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Abstract: The genus Maytenus is a member of the Celastraceae family, of which several species
have long been used in traditional medicine. Between 1976 and 2021, nearly 270 new compounds
have been isolated and elucidated from the genus Maytenus. Among these, maytansine and its
homologues are extremely rare in nature. Owing to its unique skeleton and remarkable bioactivities,
maytansine has attracted many synthetic endeavors in order to construct its core structure. In this
paper, the current status of the past 45 years of research on Maytenus, with respect to its chemical
and biological activities are discussed. The chemical research includes its structural classification
into triterpenoids, sesquiterpenes and alkaloids, along with several chemical synthesis methods
of maytansine or maytansine fragments. The biological activity research includes activities, such
as anti-tumor, anti-bacterial and anti-inflammatory activities, as well as HIV inhibition, which can
provide a theoretical basis for the better development and utilization of the Maytenus.

Keywords: Maytenus; triterpenoids; sesquiterpenes; alkaloids; synthesis of maytansine

1. Introduction

Plants of the genus Maytenus, a widely distributed member of the Celastraceae family,
include approximately 300 plant species that are spread in tropical and subtropical regions
of the world [1]. The genus Maytenus is widely used in folk medicines around the world,
with the roots, bark and leaves being used for the treatment of cancer, gastric ulcers and
arthritis because of their anti-inflammatory, analgesic, antiallergic and antitumor proper-
ties [2–5]. Studies have shown that a diverse group of chemical substances, triterpenoids,
sesquiterpenes and alkaloids, are responsible for the various biological activities of the
plants in this genus [6]. Among them, the macrolide alkaloid, maytansine, was first iso-
lated from M. serrata [7], and was shown to be an anti-tumor agent with a novel structure,
having some clinical potential. In a clinical trial, maytansine was shown to have promising
anti-tumor activities against lymphocytic leukemia, lymphoma, ovarian cancer, breast
cancer and melanomas [8,9]. Owing to its unique skeleton and remarkable bioactivity,
maytansine has attracted a lot of interest for the possible reconstruction of its core structure.
Many synthetic studies of the partial structure of maytansine have been reported. Fur-
thermore, several friedelane triterpenoids with their aromatized characteristic structures
and sesquiterpene pyridine alkaloids have been isolated from the genus Maytenus, and
these have also showed good anti-tumor [10,11] and anti-bacterial [12] characteristics. The
new chemical constituents and biological activities of Maytenus are given in this review of
work from the past 45 years, as well as several chemical synthesis methods of maytansine
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or maytansine fragments, with the view of realizing their potential development and
utilization in the medical field.

2. Chemical Constituents of Maytenus

Over the past decades, a large variety of biologically active secondary metabolites
have been isolated and identified from the members of the genus Maytenus, which include
a series of triterpenoids, such as friedelane triterpenoids, lupane triterpenes, oleanane
triterpenes, sesquiterpenes and their alkaloids, along with some potent anti-tumor may-
tansinoids. Many scholars have extensively investigated the species, which belong to the
genus Maytenus, and they have isolated several novel compounds with a wide variety of
structures, which may prove to be useful against different diseases.

2.1. Triterpenoids

The genus Maytenus is a rich source of triterpenoids. These types of compounds are
characteristic components found in this genus. The known triterpenoids from 1995 to
2005 were summarized by Zhang et al. [13] and Pu et al. [14,15]. Since then, several new
triterpenoids have been discovered. Therefore, we have attempted to update all the data
relating to the new triterpenoids isolated from the genus Maytenus from 1976 to 2021.

2.1.1. Friedelane Friterpenoids

Friedelane triterpenoids are important characteristic components of the Celastraceae
family. Moreover, they are endowed with novel chemical diversity and possess a broad
spectrum of biological activities. The friedelane triterpenoids are pentacyclic triterpenes
composed of 30 carbons, which are converted from oleanolic acid by methyl shifts. In the
five six-membered rings, the A/B, B/C and C/D rings are all trans and the D/E rings are
mostly cis (i.e., H-18β). There is one β-CH3 substitution at each of the C-4, C-5, C-9, C-14
and C-17 positions. The C-3 position is often substituted with a hydroxyl group, although
sometimes the hydroxyl group is oxidized to a carbonyl group.

The compound pristimerin (1) was isolated from M. chuchuhuasca [16]. A new nor-
triterpene quinone methide, 15α-hydroxy-21-keto-pristimerine (2), has been obtained from
the root bark of M. catingarum [17]. Fourteen compounds, including 2,3,22β-trihydroxy-
24,29-dinor-1,3,5(10), 7-friedelatetraene-6,21-dione-23-al (3), 2,22β-dihydroxyl-3-methoxy-
24,29-dinor-1,3,5(10), 7-friedelatetraene-6,21-dione (4), 2,3,22β-triihydroxy-23,24,29-trinor-
1,3,5(10), 7-friedelatetr aene-6,21-dione (5), 2,22β-dihydroxyl-3-methoxy-24,29-dinor-1,3,5(10),
7-friedelatetraene-6,21-dione (6), 2,3,22β-trihydroxy-24,29-dinor-1,3,5(10)-friedelatetraene-
6,21-dione (7), 2,15α,22β-trihydroxy-3-methoxy-24,29-dinor-1,3,5(10)-friedelatriene-21-one (8),
3,22β-dihydroxy-24,29-dinor-l(10)-3,5-friedelatriene-2,7,21-trione (9), 3,22β-dihydroxy-24,29-
dinor-l(10), 3,5-friedelatriene-21-one (10), 2,3,22β-trihydroxy-24,29-dinor-25(9→8)-1,3,5(10),
7-friedelatetraene-21-one-23-al (11), 23-oxo-iso-tingenone (12), (8S)-7,8-dihydro-7-oxo-tingenoe
(13), (7S,8S)-7-hydroxy-7,8-dihydro-tingenone (14), (8S)-7,8-dihydro-6-oxo-tingenol (15) and
23-nor-6-oxo-tingenol (16) were isolated from the roots of M. amazonica [18,19]. Compounds
28-hydroxy-friedelane-1,3-dione (17) and macrocarpins A–D (18–21) were obtained from the
roots of M. macrocarpa [20,21], while maytenfolone (22) has been isolated from M. diversifolia [22].
Three compounds 6-oxo-iguesterol (23), 6-oxo-tingenol (24) and 3-O-methoxy-6-oxo-tingenol
(25) have been obtained from the root bark of M. canariensis [12]. Four new triterpenes ble-
pharotriol (26), 6-deoxoblepharodol (27), isoblepharodol (28) and 7-oxo-blepharodol (29) were
separated from M. blepharodes [23].

Compounds 15α-hydroxy-tingenone (30), 15-dehydro-pristimerin (31), vitideasin
(32) and 20β-hydroxy-scutione (33) were separated from the roots of M. vitis-idaea [24].
Six new compounds, including 7-oxo-7, 8-dihydro-scutione (34), 6,23-dioxo-7,8-dihydro-
pristimerol-23-oic Acid (35), 23-nor-blepharodol (36), 3-methoxy-6-oxo-tingenol-23-oic
Acid (37), retusonine (38) and 21-Oxopristimerine (39) were isolated from the root bark
of M. retusa [25]. A new compound 3-O-Methyl-6-oxo-pristimerol (40) has been isolated
from the hexane/Et2O 1:1 extract of the root bark of M. chubutensis [26]. Compounds
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3β,24-epoxy-2α,3α-dihydroxy-D:A-friedooleanan-29-oic acid methyl ester (41), 2α-acetoxy-
3β,24-epoxy-3α-hydroxy-D:A-friedooleanan-29-oic acid methyl ester (42), 3α-hydroxy-D:A-
friedooleanan-28-oic acid (43) and 3-oxo-D:A-friedooleanan-28,30-olide (44) were obtained
from the root bark of M. jelskii [27]. Compounds 3β,11β-dihydroxyfriedelane (45) and 3,4-
seco-friedelan-3,11β-olide (46) have been obtained from the hexane extracts of the leaves
of M. robusta [28], while (16β)-16-hydroxy-pristimerin (47) was from M. salicifolia [29]. A
new triterpenoid, 12,16-dihydroxyfriedelan-3-one (48), was isolated from an ethyl acetate
extract of M. oblongata [30]. Compounds 3β,24β-epoxy-29-methoxy-2α,3α,6α-trihydroxy-
D:A-friedelane (49) and 3β,24β-epoxy-29-methoxy-2α,3α,6α-triacetoxy-D:A-friedelane (49a)
were obtained from the root bark extracts of M. cuzcoina [31]. Three new pentacyclic triter-
penoids, friedel-1-en-3,16-dione (50), 1α,29-dihydroxyfriedelan-3-one (51) and 16β,28,29-
trihydroxyfriedelan-3-one (52) have been separated from M. robusta [32]. Dispemroquinone
(53) was isolated from M. dispermus [33]. A new norquinonemethide triterpene with a netza-
hualcoyene type skeleton, scutione (54), was isolated from the root bark of M. scutioides [34].
Compounds zeylasterone (55) and demethylzeylasterone (56) were obtained from M. ble-
pharodes [35], and compound 3,15-dioxo-21α-hydroxy friedelane (57) was isolated from
the methanol extracts of M. robusta [36]. Maytenfoliol (58) was separated from M. di-
versifolium [37]. Four new cytotoxic triterpenoid dimers, including cangorosin A (59),
atropcangorosin A (60), dihydroatropcangorosin A (61) and cangorosin B (62) were ob-
tained from the extracts of M. ilicifolia [38]. Two new triterpenes, umbellatin α (63) and
umbeilatin β (64), have been separated from M. umbellata [39]. Two novel trimer triscutins,
A and B (65–66), have been isolated from extracts of the root bark of M. scutioides [40]. Four
new triterpene dimers, xuxuarine Eα (67), scutionin αB (68), 6′,7′-dihydro-scutionin αB (69)
and 6′β-methoxy-6′,7′dihydro-scutionin αB (70), have been isolated from the extracts of
the roots of M. blepharodes and M. magellanica [41,42] (Table 1 and Figure 1).

