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Abstract

The discrete coefficient of determination (CoD) measures the nonlinear interaction between discrete predictor and
target variables and has had far-reaching applications in Genomic Signal Processing. Previous work has addressed the
inference of the discrete CoD using classical parametric and nonparametric approaches. In this paper, we introduce a
Bayesian framework for the inference of the discrete CoD. We derive analytically the optimal minimummean-square
error (MMSE) CoD estimator, as well as a CoD estimator based on the Optimal Bayesian Predictor (OBP). For the latter
estimator, exact expressions for its bias, variance, and root-mean-square (RMS) are given. The accuracy of both
Bayesian CoD estimators with non-informative and informative priors, under fixed or random parameters, is studied
via analytical and numerical approaches. We also demonstrate the application of the proposed Bayesian approach in
the inference of gene regulatory networks, using gene-expression data from a previously published study on
metastatic melanoma.
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1 Introduction
DNA regulatory circuits can be often described by net-
works of Boolean logical gates updated and observed at
discrete time intervals [1–6]. In a stochastic setting, the
degree of association between Boolean predictors and tar-
gets can be quantified by means of the discrete coefficient
of determination (CoD) [7]. As such, the CoD is a function
of the joint probability of target and predictor variables,
which, however, is usually unknown in practice. Hence,
this requires the inference of the discrete CoD- given sam-
ple data. A larger sample-based CoD value indicates a
tighter regulation between target and predictors.
The concept of CoD has far-reaching applications in

genomics. The CoD was perhaps the first predictive
paradigm utilized in the context of microarray data, the
goal being to provide a measure of nonlinear interac-
tion among genes [7]. The CoD has been used in the
reconstruction or inference of gene regulatory networks
using gene expression data quantized into discrete lev-
els [8–11]. It has also been used in the definition of the
intrinsically-multivariate prediction (IMP) criterion for
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the characterization of canalizing genes [12, 13]. In
[14–16], we studied the inferential theory of the discrete
CoD in a classical framework, by means of nonparametric
and parametric maximum-likelihood estimation (MLE)
approaches.
Classical parametric and nonparametric approaches to

CoD estimation have been investigated in [14, 15]. In the
present paper, we introduce a fully Bayesian approach to
the inference of the discrete CoD, based on a parame-
terized family of target-predictor distributions. Given the
priors, the probability model and sample data, we obtain
the posterior distributions of the parameters, which can
then be used to obtain the optimal predictors and pre-
diction error estimators for the given problem. Such a
Bayesian approach for prediction error estimation was
first introduced in [17, 18], in a classification context.
Part of the work presented here appeared in [19], which

introduced the minimum mean-square error (MMSE)
Bayesian CoD estimator. In the present paper, we pro-
vide an exact representation of the analytical expressions
of this estimator, and in addition, introduce the optimal
Bayesian predictor (OBP) CoD estimator, which is based
on an optimal predictor with the minimum expected true
error with respect to the posterior distributions of the
parameters [20, 21]. We derive exact formulas for the bias,
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variance, and root-mean-square (RMS) error of the OBP
CoD estimator. The accuracy of both Bayesian CoD esti-
mators is compared against that of several nonparametric
CoD estimators by numerical simulations. The results
indicate that the Bayesian MMSE CoD estimator is the
best one when averaged over all distributions and sam-
ples, whereas the simpler OBP CoD estimator, though
suboptimal in theMMSE sense, can bemore accurate than
the MMSE CoD estimator, in a frequentist sense, under
low-variance informative priors around fixed parame-
ters corresponding to a fixed distribution between target
and predictors. It is also unsurprisingly found that priors
with higher densities around true fixed distributions pro-
duce more accurate Bayesian estimators in a frequentist
sense.
This paper is organized as follows. In Section 2,

we introduce the discrete model for prediction and
present the coefficient of determination in this model.
In Section 3, we develop a Bayesian framework of the
inference of the discrete CoD, define two Bayesian CoD
estimators, one in the sense of minimum mean-square
error (MMSE), and the other based on the optimal
Bayesian classifier, and derive the analytical expressions
for both Bayesian CoD estimators. In Section 4, we
first present an exact formulation of accuracy metrics
for the OBP CoD estimator. Afterwards, we discuss
the accuracy of both Bayesian CoD estimators when
averaged over all distributions and samples as well as
under fixed distributions under varying priors, and their
comparison with the nonparametric CoD estimators.
Section 6 describes an approach to the inference of gene
regulatory networks using the proposed Bayesian CoD
estimators and illustrates the approach with gene expres-
sion data from a previously published study on metastatic
melanoma. Finally, Section 7 presents concluding
remarks.

2 The discrete coefficient of determination
The CoD, which was originally defined in classical regres-
sion analysis, gives the relative decrease in unexplained
variability when entering a variable X into the regres-
sion of the dependent variable Y, in comparison with
the total unexplained variability when entering no vari-
ables. Dougherty and collaborators extended the concept
of CoD to discrete random variables [7]. Given a speci-
fied error criterion, such as the mean-square error or the
mean-absolute error, the CoD was defined in [7] as

CoD = ε0 − ε

ε0
, (1)

where ε0 is the minimum error of predicting Y by a con-
stant (i.e., in the absence of observations) and ε is the
minimum error of predicting Y based on the observation
of X. Since ε ≤ ε0 (all sensible error criteria satisfy this

property), the CoD ranges from 0 to 1. The closer it is to
one, the closer ε is to zero and the tighter the association
between predictor and target variables, whereas the closer
it is to zero, the closer ε is to ε0 and the weaker the associ-
ation is. By convention, CoD = 0 when ε0 = 0. The CoD
is a function only of the distribution of (X,Y ); in particu-
lar, it is not a function of sample data. This definition of
the CoD reduces gracefully to the classical one in the case
when (X,Y ) is jointly Gaussian [7].
We consider in this paper the case where X =

(X1,X2, . . . ,Xd) ∈ {0, 1}d is a binary vector of predicting
variables and Y ∈ {0, 1} is a binary target random variable.
For example, X and Y may consist of the active/inactive
expression state of various genes. The probability distri-
bution of the pair (X,Y ) is specified by the probability
c = P(Y = 0), and the probabilities pi = P(X = xi |
Y = 0) and qi = P(X = xi | Y = 1), for i = 1, . . . , b,
with

∑2d
i=1 pi = 1 and

∑2d
i=1 qi = 1. Let

(
x1, . . . , x2d

)
be an arbitrary enumeration of the possible values of the
predicting vector X. An optimal predictor of Y given X
is well-known to be ψ∗(X) = argmaxk P(Y = k | X)

[22]. The minimum error of predicting Y based on the
observation of X is therefore

ε = P(Y �= ψ∗(X)) = E [min{P(Y = 1 | X),P(Y = 0 | X)}]

=
2d∑
i=1

min
{
P
(
Y = 1 | X = xi

)
,P
(
Y = 0 | X = xi

)}
× P

(
X = xi

)
=

2d∑
i=1

min
{
P
(
Y = 1,X = xi

)
,P
(
Y = 0,X = xi

)}

=
2d∑
i=1

min
{
P
(
X = xi | Y = 1

)
P(Y = 1),P(X = xi |

Y = 0)P(Y = 0)
}

=
2d∑
i=1

min
{
c pi, (1 − c)qi

}

=
2d∑
i=1

(
c pi Ipi< 1−c

c qi + (1 − c)qi Iqi≤ c
1−c pi

)
,

(2)

where IA is the indicator function, which is equal to 1 if
A is satisfied and zero, otherwise. On the other hand, an
optimal predictor in the absence of observations is clearly
given by ψ∗ = argmaxk P(Y = k), so that the minimum
error of predicting Y by a constant is given by

ε0 = min{P(Y = 0),P(Y = 1)} = min{c, 1 − c} . (3)
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Plugging (2) and (3) in (1) results in

CoD = 1 −
2d∑
i=1

(
c

min{c, 1−c} pi Ipi< 1−c
c qi

+ 1 − c
min{c, 1−c} qi Iqi≤ c

1−c pi

)
.

(4)

This formula gives the relationship between the CoD
and the parameters of the distribution of (X,Y ).

