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Abstract

Background: Networks have been proven effective representations for the analysis of biological data. As such, there exist
multiple methods to extract knowledge from biological networks. However, these approaches usually limit their scope to a
single biological entity type of interest or they lack the flexibility to analyze user-defined data. Results: We developed
ProphTools, a flexible open-source command-line tool that performs prioritization on a heterogeneous network. ProphTools
prioritization combines a Flow Propagation algorithm similar to a Random Walk with Restarts and a weighted propagation
method. A flexible model for the representation of a heterogeneous network allows the user to define a prioritization
problem involving an arbitrary number of entity types and their interconnections. Furthermore, ProphTools provides
functionality to perform cross-validation tests, allowing users to select the best network configuration for a given problem.
ProphTools core prioritization methodology has already been proven effective in gene-disease prioritization and drug
repositioning. Here we make ProphTools available to the scientific community as flexible, open-source software and
perform a new proof-of-concept case study on long noncoding RNAs (IncRNAs) to disease prioritization. Conclusions:
ProphTools is robust prioritization software that provides the flexibility not present in other state-of-the-art network
analysis approaches, enabling researchers to perform prioritization tasks on any user-defined heterogeneous network.
Furthermore, the application to IncRNA-disease prioritization shows that ProphTools can reach the performance levels of

ad hoc prioritization tools without losing its generality.
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Findings
Background

Biological processes are complex and usually involve a large
amount of entities interacting with each other. In this sense, it
has been proven that networks are an effective model to improve
our understanding of such processes, and many methodolo-
gies that use a network representation to infer new hypotheses
from existing biological knowledge have been made available
in the recent years [1]. These approaches model biological en-

tities as nodes in a graph, where weighted edges correspond to
interactions or any type of relationship between the connected
nodes or entities. Edge weight, in this sense, measures the
strength of the represented relationship. Many approaches have
been proposed to build biological networks from data sources
and to perform inference tasks on them [2].

From protein-protein interaction prediction [3] to the iden-
tification of candidate disease genes to drug repositioning [4]
or very recent applications on microbiology [5], it seems to be
clear that inference on graph or network data structures can be
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effective for the purpose of finding relations between entities
that interact in such ways [1]. These in silico predictions allow
researchers to reduce the search space to focus on a small set
of entities that are more likely to be related to the entities of
interest.

Although there exist many bioinformatics graph analysis
tools that are freely available, they present at least 1 of the fol-
lowing limitations.

The first limitation we encounter is that many of these re-
cent approaches are limited to the analysis of features in a single
homogeneous network; i.e., they consider 1 network of entities
of the same type or domain (e.g., a protein-protein interaction
network or a gene network). For instance, RANKS [6] performs
node prioritization on some label or property by using kernelized
score functions, taking into account both the global structure of
the network and the neighborhood of the query nodes. Other
approaches, like SVD-phy, try to find functional associations be-
tween genes based on their phylogenetic distributions [7]. Some
approaches, such as DRaWR [8], widen the features included in a
graph by allowing different types of relations between the nodes
(i.e., different types of edges).

Other approaches like FunRich [9] increase the level of flex-
ibility, allowing users to choose from different data sources to
perform enrichment analysis, including the possibility of using
a customized database.

On the other hand, there are approaches that allow inclu-
sion of more than 1 network in the analysis or prioritization task,
including different types of interacting entities. However, these
methods are built ad hoc to solve a specific problem. Many of
these approaches have been proposed for the identification of
novel gene-disease potential associations [10] or drug-disease
associations for drug repositioning [11]. These methods usu-
ally focus more on the data sources integrated into the network
than on the algorithm used to propagate the information within
and/or accross networks, or they provide an algorithm that is
tightly coupled to the data sources in use. In this sense, they lack
the possibility of adding new data sources to populate the net-
works or integrating additional networks with other biomedical
entities. Furthermore, the application of these methods to new
domains is very challenging, as software and data are tightly
coupled.

Because biological analyses can include a wide range of in-
terconnected entities, tools that are able to integrate knowledge
from different entity types and sources of data in the form of
networks are of interest. Furthermore, the continuous appear-
ance of new data sources to choose from hampers the mainte-
nance of an up-to-date database list.

ProphTools intends to tackle these problems by implement-
ing a general and flexible open-source model for represent-
ing heterogeneous networks composed of an arbitrary num-
ber of entity types (subnetworks) to perform any user-defined
prioritization. ProphTools is based on an approach that has
been proven useful in several prioritization applications, such
as gene-disease prioritization [12] and drug repositioning [13].
Nonetheless, this functionality has never been made available
as general purpose software.