2.1.2. Lupane Triterpenes

Lupane triterpenes are characterized by the combination of C-21 and C-19, clustered
into a five-membered carbocyclic E ring. There is an isopropyl group substituted at the
19th position of the E ring with an α configuration, as well as a double bond at the C-20(29)
position. The rings of the A/B, B/C, C/D and D/E types are all trans. The new triter-
penes 3β,28,30-Lup-20(29)-ene triol (71) and 28,30-Dihyroxylup-20(29)-ene-3-one (72) were
obtained from M. canariensis [43], while compound maytefolin A (73) was isolated from
the leaves of a Brazilian medicinal plant, M. ilicifolia [44]. 3-oxo-lup-20(29)-en-30-al (74),
30-hydroxylup-20(29)-en-3-one (75), (11α)-11-hydroxylup-20(29)-en-3-one (76) and (3β)-
lup-20(30)-ene-3,29-diol (77) have been obtained from the hexane extracts of the stems and
branches of M. imbricate [45]. Compounds 11α-hydroxy-epi-betuin (78), 6β-hydroxybetulin
(79), 24-hydroxybetulin (80), rigidenol-28-aldehyde (81) and 28-hydroxyglochidone (82)
have been isolated from M. cuzcoina and M. chiapensis [46]. Compounds 11α-hydroxy-
glochidone (83), 3-epi-nepeticin (84) and 3-epi-calenduladiol (85) were separated from the
root barks of M. cuzcoina and the leaves of M. chiapensis [47]. Four new triterpenes, in-
cluding 3α,16β,28-Trihydroxylup-20(29)-ene (86), 3α,16β-dihydroxylup-12-ene (87), 3β,16β-
dihydroxylup-12-ene (88) and 16β-3,4-Secolup-20(29)-en-3-oic acid (89), were obtained
from the aerial parts of M. apurimacensis [48], while compound 3-(E)-β-coumaroylnepeticin
(90) was isolated from M. retusa [25]. Compound 3,4-seco-lupa-4(23): 20(29)-diene-3,28-
dioic acid 28-methyl ester (91) has been separated from the hexane/Et2O 1:1 extracts of the
root barks of M. magellanica [26]. 1β-Hydroxy-3β-caffeate lup-20(29)-ene (92) was isolated
from the roots of M. apurimacensis [49]. Compounds 3-oxo-21β-H-hop-22(29)-ene (93),
3β-hydroxy-21β-H-hop-22(29)-ene (94) and 3,4-seco-21β-H-hop-22(29)-en-3-oic acid (95)
were isolated from the leaves of M. robusta [28] (Table 2 and Figure 2).
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Table 1. The friedelane triterpenes isolated from Maytenus.

No. Name R1 R2 R3 R4 R5 R6 R7 R8 Type Ref.

1 Pristimerin H H COOMe H H - - - A1 [16]
2 15α-hydroxy-21-keto-pristimerine α-OH H COOMe =O H - - - A1 [17]

3 2,3,22β-trihydroxy-24,29-dinor-1,3,5(10),7-friedelatetraene-6,21-
dione-23-al OH OH CHO H =O β-OH - - A2 [18]

4 2,22β-dihydroxyl-3-methoxy-24,29-dinor-1,3,5(10),7-
friedelatetraene-6,21-dione OH OH CH3 H =O β-OH - - A2 [18]

5 2,3,22β-triihydroxy-23,24,29-trinor-1,3,5(10),7-friedelatetr
aene-6,21-dione OH OH H H =O β-OH - - A2 [18]

6 2,22β-dihydroxyl-3-methoxy-24,29-dinor-1,3,5(10),7-
friedelatetraene-6,21-dione OH OCH3 CH3 H =O β-OH - - A2 [18]

7 2,3,22β-trihydroxy-24,29-dinor-1,3,5(10)–friedelatetraene -6,21-dione OH CH3 =O H H H =O β-OH A3 [18]

8 2,15α,22β-trihydroxy-3-methoxy-24,29-dinor-1,3,
5(10)-friedelatriene-21-one OCH3 CH3 H H α-OH H =O β-OH A3 [18]

9 3,22β-dihydroxy-24,29-dinor-l(10)-3,5-friedelatriene-2,7,21-trione =O β-OH =O H - - - - A4 [18]
10 3,22β-dihydroxy-24,29-dinor-l(10),3,5–friedelatriene-21-one H β-OH =O H - - - - A4 [18]

11 2,3,22β-trihydroxy-24,29-dinor-25(9→8)-1,3,5(10),7-friedelatetraene-
21-one-23-al β-OH - - - - - - - A5 [18]

12 23-oxo-iso-tingenone H - - - - - - - A5 [19]
13 (8S)-7,8-dihydro-7-oxo-tingenoe =O H =O H - - - - A4 [19]
14 (7S, 8S)-7-hydroxy-7,8-dihydro-tingenone α-OH H =O H - - - - A4 [19]
15 (8S)-7,8-dihydro-6-oxo-tingenol OH CH3 =O H H H =O H A3 [19]
16 23-nor-6-oxo-tingenol OH OH H H =O H - - A2 [19]
17 28-hydroxy-friedelane-1,3-dione =O H H H CH2OH CH3 CH3 - A6 [20]
18 Macrocarpin A OH CHO =O H H COOMe H H A3 [21]
19 Macrocarpin B OH OH COOH H =O β-OH - - A2 [21]
20 Macrocarpin C OH OCH3 COOH H =O β-OH - - A2 [21]
21 Macrocarpin D α-OH β-OH =O H - - - - A4 [21]
22 Maytenfolone - - - - - - - - A7 [22]
23 6-oxo-iguesterol - - - - - - - - A8 [12]
24 6-oxo-tingenol OH OH CH3 H =O H - - A2 [12]
25 3-O-methoxy-6-oxo-tingenol OH OCH3 CH3 H =O H - - A2 [12]
26 Blepharotriol OH OH OH COOMe H H - - A2 [23]
27 6-deoxoblepharodol OH CH3 H H H COOMe H H A3 [23]
28 Isoblepharodol OH CH3 H =O H COOMe H H A3 [23]
29 7-oxo-blepharodol OH CH3 =O =O H COOMe H H A3 [23]
30 15α-hydroxy-tingenone α-OH H H =O H - - - A1 [24]
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Table 1. Cont.

No. Name R1 R2 R3 R4 R5 R6 R7 R8 Type Ref.

31 15-dihydro-pristimerin - - - - - - - - A9 [24]
32 Vitideasin α-COOCH3 H - - - - - - A10 [24]
33 20β-hydroxy-scutione α-OH =O - - - - - - A10 [24]
34 7-oxo-7,8-dihydro-scutione - - - - - - - - A11 [25]
35 6,23-dioxo-7,8-dihydro-pristimerol-23-oic Acid OH COOH =O H H COOMe H H A3 [25]
36 23-nor-blepharodol OH H =O H H COOMe H H A3 [25]
37 3-methoxy-6-oxo-tingenol-23-oic Acid OH OCH3 COOH H =O H - - A2 [25]
38 Retusonine - - - - - - - - A12 [25]
39 21-Oxopristimerine H H COOMe =O H - - - A1 [25]
40 3-O-methyl-6-oxo-pristimerol OH OCH3 CH3 COOMe H H - - A2 [26]

41 3β,24-epoxy-2α,3α-dihydroxy-D:A-friedooleanan-29-oic acid
methyl ester OH OH H - - - - - A13 [27]

42 2α-acetoxy-3β,24-epoxy-3α-hydroxy- D:A-friedooleanan-29-oic acid
methyl ester OAc OH H - - - - - A13 [27]

43 3α-hydroxy- D:A-friedooleanan-28-oic acid α-OH H H COOH H - - - A14 [27]
44 3-oxo-D:A-friedooleanan-28,30-olide - - - - - - - - A15 [27]
45 3β,11β-dihydroxyfriedelane β-OH β-OH H CH3 H - - - A14 [28]
46 3,4-seco-friedelan-3,11β-olide - - - - - - - - A16 [28]
47 (16β)-16-hydroxy-pristimerin H β-OH COOMe H H - - - A1 [29]
48 12,16-dihydroxyfriedelan-3-one H H α-OH β-OH CH3 CH3 CH3 - A6 [30]
49 3β,24β-epoxy-29-methoxy-2α,3α,6α-trihydroxy-D:A-friedelane OH OH β-OH - - - - - A13 [31]

49a 3β,24β-epoxy-29-methoxy-2α,3α,6α-triacetoxy-D:A-friedelane OAc OAc β-OAc - - - - - A13 [31]
50 Friedel-1-en-3,16-dione - - - - - - - - A17 [32]
51 1α,29-dihydroxyfriedelan-3-one α-OH H H H CH3 CH3 CH2OH - A6 [32]
52 16β,28,29-trihydroxyfriedelan-3-one H H H β-OH CH2OH CH3 CH2OH - A6 [32]
53 Dispemroquinone =O H H COOMe - - - - A5 [33]
54 Scutione H =O - - - - - - A10 [34]
55 Zeylasterone OH OH COOH COOMe H H - - A2 [35]
56 Demethylzeylasterone OH OH COOH COOH H H - - A2 [35]
57 3,15-dioxo-21-hydroxy friedelane =O H =O CH3 α-OH - - - A14 [36]
58 Maytenfoliol H H H H CH2OH CH2OH CH3 - A6 [37]
59 Cangorosin A H - - - - - - - A18 [38]

60 Atropcangorosin A H(atropisomer of
7-bu) - - - - - - - A18 [38]

61 Dihydroatropcangorosin A 6′,7′-dihydro
derivative of 8-BU - - - - - - - A18 [38]
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Table 1. Cont.

No. Name R1 R2 R3 R4 R5 R6 R7 R8 Type Ref.

62 Cangorosin B - - - - - - - - A19 [38]
63 Umbellatin α α-Me - - - - - - - A20 [39]
64 Umbeilatin β β-Me - - - - - - - A20 [39]
65 Tiscutin A - - - - - - - - A21 [40]
66 Triscutin B - - - - - - - - A22 [40]
67 Xuxuarine Eα - - - - - - - - A23 [41]
68 Scutionin αB - - - - - - - - A24 [42]
69 6′,7′-dihydro-scutionin αB H - - - - - - - A25 [42]
70 6′β-methoxy-6′,7′dihydro-scutionin αB OCH3 - - - - - - - A25 [42]
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Table 2. The lupane triterpenes isolated from Maytenus.