3 Bayesian CoD estimators
In practice, the distributional parameters are generally
unknown, and one would like to estimate the CoD from
sample data. We present in this section the derivation of
two Bayesian estimators for the CoD in (4). One approach
is analogous to that followed by [17] in defining the
Bayesian MMSE prediction error estimator, whereas the
other one makes use of the optimal Bayesian predictor
(OBP), a straightforward generalization of the optimal
Bayesian classifier (OBC), introduced in [20].
We will assume that an i.i.d. sample Sn =

{(X1,Y1), . . . , (Xn,Yn)} from the distribution of (X,Y ) is
available. Given Sn, define Ui as the number of sample
points such that X = xi and Y = 0, and Vi as the num-
ber of sample points such that X = xi and Y = 1, for
i = 1, . . . , 2d. Note that N0 = ∑2d

i=1Ui and N1 = ∑2d
i=1 Vi

are the (random) sample sizes corresponding to Y = 0
and Y = 1, respectively.
Let p = (p1, . . . , p2d ), q = (q1, . . . , q2d ), and θ =

(c,p,q), where 0 ≤ c, pi, qi ≤ 1, and
∑2d

i=1 pi = ∑2d
i=1 qi =

1. As shown in the previous section, the distribution of
(X,Y ) is completely specified by the parameter vector θ .
The Bayesian approach treats θ as a random variable, the
prior distribution of which can take advantage of a pri-
ori knowledge about the problem. We will assume that c,
p, and q are independent, i.e., f (θ) = f (c)f (p)f (q). It is
shown in [17] that this implies that the posterior distri-
bution of θ also factors f (θ | Sn) = f (c | Sn)f (p | Sn)
f (q | Sn).
In this paper, we will employ the standard choice of

priors for discrete distributions, namely, the Beta and
Dirichlet distributions (c.f. Appendices A and B):

c ∼ Beta(α,β) ,
p ∼ Dirichlet(α1, . . . ,α2d ) ,
q ∼ Dirichlet(β1, . . . ,β2d ) ,

(5)

where the hyperparameters α, β , αi, βi, i = 1, . . . , 2d, are
positive numbers. These distributions have bounded sup-
ports; the Beta distribution is defined over the interval
[ 0, 1], while the Dirichlet distribution is defined over the
simplex of 2d nonnegative numbers that add up to one.

The shapes of the distributions are controlled by the con-
centration parameters �c = α + β , �p = ∑2d

j=1 αj, and

�q = ∑2d
j=1 βj, and the base measures c0 = α/�c, p0 =

(α1/�p, . . . ,α2d/�p), and q0 = (β1/�q, . . . ,β2d/�q).
Please refer to Appendices A and B for definitions and
important facts about the Beta andDirichlet distributions,
which will be needed in the sequel.
A very important property for our purposes is that the

Beta and Dirichlet priors are conjugate priors for the dis-
crete multinomial distribution, i.e., they have the same
form as the corresponding posteriors. Given the sample
data Sn, the posterior distributions are [17, 18]:

c | Sn ∼ Beta(n0 + α, n1 + β) ,
p | Sn ∼ Dirichlet(u1 + α1, . . . ,u2d + α2d ) ,
q | Sn ∼ Dirichlet(v1 + β1, . . . , v2d + β2d ) .

(6)

where n0 and n1 are the observed sample sizes corre-
sponding to Y = 0 and Y = 1, respectively, while ui and
vi are the observed sample values of the random variables
Ui and Vi, respectively.

3.1 Minimummean-square error CoD estimator
Given a CoD estimator ĈoD, consider the mean-square
error

MSE = Eθ ,Sn
[|ĈoD − CoD|2] . (7)

The minimum MSE solution, as is well known, is given
by the expectation of the CoD according to the poste-
rior distribution of the parameters [23]. This defines the
Bayesian MMSE CoD estimator:

ĈoDMMSE = E[CoD | Sn] = Eθ |Sn [CoD] , (8)

where the CoD is given by (4).
It is well-known that the MMSE estimator ĈoDMMSE

not only displays the least root mean-square error (RMS)
over the distribution of (θ , Sn), but it is also an unbi-
ased estimator (however, for a specific model with fixed θ ,
ĈoDMMSE might not be unbiased or have the least RMS).
In order to derive an expression for the Bayesian MMSE

CoD estimator, first note that (4) can be rewritten as

CoD = 1 −
2d∑
i=1

(
pi Ipi< 1−c

c qi Ic<1/2 + c
1−c

pi Ipi< 1−c
c qi Ic≥1/2

+1 − c
c

qi Iqi≤ c
1−c pi Ic<1/2 + qi Iqi≤ c

1−c pi Ic≥1/2

)
.

(9)

Applying (8) to (9) and using the previously mentioned
fact that the posterior distribution factors allows one to
write the Bayesian MMSE CoD estimator as
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ĈoDMMSE = Eθ |Sn [CoD] = Ec|Sn
[
Ep|Sn

[
Eq|Sn [CoD]

]]
= 1 −

2d∑
i=1

(
Ec|Sn

[
Eq|Sn

[
Ep|Sn

[
pi Ipi< 1−c

c qi

]
Ic<1/2

]]
+Ec|Sn

[
c

1−c
Eq|Sn

[
Ep|Sn

[
pi Ipi< 1−c

c qi

]
Ic≥1/2

]]
+Ec|Sn

[
1−c
c

Ep|Sn
[
Eq|Sn

[
qi Iqi≤ c

1−c pi

]
Ic<1/2

]]
+Ec|Sn

[
Ep|Sn

[
Eq|Sn

[
qi Iqi≤ c

1−c pi

]
Ic≥1/2

]])
.

(10)

Using (6) and the fact that the marginal distributions of a Dirichlet are Beta (c.f. Appendix B), we have that c | Sn ∼
Beta(αs,βs), pi | Sn ∼ Beta(αs

i ,α s
i ), and qi | Sn ∼ Beta(βs

i ,β
s
i ), where αs = n0 + α, βs = n1 + β , αs

i = ui + αi,
α s
i = n0 − ui + �p − αi, βs

i = vi + βi, and β
s
i = n1 − vi + �q − βi, for i = 1, . . . , 2d. Using the results in Appendix A

and assuming that the hyperparameters are integers (if they are not, a simple adjustment to the derivation below can be
made; see Appendix A), it follows that

Ec|Sn
[
Eq|Sn

[
Ep|Sn

[
pi Ipi< 1−c

c qi

]
Ic<1/2

]]
= Ec|Sn

[
Eq|Sn

[
Ep|Sn

[
pi Ipi< 1−c

c qi

]
Iqi< c

1−c

]
Ic<1/2

]
+

Ec|Sn
[
Eq|Sn

[
Ep|Sn

[
pi
]]
Ic<1/2

] − Ec|Sn
[
Eq|Sn

[
Ep|Sn

[
pi
]
Iqi< c

1−c

]
Ic<1/2

]
= 1

B(αs
i ,α s

i )
×
⎧⎨⎩Ec|Sn

⎡⎣Eq|Sn

⎡⎣α s
i −1∑
j=0

rj(αs
i + 1,α s

i )

(
1 − c
c

qi
)αs

i+j+1
Iqi< c

1−c

⎤⎦ Ic<1/2

⎤⎦ +

Ec|Sn
[
B
(
αs
i + 1,α s

i
)
Ic<1/2

] − Ec|Sn
[
Eq|Sn

[
B
(
αs
i + 1,α s

i
)
Iqi< c

1−c

]
Ic<1/2

]⎫⎬⎭ = 1

B
(
αs
i ,α s

i
)
B
(
βs
i ,β

s
i

)×
⎧⎨⎩

α s
i −1∑
j=0

β
s
i −1∑
k=0

rj
(
αs
i + 1,α s

i
)
rk
(
αs
i + βs

i + j + 1,β s
i

)
Ec|Sn

[(
c

1 − c

)βs
i +k

Ic<1/2

]
+

B
(
αs
i + 1,α s

i
)
B
(
βs
i ,β

s
i

)
Ec|Sn

[
Ic<1/2

] − B
(
αs
i + 1,α s

i
) β

s
i −1∑
j=0

rj
(
βs
i ,β

s
i

)
Ec|Sn

[(
c

1 − c

)βs
i +j

Ic<1/2

]⎫⎬⎭
= 1

2αs B(αs,βs)B
(
αs
i ,α s

i
)
B
(
βs
i ,β

s
i

) ×

×
⎧⎨⎩

α s
i −1∑
j=0

β
s
i −1∑
k=0

βs−(βs
i +k+1)∑
l=0

[
rj
(
αs
i + 1,α s

i
)
rk
(
αs
i + βs

i + j + 1,β s
i

)
rl
(
αs + βs

i + k,βs − (
βs
i + k

))

× 1
2βs

i +k+l

]
+ B

(
αs
i + 1,α s

i
)
B
(
βs
i ,β

s
i

) βs−1∑
j=0

rj
(
αs,βs) 1

2j

− B
(
αs
i + 1,α s

i
) β

s
i −1∑
j=0

βs−(βs
i +j+1)∑

k=0
rj
(
βs
i ,β

s
i

)
rk
(
αs + βs

i + j,βs − (
βs
i + j

)) 1
2βs

i +j+k

⎫⎬⎭ .