In this paper, we present ProphTools, an open-source, cus-
tomizable tool that can be used for a wide range of prioriti-
zation applications. To illustrate this, we applied ProphTools
to a prioritization case study on long noncoding RNAs (IncR-
NAs) and diseases and compared its peformance with recent
ad hoc approaches proposed for this task. Further, the data
to perform state-of-the-art drug repositioning and IncRNA-
disease prioritization using ProphTools have also been made
available [14,15].

ProphTools methodology operates on a heterogeneous global
graph, G = (D, R), where D is a set of entity subnetworks (nodes
of the same biological type) and R is a set of relationship subnet-
works (bipartite networks connecting 2 different types of nodes).
Given a set of nodes Q from the query network D, and a target
network Dy, the goal prioritization task is to determine the de-
gree of relationship of the nodes in D; to the query nodes in Q.

ProphTools performs this prioritization combining (i) a
within-network propagation method similar to Flow Propaga-
tion that uses Random Walk with Restarts and (ii) a weighted
across-network propagation [12]. As Algorithm 1 shows, these
processes are repeatedly applied to each network in every path
from the query network to the target network. Values propa-
gated from the query network eventually reach the target net-
work and are then compared with values propagated from the
target nodes by correlation [16].

Algorithm 1 : Prioritization from query subnet D, to target sub-
net D;.

1: function < PROPAGATE >G, Q, Dy, D;

Propagate within-network in Dy

3: P: list of paths from D, to D; in G

4: for p; in P do

5: for subnet p;; in the path p; from pi; to py-1) do

6: Propagate values from pij to pi(j+1)
7:

8:

9:

g

Propagate values within pj;q
end for
Store values in pj(_y) after propagation in p; as x;q_q)
10: end for

11: for e € V; in target subnetwork D; do

12: Set a targetset T =e

13: Propagate values within D,

14: Compute correlation coef. s, using x;;_y) for each p;
15:  end for

16: L: Sort entities in e € V by values s, in descending order

17: Return L
18: end function

G is the global graph and Q the query set.

In addition, ProphTools can also run cross-validation (CV)
tests to assess the performance of a given network configura-
tion. For instance, a 5-fold CV test on such network configuration
would remove one-fifth of the interactions connecting Dy and
D; and evaluate their predictability from the remaining network
structure. The results are provided in the form of a receiver op-
erating characteristic (ROC) curve, an area under the curve (AUC)
value and a mean rank for each connection removed. These val-
ues can be used to compare the performance of different net-
work configurations.

ProphTools is implemented in Python and does not require high
computational resources, although memory requirements may
increase with the size and density of the provided networks.
The proposed package is built on broadly used python libraries
that are freely available for download, such as NumPy high-
performance array operation library, SciPy, and the scikit-learn
Machine Learning library [17]. The core propagation method
has been systematically tested using unit testing with a cov-
erage of 86% for the entire package. In addition, Travis’s [18]
platform for continuous integration has been connected with
its repository in order to guarantee its successful deployment



on a broad set of computers that meet its reduced software
requirements.

Although ProphTools has been developed and tested natively
in Linux, it relies on multiplatform libraries. ProphTools is avail-
able on GitHub as a Python package installable by pip [19]. In
order to ensure that ProphTools can run on a wider set of com-
puters, a Docker version has also been developed. ProphTools
Docker version is freely available at DockerHub [20], allowing
users of any operating system to easily run ProphTools as long
as they have the Docker application installed.

Furthermore, ProphTools is open source and highly modular,
allowing users to easily extend it with alternative propagation
methods and scoring functions.

ProphTools uses internally a heterogeneous network represen-
tation file. A heterogeneous network is composed of (i) an arbi-
trary number of homogeneous subnetworks, each representing
biological entities of the same type and their relations; and (ii) a
set of bipartite subnetworks representing connections between
entities of different types. A diagram showing the information
included in this file can be seen in Fig. 1. This representation
includes a weighted adjacency matrix for each subnetwork, a
bipartite adjacency matrix for each subnetwork-subnetwork re-
lation, and a super-adjacency matrix that provides information
about which adjacency matrix corresponds to which entity re-
lation. These matrix files can be built using the SciPy.sparse.io
library, which is free and open source. Node labels are also in-
cluded in the input file. This specific format is thoroughly ex-
plained in the ProphTools documentation.