No. Name R1 R2 R3 R4 R5 R6 R7 R8 R9 Type Ref

71 3β,28,30-Lup-20(29)-ene triol H H OH CH3 H H H CH2OH CH2OH B1 [43]
72 28,30-Dihyroxylup-20(29)-ene-3-one H H =O CH3 H H H CH2OH CH2OH B1 [43]
73 Maytefolins A H α-OH =O CH3 H H H CH2OH CH3 B1 [44]
74 3-oxolup-20(29)-en-30-al H H =O CH3 H H H CH3 CHO B1 [45]
75 30-hydroxylup-20(29)-en-3-one H H =O CH3 H H H CH3 CH2OH B1 [45]
76 (11α)-11-hydroxylup-20(29)-en-3-one H H =O CH3 H α-OH H CH3 CH3 B1 [45]
77 (3β)-lup-20(30)-ene-3,29-diol H H β-OH CH3 H H H CH3 CH2OH B1 [45]
78 11α-hydroxy-epi-betuin H H α-OH CH3 H α-OH H CH2OH CH3 B1 [46]
79 6β-hydroxybetulin H H β-OH CH3 β-OH H H CH2OH CH3 B1 [46]
80 24-hydroxybetulin H H =O CH2OH H H H CH2OH CH3 B1 [46]
81 Rigidenol-28-aldehyde H H =O CH3 H α-OH H CHO CH3 B1 [46]
82 28-hydroxyglochidone H CH2OH - - - - - - - B2 [46]
83 11α-hydroxy-glochidone α-OH CH3 - - - - - - - B2 [47]
84 3-epi-nepeticin H H α-OH CH3 H α-OH H CH3 CH3 B1 [47]
85 3-epi-calenduladiol H H α-OH CH3 H H H OH CH3 B1 [47]
86 3α,16β,28-Trihydroxylup-20(29)-ene H H α-OH CH3 H H β-OH CH2OH CH3 B1 [48]
87 3α,16β-dihydroxylup-12-ene α-OH β-OH - - - - - - - B3 [48]
88 3β,16β-dihydroxylup-12-ene β-OH β-OH - - - - - - - B3 [48]
89 16β-3,4-secolup-20(29)-en-3-oic acid - - - - - - - - - B4 [48]

90 3-(E)-β-coumaroylnepeticin H H
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91
3,4-seco-lupa-4(23):20(29)-diene-3,28-
dioicacid 28-methyl
ester

- - - - - - - - - B5 [26]

92 1β-Hydroxy-3β-caffeate
lup-20(29)-ene β-OH H OCaf CH3 H H H CH3 CH3 B1 [49]

93 3-oxo-21β-H-hop-22(29)-ene =O - - - - - - - - B6 [28]
94 3β-hydroxy-21β-H-hop-22(29)-ene β-OH - - - - - - - - B6 [28]

95 3,4-seco-21β-H-hop-22(29)-en-3-oic
acid - - - - - - - - - B7 [28]
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2.1.3. Oleanane Triterpenes

Oleanane triterpenes are widely distributed in the plant kingdom. The configuration
of the rings is A/B, B/C and C/D, and they are all of the trans configuration, while the
D/E ring is cis. There are eight methyl groups on the core nuclei, and the methyl groups at
positions C-10, C-8 and C-17 are all β configuration. The methyl group at the C-14 position is
α configuration, while the C-4 and C-20 positions each have two methyl groups. There may
also be other substituents present in the molecule. Two new oleanane triterpenes, 3β,19α-
dihydroxyolean-12-en-29-oic acid (96) and 3α,19α-dihydroxyolean-12-en-29-oic acid (97),
were obtained from M. austyoyunnanensis [14]. Compound 3-oxo-11α-methoxyolean-12-ene
(98) was obtained from the extracts of the roots of M. spinosa [24], while 22α-hydroxy-29-
methoxy-3β-tetradecanoate-olean-12-ene (99) was separated from the root bark extracts of
M. cuzcoina [31]. The new compound maytefolin B (100) was separated from the leaves of
a Brazilian medicinal plant, M. ilicifolia [44]. One new triterpene, 3β-peroxy-7β,25-epoxy-
D:B-friedoolean-5-ene (101), was separated from the aerial parts of M. apurimacensis [48].
Compounds krukovines A (28-hydroxyolean-12-ene-3,11-dione) (102) and krukovines C
(6β,28-dihydroxyolean-12-ene-3,11-dione) (103) have been obtained from a South American
medicinal plant known as “chuchuhuasi” (M. krukovii) [50]. The aerial parts of M. undata
yielded four new 12-oleanene and 3,4-seco-12-oleanene triterpene acids, namely, 3-oxo-11α-
methoxyolean-12-ene-30-oic acid (104), 3-oxo-11α-hydroxyolean-12-ene-30-oic acid (105),
3-oxo-olean-9(11), 12-diene-30-oic acid (106) and 3,4-seco-olean-4(23), 12-diene-3,29-dioic
acid (107) [51], while 3α-22β-dihydroxyolean-12-en-29-oicacid (108) was obtained from
the methanol extracts of the barks of M. laevis [52]. Compound olean-9(11):12-dien-3β-ol
(109) was isolated from the roots of M. acanthophylla [53] and compound 3β-hydroxy-
D:B-friedo-olean-5-ene (110) was isolated from M. salicifolia Reissek [54]. Compound
19α-hydroxy-3-olean-12-en-29-oic acid (111) was isolated from M. austyoyunnanensis [55]
(Table 3 and Figure 3).
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Table 3. The oleanane triterpenes isolated from Maytenus.

No. Name R1 R2 R3 R4 R5 R6 R7 R8 Type Ref.

96 3β,19α-dihydroxyolean-12-en-29-oic acid β-OH H H CH3 H α-OH CH3 COOH C1 [14]
97 3α,19α-dihydroxyolean-12-en-29-oic acid α-OH H H CH3 H α-OH CH3 COOH C1 [14]
98 3-oxo-11α-methoxyolean-12-ene =O H α-OCH3 CH3 H H CH3 CH3 C1 [24]
99 22α-hydroxy-29-methoxy-3β-tetradecanoate-

olean-12-ene
β-COOC13H27 H H CH3 α-OH H CH3 COOMe C1 [31]

100 Maytefolin B - - - - - - - - C2 [44]
101 3β-peroxy-7β,25-epoxy-D:B-friedoolean-5-ene - - - - - - - - C3 [48]
102 28-hydroxyolean-12-ene-3,11-dione =O H =O CH2OH H H CH3 CH3 C1 [50]
103 6β,28-dihydroxyolean-12-ene-3,11-dione =O β-OH =O CH2OH H H CH3 CH3 C1 [50]
104 3-oxo-11α-methoxyolean-12-ene-30-oic acid =O H α-OCH3 CH3 H H COOH CH3 C1 [51]
105 3-oxo-11α-hydroxyolean-12-ene-30-oic acid =O H α-OH CH3 H H COOH CH3 C1 [51]
106 3-oxo-olean-9(11),12-diene-30-oic acid =O COOH - - - - - - C4 [51]
107 3,4-seco-olean-4(23),12-diene-3,29-dioic acid - - - - - - - - C5 [51]
108 3α-22β-dihydroxyolean-12-en-29-oicacid α-OH H H CH3 β-OH H CH3 COOH C1 [52]
109 Olean-9 (11):12-dien-3β-ol β-OH CH3 - - - - - - C4 [53]
110 3β-Hydroxy-D:B-friedo-olean-5-ene - - - - - - - - C6 [54]
111 19α-hydroxy-3-olean-12-en-29-oic acid =O H H CH3 H α-OH CH3 COOH C1 [55]
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2.1.4. Other Triterpenes

In addition to the above, other types of triterpene compounds have also been isolated
from Maytenus. These include triterpene dimers, ursane triterpenes and dammarane triter-
penes. The compound 3-Oxo-methoxyurs-12-ene (112) was isolated from M. spinosa [24]. Three
ursane triterpenes, krukovines B, D and E (113–115), were obtained from M. krukovii [50].
Compound maytefolin C (116) has been isolated from the leaves of M. ilicifolia [44], while
28-hydroxy-12-ursene-3β-yl-caffeate (uvaol-3-caffeate) (117) has been isolated from the
methanol extracts of the barks of M. laevis [52]. An ursane triterpene 3β-stearyloxy-urs-12-
ene (118) was obtained from M. salicifolia [56]. The stem bark exudates of M. macrocarpa
yielded ten dammarane triterpenes, namely, 24-(E)-3-oxo-dammara-20,24-dien-26-al (119),
24-(Z)-3-oxo-dammara-20,24-dien-26-al (120), 24-(E)-3-oxo-dammara-20,24-dien-26-ol (121),
24-(E)-3-oxo-dammara-23-α-hydroxy-20,24-dien-26-al (122), 24-(E)-3-oxo-dammara-23-β-
hydroxy-20,24-dien-26-al (123), 24-(E)-3-oxo-dammara-6-β-hydroxy-20, 24-dien-26-al (124),
24-(E)-3-oxo-dammara-6-β-hydroxy-20,24-dien-26-ol (125), 23-(Z)-3, 25-dioxo-25-nor-dammara-
20,24-diene (126), 24-(E)-3-oxo-23-methylene-dammara-20,24-dien-26-oico (127), 24(Z)-3-
oxodammara20(21),24-dien-27-oic acid (128) and octa-nor-13-hydroxydammara-1-en-3,17-
dione (129). This was in 1997, and it was the first time that dammrane triterpenes were
isolated from Celastraceae [57,58] (Table 4 and Figure 4).

2.2. Sesqiterpenoids

The most widespread and characteristic metabolites isolated from the Celastraceae
family are a large group of unusual and highly oxygenated sesquiterpenoids, based
on the [5,11-epoxy-5β,10α-eduesman-4(14)-ene] skeleton known as dihydro-β-agarofum.
Sesquiterpenes have multiple substitution sites in their structure, and common substituents
include -OH, -OAc, -Ofu, -Obz and -Onic, which is due to the diversification of their
positions and types. There is a high probability that there are several new compounds from
this group that still need to be discovered [59].
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Table 4. The other triterpenes isolated from Maytenus.