(11)

Likewise, we have

Ec|Sn
[

c
1−c

Eq|Sn
[
Ep|Sn

[
pi Ipi< 1−c

c qi

]
Ic≥1/2

]]
= 1

2βs B(αs,βs)B
(
αs
i ,α s

i
)
B
(
βs
i ,β

s
i

)

×
⎧⎨⎩

α s
i −1∑
j=0

αs−(αs
i+j+1)∑

k=0

[
rj
(
αs
i + 1,α s

i
)
rk
(
βs + αs

i + j,αs − (
αs
i + j

))
B
(
αs
i + βs

i + j + 1,β s
i

)

× 1
2αs

i+j+k

]⎫⎬⎭ ,

(12)



Chen and Braga-Neto EURASIP Journal on Bioinformatics and Systems Biology  (2016) 2016:1 Page 5 of 19

Ec|Sn
[
1−c
c

Ep|Sn
[
Eq|Sn

[
qi Iqi≤ c

1−c pi

]
Ic<1/2

]]
= 1

2αs B(αs,βs)B
(
αs
i ,α s

i
)
B
(
βs
i ,β

s
i

)

×
⎧⎨⎩

β
s
i −1∑
j=0

βs−(βs
i +j+1)∑

k=0

[
rj
(
βs
i + 1,β s

i

)
rk(αs + βs

i + j,

βs − (βs
i + j))B

(
αs
i + βs

i + j + 1,α s
i
)

× 1
2βs

i +j+k

]⎫⎬⎭ ,

(13)

and

Ec|Sn
[
Ep|Sn

[
Eq|Sn

[
qi Iqi≤ c

1−c pi

]
Ic≥1/2

]]
= 1

2βs B(αs,βs)B
(
αs
i ,α s

i
)
B
(
βs
i ,β

s
i

)

×
⎧⎨⎩

β
s
i −1∑
j=0

α s
i −1∑
k=0

αs−(αs
i+k+1)∑
l=0

[
rj(βs

i + 1,β s
i ) rk(α

s
i + βs

i + j

+ 1,α s
i )rl(β

s + αs
i + k,αs − (αs

i + k))

× 1
2αs

i+k+l

]
+ B(βs

i + 1,β s
i )B(αs

i ,α s
i )

αs−1∑
j=0

rj(βs,αs)
1
2j

− B(βs
i + 1,β s

i )

α s
i −1∑
j=0

αs−(αs
i+j+1)∑

k=0
rj(αs

i ,α s
i ) rk(β

s + αs
i

+ j,αs − (αs
i + j))

1
2αs

i+j+k

⎫⎬⎭ ,

(14)

where the Beta function B(a, b) and the coefficients
ri(a, b) are defined in Appendix A.
Replacing (11)–(14) into (10) produces an exact expres-

sion for computing the MMSE CoD estimator in terms of
sample sizes and model hyperparameters. Notice that for
the previous expressions to make sense, one must have
α > �p − 1 and β > �q − 1. In particular, if uniform pri-
ors are chosen for p or q, then the prior for c cannot be
uniform (c.f. Appendix A).

3.2 Optimal Bayesian predictor CoD estimator
In this section, we derive a second Bayesian CoD esti-
mator, using the optimal Bayesian predictor (OBP), a
simple extension to the Boolean prediction problem of the
“optimal Bayesian classifier” (OBC) proposed in [20]. For-
mally, let εθ [ψ] denote the error of a predictor ψ under
parameter vector θ . The OBP predictor ψOBP minimizes

the average error over the family of (posterior) distribu-
tions indexed by the parameter

ψOBP = argmin
ψ∈ϒ

Eθ |Sn [εθ [ψ] ] . (15)

Using the results of [20] for the OBC, one can verify that
the OBP for the Beta-Dirichlet model considered here is
given by

ψOBP(xi) =
{
1, if n0+α

n+α+β
Ui+αi
n0+�p

<
n1+β
n+α+β

Vi+βi
n1+�q

,
0, otherwise ,

(16)

for i = 1, . . . , 2d, with optimal prediction error

ε̂OBP = Eθ |Sn [εθ [ψOBP] ] =
2d∑
i=1

min
{

n0 + α

n + α + β

Ui + αi
n0 + �p

,

n1 + β

n + α + β

Vi + βi
n1 + �q

}
.

(17)

On the other hand, the average errors of the the constant
predictors ψ ≡ 0 and ψ ≡ 1 are

Ec|Sn [P(Y = 1)] = Ec|Sn [c] = n0 + α

n + α + β
,

Ec|Sn [P(Y = 0)] = 1 − Ec|Sn [c] = n1 + β

n + α + β
,

(18)

respectively, so that the OBP error in the absence of
observations is

ε̂0,OBP = min
{

n0 + α

n + α + β
,

n1 + β

n + α + β

}
. (19)

We can then combine (17) and (19) to obtain the optimal
Bayesian predictor (OBP) CoD estimator

ĈoDOBP = 1 − ε̂OBP
ε̂0,OBP

= 1 − 1
min{n0 + α, n1 + β}

2d∑
i=1

min{
n0 + α

n0 + �p
(Ui + αi) ,

n1 + β

n1 + �q
(Vi + βi)

}
.

(20)

It is easy to show that 0 ≤ ε̂OBP ≤ ε̂0,OBP, and thus 0 ≤
ĈoDOBP ≤ 1.
Execution time for computation of the OBP CoD esti-

mator grows as O(2d). By comparison, the complexity for
exact computation of the Bayesian MMSE CoD estima-
tor introduced in the previous subsection is O(n3 ×2d).
Neither n or d tends to be too large in Genomics appli-
cations, due to small sample sizes and the fact that the
average number of predictor genes d per target gene must
be small for a stable system, as remarked by S. Kauffman
in [2]. However, if n and d become large, one could devise
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Monte Carlo approximation methods to compute both
CoD estimators.
Therefore, the OBP CoD estimator, though suboptimal,

is much more efficient computationally than the MMSE
CoD estimator, especially at large sample sizes. In addi-
tion, we will see in the next section that the OBP CoD can
be even more accurate than the MMSE CoD estimator, in
frequentist sense, under a fixed value of the parameters.

4 Performance analysis
In this section, we investigate the accuracy of the Bayesian
CoD estimators proposed in the previous section. We dis-
tinguish between two types of accuracy metrics: global
metrics concern the average performance over all sam-
ples and all distributions of (X,Y ), weighted by the prior
distribution of θ , whereas fixed-parameter metrics have
to do with the average performance over all samples, but
under a particular distribution of (X,Y ), corresponding
to a fixed value of the parameter θ . Fixed-parameter met-
rics thus evaluate the proposed Bayesian estimators from
a purely frequentist perspective.
For a given Bayesian CoD estimator, the fixed-

parameter accuracy metrics of interest are the bias

Bias(θ) = ESn|θ
[
ĈoD − CoD

] = ESn|θ
[

ε̂

ε̂0

]
− ε

ε0
,

(21)

the variance,

Variance(θ) = VarSn|θ
[
ĈoD

] = ESn|θ

[
ε̂2

ε̂20

]
−
(
ESn|θ

[
ε̂

ε̂0

])2
,

(22)

and the root-mean-square (RMS) error,

RMS(θ) =
√
ESn|θ

[(
ĈoD − CoD

)2]
=

√
Variance(θ) + Bias(θ)2 . (23)

It becomes clear that the fixed-parameter bias, vari-
ance, and RMS of a Bayesian CoD estimator can be
obtained with knowledge of the first and second moments
ESn|θ

[
ε̂
ε̂0

]
and ESn|θ

[
ε̂2

ε̂20

]
.