This internal network specification allows ProphTools to per-
form prioritization tasks in any user-specified dataset. Nonethe-
less, in order to facilitate its application, ProphTools also sup-
ports 2 general network specification formats: a plain text for-
mat and Graph Exchange XML File (GEXF) file format [21].

The plain text format consists of a list of nodes and a list of
edges, as in any regular graph, plus a label per node to specify
which group each node belongs to. Figure 1 shows an example
for a user-specified text file with 3 different subnetworks and
its correspondence with the ProphTools internal heterogeneous
network model.

Furthermore, the GEXF file format is based on XML, which
is broadly used and flexible, allowing advanced users to ensure
compatibility with other tools, such as the Gephi graph visual-
ization tool [22].

ProphTools allows users to perform 2 operations: prioritiza-
tion (run queries on specific sets of nodes for any of the net-
works) and performance tests (cross-validation).

For example, to apply ProphTools to the network configura-
tion in Fig. 1, the user would first generate the ProphTools inter-
nal network model file:

prophtools buildmat ---file example.txt ---format
txt ---out example.mat

The user can perform any prioritization queries on the result-
ingmat file. For instance, to prioritize target nodes in subnetwork
C from the query set Q = {0, 1} in subnetwork A:

prophtools prioritize ---matfile example.mat ---src
A ---dst C ---gname 0,1 ---out results.csv

To test the global performance of prioritizing target subnet-
work C from query subnetwork A, the user could perform a 2-
fold CV test:

prophtools cross ---matfile example.mat ---src A
---dst C ---fold 2 ---out cvresults
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Figure 1. ProphTools heterogeneous network representation model is generated
from an input text file provided by the user. This example shows a network with 3
types of entities: A, B, C. For each node, a numerical ID, a label, and type are spec-
ified. Edges, along with their weight, are also provided. ProphTools automatically
(buildmat) converts this input to an internal representation model. For each sub-
network, an adjacency matrix is computed and normalized. Raw edge values are
explicitly shown on the adjacency matrices. Additionally, connections between
different entities are modeled as bipartite adjacency matrices. Finally, a super-
adjacency matrix models how each relation matrix connects 2 entity matrices.

Additional details and file examples are provided in Proph-
Tools Git repository and documentation.

Recent improvements in sequencing technology have proven
that although less than 2% of the human genome codes for
genes, more than 85% of the DNA is transcribed [23]. Whereas
several types of these noncoding RNAs have been extensively
studied, such as micro-RNAs and transfer RNAs [24], long non-
coding RNAs (IncRNAs) are drawing an increasing interest in the



recent years. A recent study estimates the amount of loci tran-
scribing IncRNAs to be around 58 000 [25]. LncRNAs are, there-
fore, almost 3 times as abundant as coding genes according to
our current knowledge of the human genome. However, little
is known today about these biological entities, although it has
been proven that IncRNAs play roles in cell regulation [26] and
diseases [27].

Due to the increased relevance that long noncoding RNAs
have acquired in the scientific community in the recent years,
several in silico and ad hoc approaches have been published to
systematically predict new relations between IncRNAs and dis-
eases. LncRNAdisease [28] is a database including experimen-
tally validated relations of IncRNAs and diseases and predictions
based on these instances. LRLSLDA [28] defines a classification
function based on the assumption that similarity between dis-
eases can be an indicator of the similarity between the IncRNAs
they are associated to. Later, their authors released IRWRLDA
[29], a network-based IncRNA-disease prioritization algorithm
that uses disease semantic similarity and IncRNA expression
data to relate IncRNAs, and a modification of a Random Walk
with Restarts (RWR) algorithm to perform prioritization. RWRI-
ncD [30] also implements RWR on an IncRNA similarity network.
LncRNA similarity is also based on the disease sets each IncRNA
is associated to in the IncRNAdisease database [28]. A disadvan-
tage of this method is that it can only perform prioritization on
IncRNAs that are associated to at least 1 disease, which are a
very small proportion (156) of the total number of IncRNAs an-
notated in the human genome (currently 15787 IncRNA annota-
tions in the latest release of GENCODE). More recently, Yao et al.
proposed LncPriCNet [31], a method that built a multi-level net-
work in order to perform IncRNA-disease prioritization.