No. Name R1 R2 R3 R4 Type Ref.

112 3-Oxo-methoxyurs-12-ene =O H α-OCH3 CH3 D1 [24]
113 Krukovines B =O H CH2OH H D1 [50]
114 Krukovines D =O OH CH2OH H D1 [50]
115 Krukovines E =O H OH H D1 [50]
116 Maytefolins C - - - - D2 [44]
117 28-hydroxy-12-ursene-3β-yl-caffeate β-OCaf H CH2OH H D1 [52]

118 3β-stearyloxy-urs-12-ene
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Two sesquiterpene polyesters with new polyhydroxy skeletons, 1α,9α-dibenzoyloxy-
6β,8α,15-triacetoxy-4β-hydroxy-dihydro-β-agarofurane (130) and 1α,9α-dibenzoyloxy-
2α,6β,8α,15-tetracetoxy-4β-hydroxydihydro-β-agrofurane (131), were isolated from the
aerial portions of M. canariensis [60]. Compounds 6β,8β-15-triacetoxy-1α,9α-dibenzoyloxy-
4β-hydroxy-β-dihydroagarofuran (132), 1α,6β,8β,15-tetraacetoxy-9α-benzoyloxy-4β-
hydroxy-β-dihydroagarofuran (133) and (1S,4S,6R,7R,8R,9R)-1,6,15-triacetoxy-8,9-dibenzoyloxy-
4β-hydroxy-β-dihydroagarofuran (134) were isolated from the aerial parts of M. macrocarpa [61].
Compounds (1R,2S,4S,5S,6R,7R,9S,10S)-6,15-diacetoxy-1,2,9-tribenzoyloxy-4-hrdroxy-8-
oxo-dihydro-β-agarofuran (135) and 9β-cinnamoyloxy-2β,3β-diacetoxy-6β-hydroxy-lα-
nicotinoyloxydihidro-β-agarofuran (136) were separated from M. blepharodes [41]. Eight
sesquiterpenoids, including 1α-acetoxy-2α,6β,9β-trtifuroyloxy-4β-hydroxy-dihydro-β-
agarofuran (137), 1α,2α-diacetoxy-6β,9β-difuroyloxy-4β-hydroxy-dihydro-β-agarofuran
(138), 1α-acetoxy-6β,9β-difuroyloxy-2α,4β-dihydroxy-dihydro-β-agarofuran (139), 1α-acetoxy-
2α-benzoyloxy-6β,9β-difuroyloxy-4β-dihydro-β-agarofuran (140), 1α-acetoxy-6β,9β-difuroyloxy
-2α-propyonyloxy-4β-hydroxy-dihydro-β-agarofuran (141), 1α-acetoxy-6α,9β-difuroyloxy-
2α-(2)-methylbutyroyloxy-4β-hydroxy-dihydro-β-agarofuran
(142), 1α,2α,15-triacetoxy-6β,9β-difuroyloxy-4β-hydroxy-dihydro-β-agarofuran (143) and
1α,2α,15-triacetoxy-6β,9β-dibenzoyloxy-4β-hydroxy-dihydro-β-agarofuran (144) were ob-
tained from the n-hexane: Et2O (1:1) extracts of the fruits of M. cuzcoina [59].

The n-hexane/Et2O (1:1) extracts of the root barks of M. magellanica yielded eight new
dihydro-β-agarofuran sesquiterpenes (145–152), and the n-hexane/Et2O (1:1) extracts of
the root barks of M. chubutensis yielded two more new compounds of this family (153–154).
Their structures were elucidated as (1R,2R,4S,5R,7S,9S,10R)-2-acetoxy-1-benzoyloxy-9-
cinnamoyloxy-4-hydroxy-dihydro-β-agarofuran (145), (1R,2S,3S,5R,7R,9S,10R)-2-acetoxy-
9-benzoyloxy-1-cinnamoyloxy-3-nicotinoyloxy-4-hydroxy-dihydro-β-agarofuran (146), (1R,
2S,3S,4S,5S,6R,7R,9S,10R)-2,6-diacetoxy-1-benzoyloxy-9-cinnamoyloxy-3-nicotinoyloxy-4-
hydroxy-dihydro-β-agarofuran (147), (1R,2S,3S,4S,5S,6R,7R,9S,10R)-2,6-diacetoxy-1,9-
dibenzoyloxy-3-nicotinoyloxy-4-hydroxy-dihydro-β-agarofuran (148), (1R,2S,3S,4S,5R,7S,
8S,9R,10R)-2,3-diacetoxy-8,9-dibenzoyloxy-1-nicotinoyloxy-4-hydroxy-dihydro-β-agarofuran
(149), (1R,2S,4S,5S,6R,7R,8S,9R,10S)-6,8-diacetoxy-1,2,9-tribenzoyloxy-4-hydroxy-dihydro-
β-agarofuran (150), (1R,2S,3S,4S,5R,7S,8S,9R,10R)-2,8-diacetoxy-3,9-dibenzoyloxy-1-
nicotinoyloxy-4-hydroxy-dihydro-β-agarofuran (151), (1R, 2S,4R,5S,6R,7R,8S,9R,10S)-6,8-
diacetoxy-1,9-dibenzoyloxy-2-nicotinoyloxy-dihydro-β-agarofuran (152), 1α,15-diacetoxy-
6β,9β-dibenzoyloxy-2α-nicotinoyloxy-dihydro-β-agarofuran (153) and 1α,15-diacetoxy-
6β,9β-dibenzoyloxy-2α-nicotinoyloxy-4β-hydroxy-dihydro-β-agarofuran (154) [62]. Com-
pounds (1R,2S,4S,5S,6R,7R,9S,10S)-1,2,6,9,15-pentaacetoxy-4-hydroxy-8-oxo-dihydro-β-
agarofuran (155), (1R,2S,4S,5S,6R,7R,9S,10S)-1,2,9,15-taacetoxy-4,6-dihydroxy-8-oxo-dihydro-
β-agarofuran (156), (1R,2S,4S,5S,6R,7R,9S,10S)-1,9,15-triacetoxy-2,4,6-trihydroxy-8-oxo-
dihydro-β-agarofuran (157), (1R,2S,3S,4S,5S,6R,7R,9S,10S)-1,2,3,6,9,12,15-heptaacetoxy-4-
hydroxy-8-oxo-dihydro-β-agarofuran (158) and 1α,2α,3β,6β,8α,9α,12,15-octaacetoxy-4β-
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hydroxy-dihydro-β-agarofuran (159) were isolated from the leaves of M. chiapensis [63]. In
addition, (1S,4S,5S,6R,7R,8S,9R,10R)-8-acetoxy-1,9-dibenzoyloxy-6-nicotynoyloxy-dihydro-
β-agarofuran (160) and (1S,4R,5R,6R,7R,8S,9R,10R)-8-acetoxy-1,9-dibenzoyloxy-4-hydroxy-
nicotynoyloxy-dihydro-β-agarofuran (161) have been isolated from the roots of M. apurimacensis [49].

Thirteen sesquiterpenes, including (1R,2S,4S,5S,6R,7R,9S,10R)-115-diacetoxy-2,6-
dibenzoyloxy-9-(3-furoyloxy)-4-hydroxy-dihydro-β-agarofuran (162), (1R,2S,4S,5S,6R,7R,
9S,10R)-1,2,15-triacetoxy-6-benzoyloxy-9-(3-furoyloxy)-4-hydroxy-dihydro-β-agarofuran (163),
(1R,2S,4S,5S,6R,7R,9S,10R)-1,15-diacetoxy-6-benzoyloxy-9-(3-furoyloxy)-2,4-dihydroxy-dihydro-
β-agarofuran (164), (1R,2S,4S,5S,6R,7R,9S,10R)-1,15-diacetoxy-6,9-dibenzoyloxy-2,4-hydroxy-
dihydro-β-agarofuran (165), (1R,2S,4S,5S,6R,7R,9S,10R)-1,2,6,15-tetracetoxy-9-(3-furoyloxy)-
4-hydroxy-dihydro-β-agarofuran (166), (1R,2S,4S,5S,6R,7R,9S,10R)-1-Acetoxy-2,6-dibenzoyloxy-
9-(3-furoyloxy)-4-hydroxy-dihydro-β-agarofuran (167), (1S,2S,3S,4S,5R,7R,9S,10R)-2,3-diacetoxy-
9-benzoyloxy-1-(3-furoyloxy)-4-hydroxy-dihydro-β-agarofuran (168), (1S,2R,4S,5R,
7R,9S,10R)-2-acetoxy-9-benzoyloxy-1-(3-furoyloxy)-4-hydroxy-dihydro-β-agarofuran (169),
(1S,2R,4S,5R,7R,9S,10R)-2-Acetoxy-1,9-di-(3-furoyloxy)-4-hydroxy-dihydro-β-agarofuran (170),
(1S,2R,4S,5R,7R,9S,10R)-2-Acetoxy-9-trans-cynamoiloxy-1-(3-furoyloxy)-4-hydroxy-dihydro-
β-agarofuran (171), (1S,4S,5R,7R,9S,10S)-9-Benzoyloxy-1-(3-furoyloxy)-4-hydroxy-dihydro-
β-agarofuran (172), (1S,2R,3R,4R,5S,7R,9S,10R)-2,3-diacetoxy-9-benzoyloxy-1-(3-furoyloxy)-
dihydro-β-agarofuran (173) and (1S,2R,4R,5S,7R,9S,10R)-2-Acetoxy-9-benzoyloxy-1-(3-
furoyloxy)-dihydro-β-agarofuran (174) have been isolated from the hexanee-Et2O extracts
of the fruits of M. jelskii [64]. Nine new β-dihydroagarofurans, 1α2α,9β,15-tetracetoxy-8β-
benzoyloxy-β-dihydroagarofuran (175), 1α-benzoyloxy-2α,6β,8α-triacetoxy-9α-methyllbutyroyloxy-
β-dihydroagarofuran (176), 1α,6β-diacetoxy-2α,8α,9α-tribenzoyloxy-β-dihydroagarofuran
(177), 1α-benzoyloxy-2α,6β,8α,9α-tetraacetoxy-β-dihydroagarofuran (178), 1α,6β,8α-triacetoxy-
9α-benzoyloxy-2α-hydroxy-β-dihydroagarofuran (179), (1R,2S,4R,5S,6R,7R,8R,9S,10S)-1,6-
diacetoxy-8,9-dibenzoyloxy-2-h ydroxy-β-dihydroagarofuran (180), 1α,6β,15-triacetoxy-
8α-methylbutyroyloxy-9α-benzoyloxy-2α-hydroxy-β-dihydroagaro-furan (181), 1α,6β,15-
triacetoxy-8α,9α-dibenzoyloxy-2α-hydroxy-β-dihydroagarofuran (182) and 1α,6β,8β,15-
tetracetoxy-2α-hydroxy-9α-benzoyloxy-β-dihydroagarofuran (183), were isolated from the
leaves of M. spinosa [65]. Five new compounds, chiapens A–E (184–188), were isolated
from M. chiapensis [66].