The corresponding global accuracymetrics are obtained
by taking expectation of the previous quantities with
respect to the marginal (i.e., prior) distribution of θ .
As mentioned previously, the global bias of the Bayesian

MMSE CoD estimator is zero and its global RMS is min-
imal among all CoD estimators. However, this does not
imply that its fixed-parameter bias is zero or that its
fixed-parameter RMS is minimum for all values of the
parameter.

In what follows, we give exact expressions for the com-
putation of ESn|θ

[
ε̂
ε̂0

]
and ESn|θ

[
ε̂2

ε̂20

]
for the OBP CoD

estimator. As argued previously, this allows the exact com-
putation of the fixed-parameter bias, variance, and RMS
of that CoD estimator. Via simple numerical integration,
it is possible then to obtain the global bias, variance,
and RMS. It turns out that similar expressions for the
MMSE CoD estimator are much harder to obtain; the per-
formance of that estimator are studied via a numerical
approach in the next section.
All the expectations and probabilities below are with

respect to Sn | θ (the subscript will be omitted for con-
venience). In the expressions below, c, pi, and qi, for i =
1, . . . , 2d refer to the (deterministic) parameters in θ .
First note that

E
[

ε̂OBP
ε̂0,OBP

]
= E

[
E
[

ε̂OBP
ε̂0,OBP

∣∣∣∣ ε̂0,OBP

]]
=

∑
m∈L

E
[

ε̂OBP
m/(n + α + β)

∣∣∣∣ M = m
]
P(M = m),

(24)

whereM = (n+ α + β) ε̂0,OBP = min(n0 + α, n1 + β) and

L =
{
α,α + 1, . . . ,α +

⌊n + β − α

2

⌋}⋃
{
β ,β + 1, . . . ,β +

⌊n + α − β

2

⌋}
,

where 	x
 denotes that the largest integer smaller or
equal to x. Let L0 =

{
α,α + 1, . . . , 	n+β−α

2 
 + α
}
, L1 ={

β ,β + 1, . . . , 	n+α−β
2 
 + β

}
. There are three possibili-

ties: (1) α − 	α
 �= β − 	β
; (2) α − 	α
 = β − 	β
 and
α = β ; (3) α − 	α
 = β − 	β
 but α �= β . We will provide
the derivation only in case (3); the other cases are similar,
and lead to the exact same expressions.
We assume that α − 	α
 = β − 	β
 but α �= β . Without

loss of generality, we assume that α > β , and let α = β+δ,
where δ is a positive integer. Notice that it is easy to show
in this case that 	n+β−α

2 
 + α = 	n+α−β
2 
 + β by consid-

ering the evenness and oddness of n and δ. Therefore, we
have L0 ⊂ L1. In the following, we discuss two cases when
n + β − α is even and when n + β − α is odd.
(1) When n+ β − α is even, the event [M = m] is equal

to the union of the disjoint events [n0 = m−α], and [ n1 =
m − β]=[ n0 = n − m + β], for m ∈ L0\

{
α + n+β−α

2

}
,

whereas
[
M = α + n+β−α

2

]
=

[
n0 = m − α = n+β−α

2

]
,

and [M = m] = [n0 = n − m + β], form ∈ L1\L0.
Now, we are going to use the fact that, for a random

variable X and disjoint events A and B, one has1
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E [X | A ∪ B] = P(A)

P(A) + P(B)
E [X | A] + P(B)

P(A) + P(B)
E[X | B] . (25)

We can then write E
[

ε̂OBP
ε̂0,OBP

]
as:

E
[

ε̂OBP
ε̂0,OBP

]
=

∑
m∈L0\

{
n+�c

2

}E
[

ε̂OBP
m/(n + �c)

∣∣∣∣ n0 = m − α

]
P(n0 = m − α) +

∑
m∈L0\

{
n+�c

2

}E
[

ε̂OBP
m/(n + �c)

∣∣∣∣ n0 = n−m + β

]
P(n0 = n−m + β) +

∑
m∈L1\L0

E
[

ε̂OBP
m/(n + �c)

∣∣∣∣ n0 = n−m + β

]
P(n0 = n−m + β) +

E
[

ε̂OBP
m/(n + �c)

∣∣∣∣ n0 = n − α + β

2

]
P
(
n0 = n − α + β

2

)
=

∑
m∈L0

E
[

ε̂OBP
m/(n + �c)

∣∣∣∣ n0 = m − α

]
P(n0 = m − α) +

∑
m∈L1

E
[

ε̂OBP
m/(n + �c)

∣∣∣∣ n0 = n−m + β

]
P(n0 = n−m + β)Im �= n+α+β

2

=
	 n+β−α

2 
∑
r=0

E
[

ε̂OBP
(n0 + α)/(n + �c)

∣∣∣∣ n0 = r
]
P(n0 = r) +

	 n+α−β
2 
∑

r=0
E
[

ε̂OBP
(n1 + β)/(n + �c)

∣∣∣∣ n0 = n−r
]
P(n0 = n−r)Ir �= n+α−β

2

(26)

where P(n0 = r) = (n
r
)
cr(1 − c)n−r and

E
[

ε̂OBP
(n0 + α)/(n + �c)

∣∣∣∣ n0 = r
]

=
2d∑
i=1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑

(r+α)(k+αi)
r+�p <

(n−r+β)(l+βi)
n−r+�q

k≤r, k+l≤n

(r + α)(k + αi)

r + �p
P(Ui = k,Vi = l | n0 = r)

+
∑

(r+α)(k+αi)
r+�p ≥ (n−r+β)(l+βi)

n−r+�q
k≤r, k+l≤n

(n − r + β)(l + βi)

n − r + �q
P(Ui = k,Vi = l | n0 = r)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

(27)

with P(Ui = k,Vi = l | n0 = r) = (r
k
)
pki (1 − pi)r−k(n−r

l
)
qli(1 − qi)n−r−l. The expression for

E
[

ε̂OBP
(n1+β)/(n+�c)

∣∣ n0 = n − r
]
is obtained from (27), with r + α replaced by r + β .

(2) When n + β − α is odd, the event [M = m] is equal to the union of the disjoint events [ n0 = m − α], and
[ n1 = m − β]=[ n0 = n − m + β], for m ∈ L0, whereas [M = m]=[ n0 = n − m + β], for m ∈ L1\L0. By applying
the same reasoning, we have the same expression as in (26). Note that In1 �= n+α−β

2
is always equal to 1 in this case since

n+α−β
2 is not an integer.
For the second moment, we have

E
[

ε̂2OBP
ε̂20,OBP

]
= E

[
E
[

ε̂2OBP
ε̂20,OBP

∣∣∣∣ ε̂0,OBP

]]
=

∑
m∈L

E
[(

ε̂OBP
m/(n + �c)

)2 ∣∣∣∣ M = m
]
P(M = m), (28)
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where M = (n + �c) ε̂0,OBP, as before. By using the
same reasoning applied previously in the case of the first
moment, we have

E
[

ε̂2OBP
ε̂20,OBP

]
=

∑
m∈L0

E
[

ε̂2OBP
m2/(n + �c)2

∣∣∣∣ n0 = m − α

]
P(n0 = m − α) +∑
m∈L1

E
[

ε̂2OBP
m2/(n + �c)2

∣∣∣∣ n0 = n−m + β

]
P(n0 = n−m + β)Im�= n+α+β

2
,

=
	 n+β−α

2 
∑
t=0

E
[

ε̂2OBP
(n0 + α)2/(n + �c)2

∣∣∣∣ n0 = t
]

P(n0 = t) +
	 n+α−β

2 
∑
t=0

E
[

ε̂2OBP
(n1 + β)2/(n + �c)2

∣∣∣∣ n0 = n−t
]