All these approaches are ad hoc methods developed to solve
the IncRNA-disease prioritization problem, not available as gen-
eral source code. Additionally, the current lack of knowledge
about IncRNAs and their relation to disease makes it probably
difficult to draw conclusions about a broad set of IncRNAs, as
available functional annotations are about 2 orders of magnitude
smaller than the global amount of IncRNA candidates. Due to
the interest these biological entities have drawn in recent years,
it seems very likely that this knowledge will grow in the near fu-
ture and more IncRNA-disease annotations will be made avail-
able. However, users will not be able to include future knowledge
in these methods, as they are not available as flexible, general
purpose tools.

Here, we apply ProphTools to IncRNA-disease prioritization
as a proof of concept. To do so, we need to model this problem
to fit the proposed heterogeneous network representation. Fig-
ure 2 shows the network configuration chosen to integrate the
available data on IncRNAs and diseases.

Although ProphTools has not been specifically designed to
accomplish this particular problem, obtained results are consis-
tent with the current knowledge about IncRNAs, and ProphTools
has proven as effective as other state-of-the art ad hoc method-
ologies. Furthermore, the datasets built are freely available to
the scientific community to ensure reproducibility and allow fur-
ther research and improvements on the topic.

The heterogeneous network includes 2 entity subnetworks: long
noncoding RNAs (IncRNAs) and diseases, and a relation subnet-
work IncRNA-disease connecting them (Fig. 2).

The IncRNA network was built using GENCODE v26 [32,33].
The 15787 IncRNA gene annotations present in GENCODE v26

GENCODE Disease
v26 IncRNA Ontology
subnetwork disease

_subnetwork

Disease
Ontology

lr{éRN A leaf nodes

genes-.

IncRNAdisease
relation subnetwork

Figure 2. Heterogeneous network conguration built to perform IncRNA-disease
ProphTools prioritization. LncRNA subnetwork is built from GENCODE v26
IncRNA sequences. Disease subnetwork is built from Disease Ontology leaf
nodes using semantic similarity measures as in DrugNet [13]. LncRNA-disease
relation subnetwork is taken from IncRNAdisease database [28]. This data config-
uration file is available at the ProphTools website.

were processed by generating a projection of overlapping exons
for each IncRNA and building a projected transcript representa-
tive of each IncRNA. The sequence of each projected transcript
was then obtained from the repeat masked version of the hu-
man genome hg38. In order to reflect the modular functionality
present in IncRNAs [34], we represented each IncRNA gene as a
vector of hexamers (short subsequences 6 nucleotides in length).
For each IncRNA gene sequence, the appearances of each of
the 4096 possible hexamers were counted. These vectors were
compared with each other to build an adjacency matrix using
as a similarity measure the cosine similarity between the hex-
amer occurrence vectors. These similarities were used as edge
weight in our IncRNA network. Additionally, the obtained ad-
jacency matrix was postprocessed, removing 50% of the edges,
in order to remove propagation noise while keeping the whole
network as a single connected element. After this process, 125
isolated nodes (IncRNA genes) were removed from the final net-
work, which connects 15662 IncRNAs.

The disease network was obtained from the Disease Ontol-
ogy, applying the same processing as described for Drugnet [13].
The resulting network includes 4517 diseases that correspond to
leaf nodes in the Disease Ontology.

Finally, the IncRNA-disease network was built from the
IncRNAdisease database [28]. A file corresponding to 1102
experimentally validated IncRNA-disease connections was down-
loaded from the IncRNAdisease website [35]. After removing du-
plicated connections in the IncRNA-disease file, 687 edges were
obtained. Naming conventions used in this file for IncRNAs and
diseases needed to be matched to GENCODE and the Disease
Ontology identifiers, respectively. The ID matching process was
performed using fuzzy string matching based on Levenshtein
Distance [36], and results were manually revised. The IncRNA
ID matching process resulted in a set of 229 matches out of
377, after removing general characterizations of sets of IncR-
NAs (e.g., RNA polymerase IlI-dependent IncRNAs) and filtering
for human long noncoding RNAs. The disease matching process
was performed using the same fuzzy string matching library,
but 2 correspondence files were generated: 1 allowing multiple
matches for each IncRNAdisease identifier and 1 storing only the
best match. Because our disease network includes leaf nodes
from the Disease Ontology, nonspecific identifiers such as “can-
cer” or “leukemia” correspond to a set of nodes in our disease
network. The multiple matches approach thus includes even
more redundancy in the network. To quantify and evaluate this
effect in the results, we tested with both options.
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Figure 3. Results for 5-fold CV tests on the general dataset obtained from experimental evidence in the LncRNAdisease database. On the left side, ROC curves obtained
for normal, semi-strict, and strict tests performed from IncRNA to disease. On the right side, ROC curves obtained for disease to IncRNA prioritization.
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Figure 4. Results for 5-fold CV tests on the specific dataset obtained from experimental evidence in the LncRNAdisease database. On the left side, ROC curves obtained
for the normal, semi-strict, and strict tests performed from IncRNA to disease. On the right side, ROC curves obtained for disease to IncRNA prioritization.