Compounds 1α,6β-diacetoxy-8α-hydroxy-9β-furoyloxy-β-agarofuran (189), 1α-acetoxy-
6β,8α-dihydroxy-9β-furoyloxy-β-agarofuran (190), 1α-benzoyloxy-2α,3β,6β,9β,14-pentaacetoxy-
8-oxo-β-agarofuan (191) and 1α-furoyloxy-2α,3β,6β,9β,14-pentaacetoxy-8-oxo-β-agarofuan
(192) were obtained from an extract of the seeds of M. boaria [67]. Bilocularins A−I (193–201)
were isolated from M. bilocularis. In addition, bilocularins D–F are the first examples of
dihydro-b-agarofurans, which bear a hydroxyacetate group [68,69]. Compounds (1S,4S,5S,
6R,7R,8R,9R,10S)-6-acetoxy-4,9,10-trihydroxy-2,2,5a,9-tetramethyloctahydro-2H-3,9a-
methanobenzo[b]oxepin-5-yl furan-3-carboxylate (202), (1S,4S,5S,6R,7R,8R,9R,10S)-6-acetoxy-
4,9-dihydroxy-2,2,5a,9-tetramethyloctahydro-2H-3,9a-methanobenzo[b]oxepine-5,10-diyl bis
(furan-3-carboxylate) (203), (1S,4S,5S,6R,7R,9S,10S)-6-acetoxy-9-hydroxy-2,2,5a,9-
tetramethyloctahydro-2H-3,9a-methanobenzo[b]oxepine-5, 10-diyl bis(furan-3-carboxylate)
(204) and (1S,4S,5S,6R,7R,9S, 10S)-6-acetoxy-10-(benzoyloxy)-9-hydroxy-2,2,5a,9-
tetramethyloctahydro-2H-3,9a-methanobenzo[b]-oxepin-5-yl furan-3-carboxylate (205) were
isolated from the seeds of M. boaria [70,71]. Compounds 2β,6β-diacetoxy-1α,9β-dibenzoyl-
3β-hydroxy-dihydro-β-agarofuran (206), 1α,2α,6β,8α-tetraacetoxy-9β-benzoyl-15-hydroxy-
dihydro-β-agarofuran (207) and 1α,2α,6β,8α,15-pentaacetoxy-9β-benzoyl-dihydro-β-agarofuran
(208) have been separated from M. boaria [72]. 1β-acetoxy-9α-benzoyloxy-2β,6α-dinicotinoyloxy-
β-dihydroagarofuran (209) was obtained from the anti-microbially active ethanol extracts
of M. heterophylla [73]. In addition, an eudesmane glucoside, boarioside (210), has been
isolated from M. boaria [74]. Compounds 4-deacetyl-10-oxo-dihydrobotrydial (211) and
4β-acetoxy-9β,10β,15α-trihydroxyp robotrydial (212) were obtained from solid cultures of
an endocytic fungal strain, Phomopsis species Lz42, cultivated on M. hookeri [75] (Table 5
and Figure 5).
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2.3. Alkaloids
2.3.1. Sesquiterpene Pyridine Alkaloids

Among the naturally occurring nitrogen containing compounds, the pyridine alkaloids
constitute an important group, and these are relatively rare natural products. The Celas-
traceae family is a rich source of sesquiterpene pyridine alkaloids. These compounds are
endowed with a novel type of chemical diversity, and have complicated stereo-chemistries.
They also possess a broad spectrum of biological activities, such as having immunosup-
pressive and anti-tumor properties. The vast majority of macrolide sesquiterpene pyridine
alkaloids, from the genus Maytenus, are based on the [5,11-epoxy-5β,10a-eduesman-4(14)-
ene] skeleton known as dihydro-β-agarofum. These compounds are characterized by a
pyridine dicarboxylic acid macrocyclic bridge (such as evoninic, wilfordic and hydroxy-
wilfordic acids), linked via two ester moieties at the C-3 and C-15 positions [65,76]. Many
of these alkaloids have been isolated by organic chemists over recent years. Below we
summarize their information, including the names of compounds, their original plant
source as well as their structures.

The potent anti-feedant wilforine (213) was isolated from M. rigida [77]. Compounds
emarginatines A–H (214–221) and emarginatinine (222) were obtained from M. emarginata
and the leaves of M. diversifolia. [11,22,78,79]. Ebenifoline W-I (223), ebenifoline E-I
(224) and ebenifoline E-II (225) were separated from the stem bark methanol extracts
of M. ebenifolia Reiss [80]. Compounds aquifoliunines E-I-IV (226–229) have been obtained
from the root barks of M. aquiJolium. [81,82], while ilicifoliunines A–B (230–231) and
mayteine (232) were isolated from the root barks of M. ilicifolia [83]. Laevisines A (233)
and B (234) have been separated from the CHCl3:MeOH (9:1) extracts of the barks of
M. laevis [84]. Compounds mekongensine (235), 7-epi-mekongensine (236), 1-O-benzoyl-1-
deacetylmekongensine (237), 9′-deacetoxymekongensine (238), 1-O-benzoyl-1-deacetyl-9′-
deacetoxymekongensine (239), 7-epi-euojaponine A (240), 2-O-benzoyl-2-deacetylmayteine
(241) and 7-epi-5-O-benzoyl-5-deacetylperitassine A (242) have been isolated from the
roots of M. mekongensis [85]. The compound 5-benzoyl-5-deacetylwilforidine (243) was
isolated from M. buchananii (Loes.) R. Wilczek. This appears to be the first sesquiterpene
nicotinoyl alkaloid found which was based on hydroxywilfordic acid, with a benzoyl
group at C-5 position [86]. Compounds putterines A (244) and B (245) have been separated
from the roots of M. putterlickoides [76]. The compound 7-(acetyloxy)-O11-benzoyl-O2,11-
deacetyl-7-deoxoevonine (246) was isolated from the methanol extracts of the barks of
the Colombian medicinal plant, M. laevis [52]. Chiapenines ES-I (247), ES-II (248), ES-III
(249) and ES-IV (250) were isolated from the leaves of M. chiapensis [87]. Compound
jelskiine (251) was obtained from M. jelskii and M. cuzcoina [88]. Compounds O9-benzoyl-
O9-deacetylevonine (252) and 8β-acetoxy-O1-benzoyl- O1-deacetyl-8-deoxoevonine (253)
have been separated from the organic extracts of the roots of M. spinosa [24]. Com-
pounds 1α,2α,6β,8β,9α,15-hexacetoxy-4β-hydroxy-3β,13-[2′-(3-carboxybutyl)] nicotinicacid-
dicarbo-lactone-β-dihydroagarofuran (254), 1α,2α,9α,15-tetracetoxy-4β,6β-dihydroxy-8-
oxo,3β,13-[4′-(3-carboxybutyl)]nicotinicacid-dicarbolactone-β-dihydroagarofuran (255), 1α,
2α,9α,15-tetracetoxy-4β,6β,8β-trihydroxy-3β,13-[4′-(3-carboxybutyl)] nicotinicacid-
dicarbolactone-β-dihydroagarofuran (256) and 1α,2α,8β,9α,15-pent acetoxy-4β,6β-dihydroxy-
3β,13-[4′-(3-carboxybutyl)] nicotinicaciddicarbolactne-β-dihydroagarofuran (257) were iso-
lated from the leaves of M. spinosa [65]. Compounds 4-deoxyalatamine (258), 1-O-benzoyl-
1-deacetyl-4-deoxy-alatamine (259), 1,2-O-dibenzoyl-1,2-deacetyl-4-deoxyalatamine (260)
and 4-deoxyisowilfordine (261) were obtained from an ethyl acetate extract of M. oblongata
stems [31] (Table 6 and Figure 6).
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Table 5. The sesqiterpenoids isolated from Maytenus.

No. Name R1 R2 R3 R4 R5 R6 R7 R8 Type Ref.