P(n0 = n−t)It �= n+α−β
2

(29)

where, letting k′
i = (r+α)(k+αi)

r+αi
, l′i = (n−r+α)(l+βi)

n−r+βi
, r′j =

(r+α)(r+αi)
r+αj

, s′j = (n−r+α)(s+βi)
n−r+βj

, for i, j = 1, . . . , b, we have

E
[

ε̂2OBP
(n0 + α)2/(n + �c)2

∣∣∣∣ n0 = t
]

= 1
(t + α)2

×

2d∑
i=1

⎧⎨⎩∑
l′i>k′

i

k′2
j P(Ui = k′

i ,Vi = l′i | n0 = t)

+
∑
k≥l

l′2i P(Ui = k′
i ,Vi = l′i | n0 = t)

⎫⎬⎭ +

1
(t + α)2

2d∑
i,j=1
i�=j

⎧⎪⎨⎪⎩
∑
l′i>k′

i

∑
s′j>r′j

k′
ir

′
jP(Ui = k′

i ,Vi = l′i,Uj = r′j ,

Vj = s′j | n0 = t) +∑
l′i>k′

i

∑
r′j≥s′j

k′
is

′
jP(Ui = k′

i ,Vi = l′i,Uj = r′j ,

Vj = s′j | n0 = t) +∑
k′
i≥l′i

∑
s′j>r′j

l′ir′jP(Ui = k′
i ,Vi = l′i,Uj = r′j ,

Vj = s′j | n0 = t) +∑
k′
i≥l′i

∑
r′j≥s′j

l′is′jP(Ui = k′
i ,Vi = l′i,Uj = r′j ,

Vj = s′j | n0 = t)

⎫⎪⎬⎪⎭ ,

(30)

with P(Ui = k,Vi = l,Uj = r,Vj = s | n0 = t) =(n0
k,r
)
pki p

r
j (1−pi −pj)n0−k−r(n−n0

l,s
)
qliq

s
j (1−qi −qj)n−n0−l−s.

The expression for E
[

ε̂2OBP
(n1+β)2/(n+�c)2

∣∣∣∣ n0 = n − t
]

is

obtained from (30) with t + α replaced by t + β .

5 Numerical experiments
5.1 Global accuracy
In this section, we employ Monte Carlo sampling (with
M = 10, 000 simulated data sets for each sample size) to
compute global accuracy metrics of the two Bayesian CoD
estimators. Following [17], we let α = 2d+1 = β = 2d+1,
which produces a prior for c peaked around the value c =
0.5, and αi = βi = 1, for all i = 1, . . . , 2d, i.e. flat (uniform)
prior distributions for (p,q). In each iteration, the values
of c and (p,q) are drawn from the respective priors, and
then sample data is generated according to these prob-
abilities. Given the sample data, we compute the exact
Bayesian MMSE and OBP CoD estimates as expressed in
Section 3, and compare them to the standard resubstitu-
tion CoD estimator, which is based on plugging in sample
frequencies in the expression for the optimal CoD, and
corresponds to the the original choice of CoD estima-
tor in [7]. This estimator is also called the nonparametric
maximum-likelihood CoD estimator in [15]. For further
comparison, we also compute CoD estimators based on
leave-one-out, 0.632 bootstrap and 10-repeated twofold
cross-validation error estimators—for details on all these
CoD estimators, please see [14, 15]. Sample means and
sample variances are employed to approximate the global
accuracy metrics of each CoD estimator.
Figure 1 displays the global bias, variance, and RMS as

a function of varying sample size, for different numbers
of binary predictive variables, d = 1 through d = 3.
Several observations are evident. First, as expected, the
Bayesian MMSE CoD estimator is unbiased and has the
least RMS among all the estimators, and the gap in per-
formance widens as dimensionality increases. Secondly,
the OBP CoD estimator has the second-best performance,
which indicates the benefits of using the Bayesian estima-
tion approach. The accuracy of the OBP CoD estimator is
quite close to that of the MMSE estimator for d = 1, but
the gap widens as d increases. Thirdly, it is also observed
that the OBP Bayesian CoD estimator is pessimistically
biased. Incidentally, the 0.632 bootstrap CoD estimator
displays the best accuracy among the four nonparametric
ones according to global RMS, but it is matched by the
resubstitution CoD estimator as sample size increases.

5.2 Fixed-parameter accuracy
In this section, we study the average accuracy of the two
proposed Bayesian CoD estimators for a fixed parameter,
that is, we evaluate the Bayesian estimators from a purely
frequentist perspective.
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Fig. 1 Global bias, variance, and RMS for several CoD estimators versus sample size n, for different numbers of predicting binary variables d. Top row:
d = 1;Middle row: d = 2; Bottom row: d = 3. Plot key: MMSE (red), OBP (blue), resubstitution (gold), leave-one-out (purple), 0.632 bootstrap (green),
10-repeated twofold cross-validation (black)

As in the previous subsection, we consider d = 1
through d = 3 binary predictive variables. We con-
sider fixed values of the parameters, c∗, p∗, and q∗. In
order to examine the effect of prior belief on perfor-
mance, we consider four scenarios regarding prior density
around the true parameters: a flat (“non-informative”)
prior and three nonflat “matched,” “poorly matched,” and
“mismatched” priors. This is done by assuming different
base measures and concentration parameters for the pri-
ors (c.f. Section 3). As an illustration of the approach,

consider the case d = 1. In our simulation, c∗ = 0.5,
p∗ = (0.6, 0.4), and q∗ = (0.4, 0.6), and the base measures
for the nonflat priors are c0 = 0.5, p0 = p∗, q0 = q∗
(matched prior), c0 = 0.5, p0 = (0.5, 0.5), q0 = (0.5, 0.5)
(poorly matched prior), and c0 = 0.5, p0 = (0.4, 0.6), q0 =
(0.6, 0.4) (mismatched prior). In addition, we consider dif-
ferent values of the concentration parameters to reflect
different degrees of peaking of the prior distributions.
Figure 2 plots the nonflat prior densities for p1 (which is
Beta-distributed), for different values of the concentration
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Fig. 2 Beta prior densities for p1 and d = 1, for different values of the concentration parameter: �p = 5 (high-variance priors), �p = 25
(medium-variance priors), and �p = 50 (low-variance priors). Legend: dashed line (mismatched prior), dotted line (poorly matched prior), and solid
line (matched prior). The base measures are given in Table 1, and the true value of the parameter is indicated by a vertical line

parameter: �p = 5 (high-variance), �p = 25 (medium
variance), and �p = 50 (low variance). Notice that each
density is centered around the expected value. Note that,
if the variance is high, even the matched prior becomes
very diffuse around its expected value (which is the true
value, in this case).
Table 1 gives the values of the parameters used in the

experiments. In all cases, the true value and base measure
for c are the same, c∗ = c0 = 0.5. In addition, in each case,
the true value q∗ and base measure q0 are obtained from
p∗ and p0, respectively, by flipping the corresponding vec-
tor left to right; for example, when p0 = (0.2, 0.1, 0.3, 0.4)
then q0 = (0.4, 0.3, 0.1, 0.2). Therefore, only the values for
p∗ and p0 are shown in Table 1.
Figures 3, 4, and 5 show the results for d = 1 through

d = 3 predictors, respectively. Each figure displays the
bias, variance, and RMS as a function of the sample size
for the Bayesian MMSE and OBP CoD estimators and
the nonparametric CoD estimators. The Bayesian esti-
mators assume a flat non-informative prior and three
nonflat matched, poorly matched, andmismatched priors,
specified by Table 1. For the non-flat priors only, three dif-
ferent variance groups are considered, corresponding to
three different settings for the concentration parameters:

high variance, medium variance, and low variance priors.
Results for the OBP CoD estimator are computed exactly
using the results of Section 4. For all other CoD esti-
mators, bias, variance, and RMS are approximated by
averaging results over 5000 Monte Carlo samples drawn
from the fixed distribution. The curves for the nonpara-
metric CoD estimators and the flat prior Bayesian CoD
estimators are repeated across the columns, for compar-
ison with the results for the nonflat prior Bayesian CoD
estimators.
We can observe that, as expected, both Bayesian CoD

estimators perform better when the prior is matched to
the true value of the parameters than when the match is
poor or nonexistent. In addition, for the matched prior,
accuracy improves substantially as one moves from a dif-
fuse (high-variance) to a peaked (low-variance) prior. This
effect is especially visible in the case of the OBP CoD esti-
mator. For example, with d = 1 the RMS is reduced by
nearly 80 % between the high-variance and low-variance
matched priors. In fact, the accuracy of the OBP CoD esti-
mator beats that of the MMSE CoD estimator for peaked
priors, while the opposite is true under diffuse priors.
Both Bayesian CoD estimators outperform the nonpara-
metric ones in cases d = 1 and d = 3, whereas, in the

Table 1 True distributions and nonflat prior base measures for fixed-parameter experiments. In all cases, c∗ = c0 = 0.5, and q∗ and q0
are obtained from p∗ and p0, respectively, by flipping left to right (see text.)