After this identifier matching process, we obtained 2 IncRNA-
disease datasets: (i) a generic dataset, consisting of 837 relations,
including multiple synonyms for generic terms such as “cancer”
(see Additional file 1), and (ii) a specific dataset, consisting of
352 relations where only the best match for the generic terms
was included (see Aditional file 2). After removing connections
to isolated IncRNA nodes, the resulting datasets have 829 and
347 relations, respectively.

This heterogeneous network configuration was then tested for
performance using 5-fold cross-validation. This functionality is
also implemented in the ProphTools package. As our disease
network includes leaf nodes from the Disease Ontology, non-
specific disease associations such as “cancer” or “leukemia” do

not yield a single match, but a set of disease nodes. This re-
sults in a set of edges representing 1 correspondence in the
original dataset, which could artificially improve the results in
a performance test because it would allow a certain degree of
redundancy that would persist after removing the tested edge.
Taking this into account, we have performed 2 additional ver-
sions of the CV test, namely (i) a semi-strict version that re-
moves at once all edges connecting a certain entity with the des-
tination network in the direction of propagation and (ii) a strict
version that removes all edges connecting the entities in both
sides of the test edge (i.e., a semi-strict test for both directions
of propagation). As Fig. 3 and 4 show, the AUC value is strongly
affected by these 2 tests, especially if the direction of prioriti-
zation is IncRNA-disease (i.e., queries are IncRNAs and targets
are diseases). Interestingly, if we perform a disease-IncRNA pri-
oritization (queries are diseases and targets are IncRNAs), the



Table 1. ProphTools performance results on the specific and general IncRNA-disease datasets for 3 different 5-fold CV modes

Dataset CV test mode Propagation direction
General Normal IncRNA
disease
Semi-strict IncRNA
disease
Strict IncRNA
disease
Specific Normal IncRNA
disease
Semi-strict IncRNA
disease
Strict IncRNA
disease

Mean AUC Mean rank Mean rank,%
0.963 + 0.008 522.16 + 120.21 3.33+0.77
0.888 + 0.015 503.67 + 69.57 11.15 £ 1.54
0.917 + 0.008 1240.95 + 130.76 7.92 +£0.83
0.854 + 0.018 655.17 £+ 78.45 14.50 £ 1.74
0.823 +£0.016 2767.30 + 241.71 17.67 £ 0.01
0.618 + 0.096 1725.18 + 435.05 38.19 £ 9.63
0.886 + 0.012 1751.24 + 194.68 11.18 £ 1.24
0.850 £+ 0.030 670.48 + 135.53 14.84 + 3.00
0.866 + 0.026 2059.37 + 403.71 13.15 £ 2.58
0.877 £ 0.020 548.05 + 91.76 12.13 +2.03
0.828 + 0.034 2690.47 + 476.54 17.18 £ 3.04
0.602 + 0.058 1794.22 + 261.58 39.72 £5.79

Normal CV removes only 1 edge per test. Semi-strict test mode removes all edges including origin nodes in the test set toward the propagation direction, and strict
mode removes all edges involving the 2 nodes connected by each test edge in the test set. Propagation direction shows whether IncRNAs or diseases are are being
ranked. Mean AUC column shows the average AUC obtained at the 5-fold CV test for each category. Mean rank shows the average ranking obtained for each test case,

and Mean rank, %, shows the mean rank as percentage.

semi-strict and strict CV tests have lower impact on the final
results. This could be related to the Disease Ontology semantic
similarity structure, which generates groups of strongly related
nodes, such as families of diseases. Furthermore, the IncRNA
network is scarcely populated. The amount of edges provided
by the test datasets (829 general, 347 specific) is very reduced
compared with the amount of diseases and IncRNAs in the
IncRNA and disease networks, and there are groups of diseases,
such as cancer, that cover a high percentage of the total dataset
(~23.66% for the general dataset and ~18.18% for the specific
dataset). Performing a strict test can eliminate not only the syn-
onyms introduced in the general dataset, but also additional in-
formation that comes from a different source. If many of these
cases occur, the resulting prioritization method tries to propa-
gate from 1 network to another through very few connecting in-
teractions, resulting in poor correlation scores. We believe this
effect would be alleviated by a more populated IncRNA-disease
network. However, it is interesting to note that although the
strict test performs poorly for IncRNA-disease prioritization, the
semi-strict test results are not affected by the removal of syn-
onyms.