130 1α,9α-dibenzoyloxy-6β,8α,15-triacetoxy-4β-hydroxy-
dihydro-β-agarofurane OBz H H OAc CH3 α-OAc α-OBz CH2OAc E1 [60]

131 1α,9α-dibenzoyloxy-2α,6β,8α,15-tetracetoxy-4β-
hydroxydihydro-β-agrofurane OBz α-OAc H OAc CH3 α-OAc α-OBz CH2OAc E1 [60]

132 6β,8β-15-triacetoxy-1α,9α-dibenzoyloxy-4β-hydroxy-β-
dihydroagarofuran OBz H H OAc CH3 β-OAc α-OBz CH2OAc E1 [61]

133 1α,6β,8β-15-tetraacetoxy-9α-benzoyloxy-4β-hydroxy-β-
dihydroagarofuran OAc H H OAc CH3 β-OAc α-OBz CH2OAc E1 [61]

134 (1S,4S,6R,7S,8S,9R)-1,6,15- triacetoxy-8,9-dibenzoyloxy-
4β-hydroxy-β-dihydroagarofuran OAc H H OAc CH3 α-OBz β-OBz CH2OAc E1 [61]

135 (1R,2S,4S,5S,6R,7R,9S,10S)-6,15-diacetoxy-1,2,9-
tribenzoyloxy-4-hrdroxy-8-oxo-dihydro-β-agarofuran OBz α-OBz H OAc CH3 O α-OBz CH2OAc E1 [41]

136 9β-cinnamoyloxy-2β,3β-diacetoxy-6β-hydroxy-lα-
nicotinoyloxydihidro-β-agarofuran ONic β-OAc β-OAc OH CH3 H β-OCin CH3 E1 [41]

137
1α-acetoxy-2α,6β,9β-trtifuroyloxy-4β-hydroxy-dihydro-
β-
agarofuran

OAc α-OFu H OFu CH3 H β-OFu CH3 E1 [59]

138
1α,2α-diacetoxy-6β,9β-difuroyloxy-4β-hydroxy-dihydro-
β-
agarofuran

OAc α-OAc H OFu CH3 H β-OFu CH3 E1 [59]

139 1α-acetoxy-6β,9β-difuroyloxy-2α,4β-dihydroxy-dihydro-
β-agarofuran OAc α-OH H OFu CH3 H β-OFu CH3 E1 [59]

140 1α-acetoxy-2α-benzoyloxy-6β,9β-difuroyloxy-4β-
dihydro-β-agarofuran OAc α-OBz H OFu CH3 H β-OFu CH3 E1 [59]

141 1α-acetoxy-6β,9β-difuroyloxy-2α-propyonyloxy-4β-
hydroxy-dihydro-β-agarofuran OAc α-OPr H OFu CH3 H β-OFu CH3 E1 [59]

142 1α-acetoxy-6α,9β-difuroyloxy-2α-(2)-methylbutyroyloxy-
4β-hydroxy-dihydro-β-agarofuran OAc α-OButMe H OFu CH3 H β-OFu CH3 E1 [59]

143 1α, 2α,15-triacetoxy-6β,9β-difuroyloxy-4β-
hydroxy-dihydro-β-agarofuran OAc α-OAc H OFu CH3 H β-OFu CH2OAc E1 [59]

144 1α, 2α,15-triacetoxy-6β,9β-dibenzoyloxy-4β-
hydroxy-dihydro-β-agarofuran OAc α-OAc H OBz CH3 H β-OBz CH2OAc E1 [59]

145
(1R,2R,4S,5R,7S,9S,10R)-2-acetoxy-1-benzoyloxy-9-
cinnamoyloxy-4-hydroxy-
dihydro-β-agarofuran

OBz β-OAc H H CH3 H β-OH CH3 E1 [62]
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Table 5. Cont.

No. Name R1 R2 R3 R4 R5 R6 R7 R8 Type Ref.

146
(1R,2S,3S,5R,7R,9S,10R)-2-acetoxy-9-benzoyloxy-1-
cinnamoyloxy-3-nicotinoyloxy-4-hydroxy-dihydro-β-
agarofuran

OCin β-OAc β-ONic H CH3 H H CH3 E1 [62]

147
(1R,2S,3S,4S,5S,6R,7R,9S,10R)-2,6-diacetoxy-1-
benzoyloxy-9-cinnamoyloxy-3-nicotinoyloxy-4-hydroxy-
dihydro-β-agarofuran

OBz β-OAc β-ONic OAc CH3 H β-OCin CH3 E1 [62]

148
(1R,2S,3S,4S,5S,6R,7R,9S,10R)-2,6-diacetoxy-1,9-
dibenzoyloxy-3-nicotinoyloxy-4-hydroxy-dihydro-β-
agarofuran

OBz β-OAc β-ONic H CH3 H β-OBz CH3 E1 [62]

149
(1R,2S,3S,4S,5R,7S,8S,9R,10R)-2,3-diacetoxy-8,9-
dibenzoyloxy-1-nicotinoyloxy-4-hydroxy-dihydro-β-
agarofuran

ONic β-OAc β-OAc H CH3 β-OBz β-OBz CH3 E1 [62]

150 (1R,2S,4S,5S,6R,7R,8S,9R,10S)-6,8-diacetoxy-1,2,9-
tribenzoyloxy-4-hydroxy-dihydro-β-agarofuran OBz α-OBz H OAc CH3 β-OAc β-OBz CH3 E1 [62]

151
(1R,2S,3S,4S,5R,7S,8S,9R,10R)-2,8-diacetoxy-3,9-
dibenzoyloxy-1-nicotinoyloxy-4-hydroxy-dihydro-β-
agarofuran

ONic β-OAc β-OBz H β-OAc β-OBz CH3 - E2 [62]

152 (1R,2S,4R,5S,6R,7R,8S,9R,10S)-6,8-diacetoxy-1,9-
dibenzoyloxy-2-nicotinoyloxy-dihydro-β-agarofuran OBz α-ONic H OAc β-OAc β-OBz CH3 - E2 [62]

153 1α,15-diacetoxy-6β,9β-dibenzoyloxy-2α-nicotinoyloxy-
dihydro-β-agarofuran OAc α-ONic H OBz H β-OBz CH3 - E2 [62]

154 1α,15-diacetoxy-6β,9β-dibenzoyloxy-2α-nicotinoyloxy-
4β-hydroxy-dihydro-β-agarofuran OAc α-ONic H OBz CH3 H β-OBz CH2OAc E1 [62]

155 (1R,2S,4S,5S,6R,7R,9S,10S)-1,2,6,9,15-pentaacetoxy-4-
hydroxy-8-oxo-dihydro-β-agarofuran OAc α-OAc H OAc CH3 O α-OAc CH2OAc E1 [63]

156 (1R,2S,4S,5S,6R,7R,9S,10S)-1,2,9,15-taacetoxy-4,6-
dihydroxy-8-oxo-dihydro-β-agarofuran OAc α-OAc H OH CH3 O α-OAc CH2OAc E1 [63]

157 (1R,2S,4S,5S,6R,7R,9S,10S)-1,9,15-triacetoxy-2,4,6-
trihydroxy-8-oxo-dihydro-β-agarofuran OAc α-OH H OH CH3 O α-OAc CH2OAc E1 [63]

158 (1R,2S,3S,4S,5S,6R,7R,9S,10S)-1,2,3,6,9,12,15-
heptaacetoxy-4-hydroxy-8-oxo-dihydro-β-agarofuran OAc α-OAc β-OAc OAc CH2OAc O α-OAc CH2OAc E1 [63]

159 1α,2α,3β,6β,8α,9α,12,15-octaacetoxy-4β-hydroxy-
dihydro-β-agarofuran OAc α-OAc β-OAc OAc CH2OAc α-OAc α-OAc CH2OAc E1 [63]

160 (1S,4S,5S,6R,7R,8S,9R,10R)-8-acetoxy-1,9-dibenzoyloxy-
6-nicotynoyloxy-dihydro-β-agarofuran OBz H H ONic α-OAc α-OBz CH3 - E2 [49]
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Table 5. Cont.

No. Name R1 R2 R3 R4 R5 R6 R7 R8 Type Ref.

161 (1S,4R,5R,6R,7R,8S,9R,10R)-8-acetoxy-1,9-dibenzoyloxy-
4-hydroxy-nicotynoyloxy-dihydro-β-agarofuran OBz H H ONic CH3 α-OAc α-OBz CH3 E1 [49]

162
(1R,2S,4S,5S,6R,7R,9S,10R)-1,15-diacetoxy-2,6-
dibenzoyloxy-9-(3-furoyloxy)-4-hydroxy-dihydro-β-
agarofuran

OAc α-OBz H OBz CH3 H α-OFu CH2OAc E1 [64]

163
(1R,2S,4S,5S,6R,7R,9S,10R)-1,2,15-triacetoxy-6-
benzoyloxy-9-(3-furoyloxy)-4-hydroxy-dihydro-β-
agarofuran

OAc α-OAc H OBz CH3 H α-OFu CH2OAc E1 [64]

164 (1R,2S,4S,5S,6R,7R,9S,10R)-1,15-diacetoxy-6-benzoyloxy-
9-(3-furoyloxy)-2,4-dihydroxy-dihydro-β-agarofuran OAc α-OH H OBz CH3 H α-OFu CH2OAc E1 [64]

165 (1R,2S,4S,5S,6R,7R,9S,10R)-1,15-diacetoxy-6,9-
dibenzoyloxy-2,4-hydroxy-dihydro-β-agarofuran OAc α-OH H OBz CH3 H α-OBz CH2OAc E1 [64]

166 (1R,2S,4S,5S,6R,7R,9S,10R)-1,2,6,15-tetracetoxy-9-(3-
furoyloxy)-4-hydroxy-dihydro-β-agarofuran OAc α-OAc H OAc CH3 H α-OFu CH2OAc E1 [64]

167 (1R,2S,4S,5S,6R,7R,9S,10R)-1-Acetoxy-2,6-dibenzoyloxy-
9-(3-furoyloxy)-4-hydroxy-dihydro-β-agarofuran OAc α-OBz H OBz CH3 H α-OFu CH3 E1 [64]

168 (1S,2S,3S,4S,5R,7R,9S,10R)-2,3-diacetoxy-9-benzoyloxy-
1-(3-furoyloxy)-4-hydroxy-dihydro-β-agarofuran OFu β-OAc β-OAc H CH3 H α-OBz CH3 E1 [64]

169 (1S,2R,4S,5R,7R,9S,10R)-2-acetoxy-9-benzoyloxy-1-(3-
furoyloxy)-4-hydroxy-dihydro-β-agarofuran OFu β-OAc H H CH3 H α-OBz CH3 E1 [64]

170 (1S,2R,4S,5R,7R,9S,10R)-2-Acetoxy-1,9-di-(3-furoyloxy)-
4-hydroxy-dihydro-β-agarofuran OFu β-OAc H H CH3 H α-OFu CH3 E1 [64]

171 (1S,2R,4S,5R,7R,9S,10R)-2-Acetoxy-9-trans-cynamoiloxy-
1-(3-furoyloxy)-4-hydroxy-dihydro-β-agarofuran OFu β-OAc H H CH3 H α-OCin CH3 E1 [64]

172 (1S,4S,5R,7R,9S,10S)-9-Benzoyloxy-1-(3-furoyloxy)-4-
hydroxy-dihydro-β-agarofuran OFu H H H CH3 H α-OBz CH3 E1 [64]

173 (1S,2R,3R,4R,5S,7R,9S,10R)-2,3-diacetoxy-9-benzoyloxy-
1-(3-furoyloxy)-dihydro-β-agarofuran OFu β-OAc β-OAc H H α-OBz CH3 - E2 [64]

174 (1S,2R,4R,5S,7R,9S,10R)-2-Acetoxy-9-benzoyloxy-1-(3-
furoyloxy)-dihydro-β-agarofuran OFu β-OAc H H H α-OBz CH3 - E2 [64]

175 1α,2α,9β,15-tetracetoxy-8β-benzoyloxy-β-
dihydroagarofuran OAc α-OAc H H β-OBz α-OAc CH2OAc - E2 [65]

176 1α-benzoyloxy-2α,6β,8α-triacetoxy-9α-
methyllbutyroyloxy-β-dihydroagarofuran OBz α-OAc H OAc α-OAc α-

OMeBut CH3 - E2 [65]

177 1α,6β-diacetoxy-2α,8α,9α-tribenzoyloxy-β-
dihydroagarofuran OAc α-OBz H OAc α-OBz α-OBz CH3 - E2 [65]
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No. Name R1 R2 R3 R4 R5 R6 R7 R8 Type Ref.