True distribution Base measure 1 Base measure 2 Base measure 3

d = 1 p∗ =(0.6, 0.4) p10=(0.6, 0.4) p20=(0.5, 0.5) p30=(0.4, 0.6)

d = 2 p∗ =(0.2, 0.3, 0.1, 0.4) p10=(0.2, 0.3, 0.1, 0.4) p20=(0.3, 0.2, 0.2, 0.3) p30=(0.4, 0.1, 0.3, 0.2)

d = 3 p∗ =(0.1, 0.15, 0.05, 0.2, p10=(0.1, 0.15, 0.05, 0.2, p20=(0.15, 0.1, 0.1, 0.15, p30=(0.2, 0.05, 0.15, 0.1,

0.15, 0.1, 0.1, 0.15) 0.15, 0.1, 0.1, 0.15) 0.1, 0.05, 0.15, 0.2) 0.05, 0.2, 0.2, 0.05)

Matched prior Poorly matched prior Mismatched prior
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Fig. 3 Bias, variance, and RMS for several CoD estimators versus sample size for d = 1, under different values of the concentration parameter:
�c/2 = �p = �q = 5 (high-variance priors), �c/2 = �p = �q = 25 (medium-variance priors), and �c/2 = �p = �q = 50 (low-variance priors).
Plot key for base measures: dash-dot line (uniform prior), dashed line (mismatched prior), dotted line (poorly matched prior), and solid line (matched
prior); see Table 1. Plot key for CoD estimators: MMSE (red), OBP (blue), resubstitution (gold), leave-one-out (purple), 0.632 bootstrap (green),
10-repeated twofold cross-validation (black). Results for the OBP CoD estimator are exact while others are approximated by Monte Carlo sampling
method. The curves for the nonparametric CoD estimators and the flat prior Bayesian CoD estimators are repeated across the columns, for
comparison with the results for the nonflat prior Bayesian CoD estimators

d = 2 case, the Bayesian estimators based on mismatched
or poorlymatched priors can performworse than the non-
parametric estimators, for larger sample size. It is also
observed that, as the variance of priors decreases (i.e., for
a larger � value), the performance of both Bayesian esti-
mators improves over the nonparametric ones. Moreover,
it is interesting that the Bayesian MMSE CoD estima-
tor performs better than the OBP CoD estimator, for a

high-variance prior with matched prior, while the OBP
CoD estimator beats the Bayesian MMSE CoD estima-
tor for medium and high-variance matched priors. This
indicates that the OBP CoD estimator is preferable due
to its straightforward representation and superior perfor-
mance with low-variance priors. Notice that the Bayesian
MMSE CoD estimator has the least RMS only when aver-
aged over all distributions and all possible samples, but
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Fig. 4 Bias, variance, and RMS for several CoD estimators versus sample size for d = 2, under different values of the concentration parameter:
�c/2 = �p = �q = 10 (high-variance priors), �c/2 = �p = �q = 50 (medium-variance priors), and �c/2 = �p = �q = 100 (low-variance
priors). Plot key for base measures: dash-dot line (uniform prior), dashed line (mismatched prior), dotted line (poorly matched prior), and solid line
(matched prior); see Table 1. Plot key for CoD estimators: MMSE (red), OBP (blue), resubstitution (gold), leave-one-out (purple), 0.632 bootstrap (green),
10-repeated twofold cross-validation (black). Results for the OBP CoD estimator are exact while others are approximated by Monte Carlo sampling
method. The curves for the nonparametric CoD estimators and the flat prior Bayesian CoD estimators are repeated across the columns, for
comparison with the results for the nonflat prior Bayesian CoD estimators

its optimality does not apply to the settings with a fixed
distribution. In addition, we observe that the Bayesian
MMSE CoD estimator is less variant than the OBP CoD
estimator. It can be seen that the Bayesian CoD estima-
tors based on informative priors are less variant than
those based on non-informative uniform priors. In the
d = 1 and d = 3 cases, the OBP CoD estimator with

uniform priors becomesmore variant than even the cross-
validation estimator, for larger sample size. In addition,
the OBP CoD estimator is less biased in magnitude than
the MMSE estimator for low-variance matched priors.
However, as the variance of priors increases, the Bayesian
MMSE CoD estimator turns out to have less bias than the
OBP estimator.
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Fig. 5 Bias, variance, and RMS for several CoD estimators versus sample size for d = 3, under different values of the concentration parameter:
�c/2 = �p = �q = 20 (high-variance priors), �c/2 = �p = �q = 100 (medium-variance priors), and �c/2 = �p = �q = 200 (low-variance
priors). Plot key for base measures: dash-dot line (uniform prior), dashed line (mismatched prior), dotted line (poorly matched prior), and solid line
(matched prior); see Table 1. Plot key for CoD estimators: MMSE (red), OBP (blue), resubstitution (gold), leave-one-out (purple), 0.632 bootstrap (green),
10-repeated twofold cross-validation (black). Results for the OBP CoD estimator are exact while others are approximated by Monte Carlo sampling
method. The curves for the nonparametric CoD estimators and the flat prior Bayesian CoD estimators are repeated across the columns, for
comparison with the results for the nonflat prior Bayesian CoD estimators

6 Gene regulatory network inference: a
melanoma example

We discuss in this section the application of the Bayesian
CoD estimation approach discussed previously to the
inference of gene regulatory networks. We apply the pro-
posed inference procedure on data collected in a study
of metastatic melanoma [24], containing 31 binarized
sample expression profiles, which have been binarized,

with 0 indicate no significant expression whereas 1 rep-
resents significant expression (either over- or under-
expression). It was found in [24] that the WNT5A gene
is a major driver of processes that lead to metastatic
melanoma. We derive the logic relationships and wiring
of a 7-gene WNT5A network consisting of genes selected
using data analysis and prior biological knowledge:
WNT5A, pirin, S100P, RET1, MART1, HADHB, and
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STC2; for more details about the selection of these genes,
see [25, 26].
We assume a model where the target binary gene

expression Y ∈ {0, 1} is regulated by a binary predic-
tor gene expression vector X = (X1, . . . ,Xd) ∈ {0, 1}d
through the relationship

Y = f (X) ⊕ N , (31)

where f : {0, 1}d → {0, 1} is a Boolean function, the sym-
bol “⊕” indicates modulo-2 addition, and N ∈ {0, 1} is
a noise Bernoulli random variable, independent from X,
such that P(N = 0) = p. The modulo-2 addition behaves
as a XOR operation, which flips the state of the target
Y when N = 1, and leaves it unaltered when N = 0.
Hence, p quantifies the predictive power of the model: if
p = 1, the system is noiseless and prediction is determin-
istic, while if p < 1, there is a degree of indeterminacy
in the state of the target given the state of the predictors.
This model is studied in detail in [15], where an inference
procedure, based on a maximum-likelihood CoD estima-
tor, is proposed to select the unknown Boolean function
f, assuming that f is a member of a candidate model set
F containing Boolean functions that depend on the same
number k of essential variables. Each f in F is specified
by (1) a Boolean function g : {0, 1}k → {0, 1} and (2)
the indices for the predicting variable set {i1, . . . , ik} ⊂
{1, . . . , d}, or wiring, such that f (X) = g

(
Xi1 , . . . ,Xik

)
. If

the candidate boolean functions g belong to a model set
G, then the total number of possible models is |G| × (d

l
)
.

