected location and ground truth. Table 2 shows that the
proposed scheme has a much smaller APE, demonstrating that it can accurately pinpoint
the fingertip. Figure 13 shows the successful detection rates with different APE threshold
values. A successful detection means that the distance between the detected fingertip from
the ground-truth location is smaller than the threshold measured in pixels. In the proposed
scheme, the threshold can be set smaller than 20 pixels and the successful detection rate
can be higher than 90%.

We also compared the results with those of four other algorithms: FRCNN [16],
KCF [29], TLD [30], and MIL [31]. We set a threshold of 15 pixels to determine whether the
detection is successful or not. Since the test dataset was not provided in these studies, we
still used the EgoFinger test dataset in the experiments. The results are listed in Table 3. The
precision and speed of the proposed scheme outperform those of the other four methods
due to the customized design of the backbone network. Figure 14a,b shows some results on
the EgoFinger dataset and our synthetic dataset, respectively. As we can see, the proposed
scheme can correctly locate the fingertips in varying scenes.

Table 2. Comparison on the EgoFinger dataset.

Method Average Pixel Error

AHD [14] 15.72
FRCNN [15] 12.22

Proposed 8.31
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Figure 13. Comparison of fingertip detection under varying threshold values.

(a) (b)

Figure 14. Examples of the proposed fingertip detection on: (a) the EgoFinger dataset; and (b) our synthetic dataset.

Table 3. The results of precision and speed.

Precision (15 px) Speed (fps)

FRCNN [16] 73.1 18.5
KCF [29] 55.4 26.4
TLD [30] 66.7 10.6
MIL [31] 42.4 12.1
Proposed 93.3 38.8 (640p)

5.2. Experimental Results of Chinese Character Recognition

To evaluate the accuracy of Chinese character recognition, we asked three different
persons to use smart glasses to conduct a total of 400 air-writing experiments. We compared
the results using two different training datasets, the synthetic dataset and the hybrid dataset.
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The synthetic dataset contains printed characters extracted from several font files. The
hybrid dataset is a mixture of the synthetic dataset and the handwritten images from
the Traditional Chinese Handwriting Dataset [27]. Table 4 shows that training with both
datasets achieves satisfactory accuracy in Top 1, Top 5, and Top 10 cases. The mixture of
synthetic data and real handwritten data does help to improve the performance. In our
opinions, such mixtures introduce a variety of data, which increases the robustness of the
proposed scheme.

Table 4. Comparing the accuracy of character recognition using different training datasets.

Synthetic Dataset Hybrid Dataset

Top 1 84.25% 92%
Top 5 95% 97.5%
Top 10 97.75% 98.5%

Since there is currently no related work for Traditional Chinese character recognition,
we used the well-known Google Cloud Vision API as a comparison with our results. The
Google Cloud Vision API can automatically detect objects in images and supports detecting
texts of over fifty languages, including Traditional Chinese characters. As indicated in
Table 5, the current implementation of the proposed scheme outperforms Google Vision
API significantly and has the Top 1 accuracy of up to 92%.

Table 5. The results of precision and speed.

Accuracy (Top1)

Google Vision API 33.5%
ResNeSt50 (ours) 92%

5.3. Air-Writing Examples

Figure 15 shows the progress of fingertip tracking to form the writing trajectories of a
character. The proposed air-writing scheme stores the fingertip coordinates and then con-
nects the points to form the fingertip trajectories. Since the detection of fingertips is fast, the
writing trajectories are smooth enough to form a recognizable character. Figure 16 further
shows the operations of air-writing for smart glasses in a step-by-step manner. A user in
Figure 16a wears smart glasses and writes characters (the word “Central” composed of
two Chinese characters is used as an example) in the air as the input. Figure 16b shows
the writing trajectories of the first character. It should be noted that the red trajectories
are just superimposed in the figure for better illustration. The user does not see these red
trajectories as they do not help the writing process. Figure 16c shows that the smart glasses
display the first ten candidates, which are determined by the remote server, at the bottom
of the screen for the user to select the correct one. After extensive tests, the first candidate
is usually the one that the user writes. If not, the user may click the button to move the
cursor to select other characters. The selected character is added to the input text field in
Figure 16d. The user goes on to write the second character, and again the candidates are
listed in Figure 16e. The word “Central” is then displayed in the text field, as shown in
Figure 16f.
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Figure 15. Testing characters for air-writing: We connect the fingertip coordinates to form the fingertip trajectories.

(a) (b)

(c) (d)

(e) (f)

Figure 16. Example of air-writing for smart glasses: (a) a user wearing smart glasses writes characters in the air; (b) the
writing trajectories of the first character; (c) the candidates are shown at the bottom of the the smart glasses screen; (d) the
selected character is shown in the input text field and the user goes on writing the second character; (e) the candidates of
the second character; and (f) the two characters are shown in the input text field.
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6. Conclusions and Future Work

A practical air-writing scheme for smart glasses is presented in this paper. A region-
based convolutional neural network model is developed for real-time fingertip localization.
MobileNetV2 is employed as the backbone network, which is further simplified by reducing
the number of bottleneck layers to avoid redundant features. We use Unity3D to establish
a synthetic dataset, avoiding manual labeling errors and providing a large benchmark
dataset with high quality. The proposed scheme can detect and localize the fingertip
in 640 × 480 RGB images, with 38.8 fps using GPU, and 8.31 average pixel errors. The
writing trajectories can be effectively formed and the written character can be recognized
by another classification network based on ResNeSt. The major contributions of the paper
are: (1) the feasibility of using synthetic datasets only to achieve very good results of
finger tracking in ego-centric-view images; and (2) adopting state-of-the-art deep learning
networks to design customized finger detection and character recognition schemes for
developing a new smart glasses human–computer interface for air-writing. Future work
will be designing lightweight detection and recognition networks on mobile devices and
increasing the adaptation of synthetic datasets to deal with other kinds of contents, such as
third-person-perspective-view images, to further broaden the application scope. Besides,
inviting users from different ethnic groups to test the scheme will be necessary so that the
generality can be ensured.
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