178 1α-benzoyloxy-2α,6β,8α,9α-tetraacetoxy-β-
dihydroagarofuran OBz α-OAc H OAc α-OAc α-OAc CH3 - E2 [65]

179 1α,6β,8α-triacetoxy-9α-benzoyloxy-2α-hydroxy-β-
dihydroagarofuran OAc α-OH H OAc α-OAc α-OBz CH3 - E2 [65]

180
(1R,2S,4R,5S,6R,7R,8R,9S,10S)-1,6-diacetoxy-8,9-
dibenzoyloxy-2-h ydroxy-β-d
ihydroagarofuran

OAc α-OH H OAc α-OBz α-OBz CH3 - E2 [65]

181 1α,6β,15-triacetoxy-8α-methylbutyroyloxy-9α-
benzoyloxy-2α-hydroxy-β-dihydroagaro-furan OAc α-OH H OAc α-OMeBut α-OBz CH2OAc - E2 [65]

182 1α,6β,15-triacetoxy-8α,9α-dibenzoyloxy-2α-hydroxy-β-
dihydroagarofuran OAc α-OH H OAc α-OBz α-OBz CH2OAc - E2 [65]

183 1α,6β,8β,15-tetracetoxy-2α-hydroxy-9α-benzoyloxy-β-
dihydroagarofuran OAc α-OH H OAc β-OAc α-OBz CH2OAc - E2 [65]

184 Chiapens A OH α-OAc H OAc α-OBz α-OBz CH2OAc - E2 [66]
185 Chiapens B OAc α-OAc H OAc α-OBz α-OBz CH2OAc - E2 [66]
186 Chiapens C OH H H OAc α-OBz α-OBz CH2OAc - E2 [66]
187 Chiapens D OAc α-OAc H OBut H α-OBz CH2OAc - E2 [66]
188 Chiapens E OAc α-OAc β-OAc OAc O α-OBz CH2OAc - E2 [66]
189 1α,6β-diacetoxy-8α-hydroxy-9β-furoyloxy-β-agarofuran OAc H H OAc α-OH β-OFu CH3 - E2 [67]
190 1α-acetoxy-6β,8α-dihydroxy-9β-furoyloxy-β-agarofuran OAc H H OH α-OH β-OFu CH3 - E2 [67]

191 1α-benzoyloxy-2α,3β,6β,9β,14-pentaacetoxy-8-oxo-β-
agarofuan OBz α-OAc β-OAc OBz O OAc CH2OAc - E2 [67]

192 1α-furoyloxy-2α,3β,6β,9β,14-pentaacetoxy-8-oxo-β-
agarofuan OFu α-OAc β-OAc OFu O OAc CH2OAc - E2 [67]

193 Bilocularins A OAc H H OAc α-OH α-OBz CH2OAc - E2 [68]
194 Bilocularins B OAc H H OH α-OAc α-OBz CH2OAc - E2 [68]
195 Bilocularins C OAc H H OAc O α-OBz CH2OAc - E2 [68]
196 Bilocularins D OHAc α-OAc H OAc CH3 H β-OtCin CH2OBz E1 [69]
197 Bilocularins E OHAc α-OAc H OAc CH3 H β-OtCin CH2OtCin E1 [69]
198 Bilocularins F OHAc α-OAc H OAc CH3 H β-OtCin CH2OH E1 [69]
199 Bilocularins G OAc α-OAc H OAc CH3 H β-OtCin CH2OAc E1 [69]
200 Bilocularins H OAc α-OH H OAc CH3 H β-OtCin CH2OH E1 [69]
201 Bilocularins I OAc α-OH H ONic CH3 H β-OtCin CH3 E1 [69]
202 (1S,4S,5S,6R,7R,8R,9R,10S)-6-acetoxy-4,9,10-trihydroxy-

2,2,5a,9-tetramethyloctahydro-2H-3,9a-methanobenzo[b]-
oxepin-5-yl
furan-3-carboxylate

OAc H H OH CH3 α-OH β-OFu CH3 E1 [70]
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Table 5. Cont.

No. Name R1 R2 R3 R4 R5 R6 R7 R8 Type Ref.

203 (1S,4S,5S,6R,7R,8R,9R,10S)-6-acetoxy-4,9-dihydroxy-2,2,5a,9-
tetramethyloctahydro-2H-3,9a-methanobenzo[b]oxepine-
5,10-diylbis(furan-3-carboxylate)

OAc H H OFu CH3 α-OH β-OFu CH3 E1 [71]

204 (1S,4S,5S,6R,7R,9S,10S)-6-acetoxy-9-hydroxy-2,2,5a,9-
tetramethyloctahydro-2H-3,9a-methanobenzo[b]oxepine-
5,10-diyl
bis(furan-3-carboxylate)

OAc H H OFu CH3 H β-OFu CH3 E1 [71]

205 (1S,4S,5S,6R,7R,9S,10S)-6-acetoxy-10-(benzoyloxy)-9-
hydroxy-2,2,5a,9-tetramethyloctahydro-2H-3,9a-
methanobenzo[b]-oxepin-5-yl
furan-3-carboxylate

OAc H H OBz CH3 H β-OFu CH3 E1 [71]

206 2β,6β-diacetoxy-1α,9β-dibenzoyl-3β-hydroxy-dihydro-β-
agarofuran α-OBz β-OAc β-OH H β-CH3 - - - E3 [72]

207 1α,2α,6β,8α-tetraacetoxy-9β-benzoyl-15-hydroxy-dihydro-β-
agarofuran α-OAc α-OAc H α-

OAc α-CH2OH - - - E3 [72]

208 1α,2α,6β,8α,15-pentaacetoxy-9β-benzoyl-dihydro-β-
agarofuran α-OAc α-OAc H α-

OAc α-CH2OAc - - - E3 [72]

209 1β-acetoxy-9α-benzoyloxy-2β,6α-dinicotinoyioxy-β-dihydro-
agarofuran(heterophylline) - - - - - - - - E4 [73]

210 Boarioside - - - - - - - - E5 [74]
211 4-deacetyl-10-oxo-dihydrobotrydial - - - - - - - - E6 [75]
212 4β-acetoxy-9β,10β,15α-trihydroxyp robotrydial - - - - - - - - E7 [75]
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Table 6. The sesquiterpene pyridine alkaloids isolated from Maytenus.

No. Name R1 R2 R3 R4 R5 Type Ref.

213 Wilforine - - - - - F1 [77]
214 Emarginatine-A OAc OAc OAc H OAc F2 [78]
215 Emarginatine-B OAc Benzoate H OAc OAc F2 [78]
216 Emarginatine-C OAc OH OAc H OAc F2 [79]
217 Emarginatine-D OA OAc OAc H OAc F2 [79]
218 Emarginatine-E OH OH H OAc OAc F2 [79]

219 Emarginatine-F
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2.3.2. Maytansinoids

In 1972, Kupchan et al. [7] found a macrolide alkaloid, maytansine (262), which was a
natural product that had anti-tumor activities, and this was first isolated from M. serrata.
Compound 262 is an anti-tumor agent with a novel structure, and, therefore, is of great
clinical interest. Subsequently, maytansine (262), maytanprine (263) and maytanbutine
(264) were isolated from M. buchananii [89]. Larson et al. [90] also isolated two new
maytansinoid compounds, 2′-N-demethylmaytanbutine (265) and maytanbicyclinol (266)
from M. buchananii (Figure 7).
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3. Chemical Synthesis of Maytansine and Maytansine Fragments

Maytansine and its homologues are extremely rare in nature, consisting of only two
ten millionths of all the constituents of Maytenus plants. Owing to its unique skeleton and
remarkable bioactivities, maytansine has attracted many synthetic endeavors, in order to
construct its core structure in the laboratory. Thus far, several synthetic studies of only the
partial structure of maytansine have been reported.

Meyers and his colleagues divided maytansine into four partial structures, referring
to them as the northern (272), eastern (279), southern (307) and western (298) zone frag-
ments. Meyers et al. [91] then reported a synthetic method for the eastern fragment, the
cyclic carbinolamide (272). Treatment of tetrahydropyranyl (267) with diborane gave the
primary alcohol (268), which was then further oxidized to the aldehyde (269). Starting from
pyruvaldehyde dimethyl acetal product (270), lithio-imine (271) was prepared through two
steps. Condensation of the aldehyde (269) with the lithio-imine (271) produced the cyclic
carbinolamide (272) (Figure 8).