Normal, semi-strict, and strict results are reported in
Table 1. Normal tests show a 0.963 + 0.008 AUC value for IncRNA-
disease prioritization and a 0.888 + 0.015 AUC for disease-
IncRNA prioritization for the general dataset (see Table 1), and
a 0.850 + 0.030 AUC value for IncRNA-disease prioritization and
a 0.886 + 0.012 AUC for disease-IncRNA prioritization for the
specific dataset (see Table 2). These results show that pre-
dictions made by ProphTools with the proposed heterogeneous
network configuration are consistent with current knowledge
about IncRNAs and diseases and therefore likely to provide new
predictions of interest. These AUC values are competitive with
state-of-the art ad hoc approaches, such as IRWRLDA (0.7242 and
0.7872 AUC values) [29], LRLSLDA (0.7760 AUC value) [37] , and
RWRIncD (0.822 AUC value) [30], and the recent LncPriCNet (0.93
AUC value) [31]. Furthermore, single prioritization queries on
the specific dataset ran on average between 8.14 (+0.04) sec-
onds for IncRNA-disease prioritization and 11.86 (+0.52) sec-
onds for disease-IncRNA on our server (Intel(R) Xeon(R) CPU E5-
2680 v3 @ 2.50GHz (x48), 256GiB RAM). The same test ran on
average between 11.65 (+1.29) seconds for IncRNA-disease pri-
oritization and 14.61 (£5.16) seconds for disease-IncRNA on a
laptop.

ProphTools is an open-source, flexible, modular, and easy-to-use
general implementation of a heterogeneous propagation algo-
rithm that has been proven useful for relevant applications such
as gene-disease prioritization and drug repositioning. The ab-
straction data layer we provide allows users to run ProphTools
in any dataset of interest. As a proof of these features, a case
study on IncRNA-disease prioritization has been described. Re-
sults are competitive with state-of-the art approaches in the
field. In order to ensure the reproducibility of the results and
allow further improvements in IncRNA-disease prioritization,
the datasets built to apply ProphTools have also been made
available.

ProphTools source code is available both as a GitHub repos-
itory and as a standalone Python package that can be easily
installed via pip [19], and it also runs as a Docker container
[20]. Additionally, ProphTools is not only open source but also
very modular in design, allowing advanced users to extend its
functionality. We are already working on more features (such
as additional propagation algorithms) to incorporate into the
ProphTools, framework in future versions. Although preprocess-
ing work is required in order to build a network model, we be-
lieve ProphTools to be flexible representation of heterogeneous
networks, and its support for different input file formats reduces
the amount of work required to perform analyses in an ad hoc
manner.

We expect that the availability of our prioritization method
as an open-source, customizable tool can be of use for a wide
range of biological applications.

® Project name: ProphTools

* Project home page: https://github.com/cnluzon/prophtools,
https://hub.docker.com/r/cnluzon/prophtools/

® Operating systems: Linux, platform independent if using the
Docker version

* Programming language: Python 2.7

¢ Other requirements: Non-Linux systems need to run the
Docker version. Native Linux systems require following
Python libraries (installed automatically when installing


https://github.com/cnluzon/prophtools
https://hub.docker.com/r/cnluzon/prophtools/

via pip): NumPy (>=1.11.2), SciPy (>=0.18.1), matplotlib
(>=1.4.3), scikit-learn (>=0.18), networkx (>=2.0).

® SciCrunch RRID (Research Resource Identification Initiative
ID): SCR'015813

* License: GNU GPLv3.0

ProphTools source code available at GitHub [19] and as a Docker
container at Docker hub [20]. Heterogeneous network configu-
rations for IncRNA-disease prioritization are available for down-
load at the ProphTools website [15]. Drug-gene-disease prioriti-
zation data are also available at our server [14]. An archival copy
of the code and other supporting data are available via the Giga-
Science repository, GigaDB [38].

AUC: area under the curve; CV: cross-validation; GEXF: Graph Ex-
change XML File; IncRNA: long noncoding RNA; ROC: receiver op-
erating characteristic curve; RWR: Random Walk with Restarts.
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