Here, we modify the network inference in [15] to allow
the use of the Bayesian CoD estimators described previ-
ously. For a given target Y and predictor set X, we assume
Dirichlet prior distributions as in (5). Instead of adopting
a non-informative choice of hyperparameters, we employ
an “empirical Bayes” approach, where the hyperparam-
eters are estimated in part from the sample data, as
described next.
First, it follows from the model in (31) that the parame-

ters pi = P(X = xi | Y = 0), qi = P(X = xi | Y = 1), and
c = P(Y = 0) are given by:

pi ∝ (
p(1 − f (xi)) + (1 − p)f (xi)

)
P(X = xi) , i = 1, . . . , 2d ,

qi ∝ (
pf (xi) + (1 − p)(1 − f (xi))

)
P(X = xi) , i = 1, . . . , 2d ,

c = ∑2d
i=1

(
p(1 − f (xi)) + (1 − p)f (xi)

)
P(X = xi) .

(32)

The unknown quantities here are the predictive power
p and the distribution P(X) of the predictors. Given the
sample data Sn = {(X1,Y1), . . . , (Xn,Yn)}, and a fixed
Boolean function g and wiring {i1, . . . , ik}, p can be very

effectively estimated by means of the sample frequency
[15]:

p̂ = 1
n

n∑
i=1

If (Xi)=Yi . (33)

The distribution P(X) could in principle be also estimated
from the data using sample frequencies; however, such an
estimator can become very poor under small sample sizes
and large dimensionality d. Therefore, we simply assume
a flat distribution P(X = xi) = 1/2d, for i = 1, . . . , 2d.
Substituting this and (33) into (32) gives the values of the
hyperparameters used in our experiment:

p̂i ∝ (
p̂(1 − f (xi)) + (1 − p̂)f (xi)

)
, i = 1, . . . , 2d

q̂i ∝ (
p̂f (xi) + (1 − p̂)(1 − f (xi))

)
, i = 1, . . . , 2d

ĉ = (1/2d)
∑2d

i=1
(
p̂(1 − f (xi)) + (1 − p̂)f (xi)

)
.
(34)

Recall from Section 3 that the shape of the Dirich-
let prior distribution is determined by the hyperpa-
rameters through a location parameter, called the base
measure, and a concentration parameter. Our strat-
egy is to set up the estimates in (34) as the base
measure, so that the Dirichlet priors are concentrated
around them, to a degree specified by the concentra-
tion parameter. Formally, the hyperparameters are set
to: {α1, . . . ,α2d } = {�p̂1��, . . . , �p̂2d��}, {β1, . . . ,β2d } =
{�q̂1��, . . . , �q̂2d��}, α = �ĉ�� and β = �(1−ĉ)��, where
�x� gives the smallest integer larger or equal to x. The
value of � is tuned by the experimenter, either manually
or using a data-driven procedure.
We are now ready to state the procedure to select a func-

tion f in F, consisting of a k-predictor Boolean function g
and its wiring.

6.1 Bayesian model selection procedure
1. For each of the Boolean functions g ∈ G, compute

the prior hyperparameters as described earlier.
Obtain the MMSE Bayesian CoD / OBP CoD
estimate under each of the

(d
k
)
possible wirings. Pick

the wiring for g that produces the largest CoD
estimate. Ties, if any, are broken randomly.

2. Among the |G| pairs of Boolean function g and
wiring obtained in the previous step, select the one
that produces the largest predictive power estimate
p̂. Ties, if any, are broken randomly.

In our experiment with the 7-gene WNT5A network,
we consider in turn each gene as a target and the remain-
ing six genes as predictors (so that a gene cannot be a
predictor of itself ). Hence, d = 6. In addition, we assume
that that each gene is predicted by three genes out of the
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six predictors. Therefore, k = 3 and there are
(6
3
) = 20

possible wirings for each target gene. The set G contains
all 218 Boolean functions of exactly three essential vari-
ables (this is less than the full set of 223 = 256 3-input
Boolean functions since those that are reducible to 0-, 1-,
and 2-input logics are not considered). We set � = 1.0
and apply the proposed Bayesian model selection proce-
dure to infer a gene regulatory network for the MMSE
and OBP CoD estimators. We also obtain the gene regula-
tory network produced by employing the standard model
selection procedure, which picks the predictor set (among
all
(6
3
) = 20 choices, in this case) with the largest estimated

resubstitution CoD [25].
The results are presented in Fig. 6. The diagrams rep-

resent the predicted logic functions as binary strings (in
the usual logic table order; e.g., AND = 00000001) and
the predicted wirings as oriented edges, and, in addi-
tion, the estimated CoD in each case is displayed. We
can see that the predicted logic functions and wirings for
the three networks are similar, especially in the cases of
the OBP and resubstitution CoD networks. If one consid-
ers only the three top predicted relationships according
to CoD magnitude, one obtains the diagrams depicted in
Fig. 7, which show that the same network is inferred by
the OBP and resubstitution CoDs, which differ from the
network obtained with the MMSE CoD by only a sin-
gle arrow shift in the wirings (the inferred logics in all
three cases are also very similar, differing by only a few
bit shifts). The important difference between the Bayesian
and standard approaches that can be observed from this
experiment is in the estimated CoD magnitudes: those
estimated with the standard resubstitution CoD tend to
be much larger than the ones estimated with the Bayesian
CoDs. This reflects the optimistic bias that tends to be dis-
played by resubstitution [27], a problem that is avoided by
the Bayesian CoD estimators.

7 Conclusions
We introduced a Bayesian framework for the estimation
of the CoD in a discrete prediction setting and analyzed

the accuracy of the proposed Bayesian MMSE and OBP
CoD estimators based on fixed and random parameters,
using analytical and simulation methods. We also com-
pared the accuracy of the two Bayesian CoD estimators
against those of several classical CoD estimators, based
on resubstitution, leave-one-out, bootstrap, and cross-
validation prediction error estimation. Our results indi-
cated that the BayesianMMSECoD estimator has the best
performance with zero bias and least RMS, when aver-
aged over all distributions and sample data, whereas, for
fixed distributions, we conclude that priors with higher
densities around the fixed distributions present better
accuracy with less RMS. It is also interesting to see that
the OBP CoD estimator, one with very simple calcula-
tion, can beat the Bayesian MMSE CoD estimator when
using low-variance priors with higher densities around
the parameters of the fixed distributions. Furthermore,
we proposed an approach for inference of gene regu-
latory networks based on the proposed Bayesian CoD
estimators, and applied it to the inference of a 7-gene
regulatory network using melanoma data. We observed
that the inferred boolean functions and wirings were sim-
ilar for both CoD Bayesian estimators. Interestingly, the
network inferred with the OBP CoD estimator was very
close to the network obtained with the standard inference
method based on the resubstitution CoD estimator; how-
ever, the magnitude of the CoDs were larger in the latter
case, which is consistent with the fact that resubstitution
tends to be optimistic. We hope that this paper will pro-
vide a theoretical foundation for further work on Bayesian
estimation methodologies for the inference of gene regu-
latory networks. The issue of obtaining informative priors
based on established biological knowledge about regula-
tory relationships, which was not addressed in detail here,
is one that deserves careful consideration in future work
on this topic.

Endnote
1 A proof of this fact is given in the Appendix of [14].

Fig. 6 Gene regulatory networks inferred using the Bayesian model selection procedure for the Bayesian MMSE CoD and OBP CoD and the standard
model selection procedure using the resubstitution CoD
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Fig. 7 Gene regulatory networks inferred using the Bayesian model selection procedure for the Bayesian MMSE CoD and OBP CoD and the standard
model selection procedure using the resubstitution CoD, corresponding to the top three predicted relationships according to CoD magnitude

Appendix A: the beta distribution
If X ∼ Beta(a, b), where a, b > 0, then the probability
density function of X is given by

fX(u) = 1
B(a, b)

ua−1(1 − u)b−1 , 0 < u < 1 , (35)

where the normalizing term B(a, b) is known as the Beta
function:

B(a, b) =
∫ 1

0
ua−1(1 − u)b−1 du . (36)

Clearly, B(a, b) = B(b, a).
For k > −a and l > −b,

E
[
Xk(1 − X)l

]
=

∫ 1

0
uk(1 − u)lf (u) du

= 1
B(a, b)

∫ 1

0
ua+k−1(1 − u)b+l−1 du

= B(a + k, b + l)
B(a, b)

. (37)

For example, E[X]= B(a + 1, b)/B(a, b) = a/(a + b)
(the second equality can be proved using the definition of
the Beta function in terms of the Gamma function and the
properties of the latter [28]). Similarly, E[1/X]= B(a, b −
1)/B(a, b) = (a + b − 1)/(b − 1), provided that b > 1.
The incomplete Beta function is defined as

IB(x; a, b) =
∫ x

0
ua−1(1 − u)b−1 du , 0 ≤ x ≤ 1 .

(38)

Notice that B(a, b) = IB(1; a, b).
It is easy to verify that

P(X ≤ x) = IB(x; a, b)
B(a, b)

and P(X > x) = IB(1 − x; b, a)
B(a, b)

.

(39)

Finally, for k > −a and l > −b,

E
[
Xk(1 − X)lIX≤x

]
= IB(x; a + k, b + l)

B(a, b)
Ix<1

+ B(a + k, b + l)
B(a, b)

Ix≥1 , (40)

which follows easily from the definitions of the Beta
density and the incomplete Beta function, and the
fact that X ∈[0, 1]. In particular, if x ≥ 1, then
E
[
Xk(1 − X)lIX≤x

] = E
[
Xk(1 − X)l

]
.

Clearly, all the previous quantities can be computed in
terms of the incomplete beta function, an expression of
which is given by the next result.

Theorem 1. If X ∼ Beta(a, b), then

IB(x; a, b) =
P∑
i=0

ri(a, b) xa+i , (41)

where P = b − 1 and

ri(a, b) = (−1)i

a + i

(
b − 1
i

)
, i = 0, . . . , b − 1 , (42)

if b is an integer, or P = ∞ and

ri(a, b) = (−1)i

a + i
(b − 1)(b − 2) · · · (b − i + 1)

i!
, i = 1, 2, . . . ,

(43)

otherwise.

Proof. When b is a positive non-integer (that is, 	b
 >

0), we have, by using the Taylor series expansion,

(1 − x)b−1 =
∞∑
i=0

(−1)i
(
b − 1
i

)
xi. (44)
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Note that 	b
 denotes the largest integer that is less than
b. Therefore,

IB(k; a, b) =
∫ k

0

∞∑
i=0

(−1)i
(
b − 1
i

)
xa+i−1dx. (45)

To interchange the integration and summation in (45),
we need to construct a sequence of measurable functions
gi(x), i = 0, 1, . . . ,∞, that satisfy the following three
conditions:

(i)
∣∣∣(−1)i

(b−1
i
)
xa+i−1

∣∣∣ ≤ gi(x), for all k and almost all
x;
(ii)

∑∞
i=0 gi(x) converges for almost all x;

(iii)
∑∞

i=0
∫ 1
0 gi(x)dx < ∞.

Let gi(x) =
∣∣∣(b−1

i
)∣∣∣ xa+i−1, i = 0, . . . ,∞, and obviously

the condition (i) is satisfied.
For 0 ≤ x < 1,

∞∑
i=0

gi(x) =
	b
∑
i=0

gi(x) +
∞∑

i=	b
+1
gi(x) , (46)

where

∞∑
i=	b
+1

gi(x) =
∞∑

i=	b
+1

⎧⎨⎩
	b
∏
j=1

∣∣∣∣bj − 1
∣∣∣∣× i∏

j=	b
+1

∣∣∣∣bj − 1
∣∣∣∣× xa+i−1

⎫⎬⎭
=

∞∑
i=	b
+1

⎧⎨⎩
	b
∏
j=1

b − j
	b
 − j + 1

×
i∏

j=	b
+1

(
1 − b

j

)

× xa+i−1

⎫⎬⎭
<

∞∑
i=	b
+1

xa+i−1 (Since 	b
 + 1 > b)

= xa+	b


1 − x
< ∞ ,

(47)

and thus the condition (ii) is satisfied.

∞∑
i=0

∫ 1

0
gi(x)dx = 1

a
+

∞∑
i=1

i∏
j=1

∣∣∣∣bj − 1
∣∣∣∣ 1
a + i

. (48)

Let
∏i

j=1

∣∣∣ bj − 1
∣∣∣ 1
a+i = zi(i = 1, 2, . . . ,∞). Since

lim
i→∞ i ·

(
zi
zi+1

− 1
)

= lim
i→∞

(b − i)(a + 2i + 1)
(b − i + 1)(a + i)

= 2 > 1 ,

(49)∑∞
i=0

∫ 1
0 gi(x)dx converges by Raabe’s test [29].

Nowwe can interchange the integration and summation
in (45), and we have

IB(k; a, b) =
∞∑
i=0

(−1)i
(
b − 1
i

)∫ k

0
xa+i−1dx

=
∞∑
i=0

(−1)ika+i

a + i

(
b − 1
i

)
.

(50)

When b is an integer, we have (1 − x)b−1 =∑b−1
i=0 (−1)i

(b−1
i
)
xi, and it is easy to show that

IB(k; a, b) =
b−1∑
i=0

(−1)ika+i

a + i

(
b − 1
i

)
. (51)

Notice that B(a, b) = ∑P
i=0 ri(a, b). Note also that the

general case reduces to the special case if b is an integer.
An equivalent expression can be derived where a appears
in the binomial coefficient instead, which can then be used
if a is an integer. If neither a nor b are integers, an approxi-
mation can be obtained by truncating the resulting infinite
series, or by using a numerical software package.
If both a and b are integers, then IB(x; a, b) reduces to a

polynomial in x. Otherwise, it is a simple matter to replace
the finite summations by infinite series as specified in
Theorem 1.

Appendix B: the Dirichlet distribution
Consider a random vector X = (X1, . . . ,XK ), with K ≥ 2,
defined over the (K − 1)-simplex

SK−1 =
{
(X1, . . . ,XK ) ∈ RK | Xi ≥ 0, i = 1, . . . ,K , X1

+ · · · + XK = 1
}
.

If X ∼ Dirichlet(α1, . . . ,αK ), where ai > 0, for i =
1, . . . ,K , then the probability density function of X is
given by

fX(x1, . . . , xK ) = 1
B(a1, . . . , aK )

K∏
i=1

xai−1
i , (x1, . . . , xK ) ∈ SK−1 ,

(52)

where the normalizing term B(a1, . . . , aK ) is the multi-
variate generalization of the Beta function:

B(a1, . . . , aK ) =
∫
SK−1

K∏
i=1

xai−1
i dx . (53)

The shape of the Dirichlet distributions controlled by
the concentration parameter � = ∑K

i=1 ai and the base
measure

(
a′
1, . . . , a′

K
) = (a1/�, . . . , aK/�). Note that the

base measure is a valid discrete probability measure. It can
be shown easily that

E[X]= (a′
1, . . . , a′

K ) ,
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so that the base measure provides the “central” value
around which X is distributed. In particular, large com-
ponents in the base measure bias the distribution in their
direction.
The concentration parameters, on the other hand, con-

trol the variance of the distribution around the base mea-
sure, with large values indicating smaller variance. In fact,
it can be shown that [30]

Var(Xi) = a′
i(1 − a′

i)

� + 1

Cov(Xi,Xj) = −a′
i a′

j

� + 1
, fori �= j .

(54)

From the previous equations, one can see that, as �

approaches infinity, variances converge to zero and X
becomes equal to the base measure with probability 1; in
addition, covariances also go to zero, rendering the com-
ponents of X uncorrelated. The special case ai = 1, for
all i = 1, . . . ,K corresponds to a uniform over SK−1. This
corresponds to a uniform basemeasure and concentration
parameter � = K . If the base measure is not uniform but
� = K , the distribution is approximately uniform. For �

approaching zero, the distribution becomes concentrated
at the boundary of the simplex.
Summing up, large � implies large probability density

around the base measure,� = K implies a nearly uniform
distribution, whereas � close to zero produces sparse
sample vectors with most of the components close to zero.
The Dirichlet distribution is the multivariate generaliza-

tion of the Beta distribution, in the sense that the compo-
nents of a Dirichlet-distributed vector X = (X1, . . . ,XK )

are Beta distributed: Xi ∼ Beta(ai,� − ai), for i =
1, . . . ,K . Notice that in the case K = 2 the Dirichlet
distribution essentially reduces to the Beta distribution.
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