Meyers et al. [92] subsequently described a stereo-selective synthesis of the “north-
ern zone” (279), with all its attending stereo-chemistry corresponding to the contiguous
carbon chain C-1 to C-7 of maytansine. Treatment of the aldehyde (273) with the cyclohexy-
lamine of proplonaldehyde followed by dehydration produced the unsaturated aldehyde
(274). Further condensation of compound 274 with lithio methylacetate furnished the
β-hydroxy ester (275) as a mixture of diastereomers. This mixture was transformed into the
epoxide (276) using t-butylhydroperoxide, in the presence of vanadium acetylacetonate.
Treatment of the epoxide (276) with p-bromobenzoyl chloride (ether-pyridine) produced
the p-bromobenzoate (277), which was then hydrolyzed directly to the alcohol (278) as a
component in a mixture of four diastereomers. Product (278), which accounted for 42%
of the total epoxide mixture, was the major component of the isomeric mixture obtained.
Oxidation of these products gave a single aldehyde (279), and this stereo-selective synthesis
of compound 279 provided an ample supply of the “northern zone” fragment for further
studies (Figure 9).
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Meyers et al. [93] was able to synthesize the corresponding products to the C7–C16
fragment of maytansine. E,E-dienal (280) was prepared via two Wittig aldol condensations.
After treatment of compound 280 with phenylmagnesium bromide, the mixture was
oxidized without further purification to the ketone (281). Removal of the dithiane and
tetrahydropyranyl protective groups in (281) was accomplished in a single step using an
acetonitrile water mixture, which led to the production of compound 282 as an equilibrated
mixture of two similar compounds (282a:282b=2:8). The mixture was then treated with
phosgene, and then with methanolic ammonia which produced the cyclic carbamate (283a).
Reduction of compound 283a with sodium borohydride to compound 283b corresponded
to the exact southern portion of colubrinol, an ansa-macrolide, which differed from the
maytansines only at the C-15 position (Figure 10).

Meyers et al. [94] also synthesized the “western” zone products of maytansine, which
contains an unusual aromatic substitution array. Methyl vanillate was used as the raw
material, and it was nitrated to give the nitro derivative (284). Treatment of compound 284
with a thionyl chloride–dimethylformamide complex produced the chloro derivative (285),
and reduction of this gave the aniline product (286). Monomethylation of compound 286
produced the N-methyl derivative (289), which could be coupled to the “southern” zone
fragment through an organometallic reaction. On the other hand, hydrolysis of compound 284
and then treatment with a mercury oxide-bromine mixture gave the bromide (287). Reduction
of compound 287 gave the aniline (288), which could be monomethylated, as above, to
compound 290. The acquisition of compound 290 can be utilized in coupling to the “southern”
zone of maytansine via its organolithium or a Grignard derivative (Figure 11).
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Meyers et al. [95] prepared two major precursors, (298) and (307) (corresponding to
the western-southern zone of maytansine), according to the reactions shown in Figure 10.
The aromatic compound (291) served as a common precursor to compounds 289 and 298
by the routes below. Treatment of the amino ester product (291) with benzoyl chloride
triethylamine gave the N-benzoyl derivative (292). Methylation of compound 292 produced
293, and this was then reduced with lithium aluminium hydride to give the N-benzyl
alcohol derivative (294), which could be transformed into the chloride (295) using mesyl
chloride, lithium chloride and dimethylformamide. Treatment of compound 295 with a
solution of lithiated ethyl di-isopropyl phosphonate afforded the phosphonated product.
Addition of an organolithium reagent, n-butyllithium, gave compound 296 which could
then be treated with E-γ,γ-dimethoxycrotonaldehyde to give the diene (297). This product
immediately hydrolyzed to the dieneal (298). Reduction of compound 291 gave 299, which
was converted to the carbamate–carbonate (300) with methyl chloroformate. The selective
removal of the carbonate gave the alcohol by-product (301). Compound 301 could then be
transformed into the mesylate (302). Treatment of the mesylate (302) with lithium bromide
in dimethylformamide gave the benzyl bromide (303), which was alkylated with lithio-ethyl
di-isopropyl phosphonate to furnish compound 304. Methylation of compound 304 gave
the phosphonated product (305). The addition of n-butyllithium to compound 305 gave the
lithiated phosphonate, which could then be treated with E-γ,γ-dimethoxycrotonaldehyde
to give the diene (306), which was immediately hydrolyzed to the dieneal (307) in a similar
way to compounds 297 and 298, as mentioned above (Figure 12).
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Corey et al. [96] first prepared the acyclic intermediate (314), which corresponds
to carbons five to nine of maytansine. This intermediate (314) appears to be especially
useful because carbons six and seven are directly associated with the generation of the
stereocenters of the other compounds in this series. Using the selectivity of dimethyl copper
lithium to the trans ring opening of the epoxide, the relative configuration of the two carbon
atoms is consistent with those of carbons six to seven of maytansine. The synthetic steps
are shown in Figure 13.
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The cis-2-buten-1,4 diol was reacted in order to produce the ketal derivative (308),
and then the hydroxyl group of compound 308 was protected by forming the methylth-
iomethyl ether (309). Exposure of compound 309 to a mixture of acetic acid and water
gave the diol (310), which could be converted via the monotosylate (311) to the epox-
ide (312). Reaction of (312) with 2-lithio-1,3-ditbiane produced the hydroxy dithiane
(313), which was further transformed into the silyl ether derivative (314) by reaction with
t-butyldimethylsilychloride-imidazole in dimethylformamide. Treatment of compound
314 with n-butyllithium and tetra-methylethylenediamine led to a lithio derivative; then,
the addition of sorbaldehyde gave the dienol (315), which was transformed into the cor-
responding methyl ether by treatment with sodium hydride and methyl iodide. Taking
advantage of the unique susceptibility of the methylthiomethyl ether protecting group to
fusion, the removal of this protective group to form the corresponding alcohol could be af-
fected, and the silyl ether grouping was unaffected. This showed that the selective removal
of the t-butyldimethylsilyl group from the oxygen by fluoride ion occurred through the
model system (316), and the 1,3-dithiane was unaffected. Compound 316 was therefore con-
verted to the alcohol (317). Reaction of compound 317 sequentially with sodium hydride,
phosgene and ammonia led to the urethane derivative (318). Reaction of the latter removed
the 1,3-dithiane, which gave rise to the heterocycle (319), a compound which possesses the
characteristic structure of the C(8) to C(14) section of the maytansine molecule (Figure 13).

Corey et al. [97] reported a synthetic route of an intermediate, which corresponds
to the benzenoid part of maytansine. The enone ester (320), which was obtained using
gallic acid, was treated with N-methylbenzylamine to give the enamino ketone (321).
Reaction of this ketone (321) with tert-butyl hypochlorite in chloroform formed the 2-chloro
derivative (322). The benzoic ester (323) was then obtained by aromatization of compound
322 with lithium diethylamide and benzeneselenyl bromide in tetrahydrofuran. Treatment
of compound 323 with methyl iodide and potassium carbonate in acetone gave the phenolic
methyl ether (324), which subsequently underwent hydrogenolysis quantitatively to give
the desired amino ester (325). This was followed by the further elaboration of compound
325 to the dienal (326) (Figure 14).
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Corey et al. [98] used a high degree of stereo-selectivity in order to synthesize a
strategic intermediate corresponding to C10-N fragment of maytansine. Starting from the
raw materials, either (327) or (328), the iodide (329) was prepared through three steps. The
iodide (329) was transformed efficiently and selectively into the E-tri-substituted olefinic
derivative (330), through a cross coupling reaction with a specially designed mixed Gilman
reagent (331) (which involved the use of a cuprate). The mixed Gilman reagent (331) was
highly soluble, which allowed the whole process to be conducted under homogeneous
conditions in a tetrahydrofuran solution. This led to a higher yield of coupling product.
Oxidation of compound 330 produced the aldehyde (332). The α-trimethylsilyl derivative
of acetaldehyde N-t-butylimine was converted to the α-lithio derivative, by reaction with
sec-butyllithium in dry ether under argon. This allowed the aldehyde (332) to react and



Molecules 2021, 26, 4563 29 of 41

form the dienal derivative (333) with an 80% yield (Figure 15). Corey’s group attempted to
synthesize molecular fragments of maytansine in 1972. Finally, in 1980, the group was able
to stereo-selectively synthesize maytansine [99] (Figure 16).
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Figure 16. The stereo-selective synthesis of maytansine.

Foy and Ganem [100] reported on the synthesis of the aromatic portion of maytansine
via a six-step route. Condensation of 5-methylcyclohexane-1,3-dione with aqueous methy-
lamine formed compound 334, which could be chlorinated with N-chlorosuccinylmide in
dichloromethane to result in a chloroenaminoketone derivative (335). This could be further
oxidized by the addition of bromine in carbon tetrachloride. A mixture of monochloro-
bromides (336) was formed during this reaction, from which one isomer then crystallized.
The mixture could then be treated directly with a mixture of acetic anhydride and p-
toluenesulfonic acid, to affect its dehydrobromination. Saponification of compound 337
gave the corresponding phenol (338), which was methylated to give the methoxyacetanilide
(339). Oxidation of compound 339 and subsequent reaction with N-bromosuccinimide pro-
duced compound 340 (Figure 17).

Edwards and Ho [101] reported a relatively efficient new approach to the synthesis of
the derivatives from the cyclic carbamate unit in maytansine, which involved the successful
introduction of the required four asymmetric centers with complete stereo-specificity. The
starting material in the synthesis was 3,4-epoxycyclohexene, and the cyclic carbamate
was prepared via a series of eleven steps. Through selective reduction of the γ-lactone
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derivative (341) and protection of compound 342 to form an intermediate (343) (mainly
composed of formula E), the diol compound formed (344) was protected, and a Curtius
re-arrangement of the azide gave the cyclic carbamate (345) (Figure 18).
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Samson et al. [102] used (S)-(+)-4-hydroxy-2-cyclopentenone, which was readily 
available from the reaction with (R,R)-(+)-tartaric acid, as the starting material in the syn-
thesis which was converted via the intermediates (346, 347 and 348) to the aldehydes (349 
and 350) with the same configuration as C6 and C7, respectively. When the aldehyde 
group in compound 349 was treated with trimethylorthothioborate, compound 351a was 
produced. The aldehyde group in compound 350 could be treated with trimethylsilylcya-
nide to yield the protected product, cyanohydrin (351b), as a mixture of two diastereoiso-
mers. Both compounds, 351a and 351b, can be regarded as potential acylanion equivalents 
(Figure 19). 
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Samson et al. [102] used (S)-(+)-4-hydroxy-2-cyclopentenone, which was readily avail-
able from the reaction with (R,R)-(+)-tartaric acid, as the starting material in the synthesis
which was converted via the intermediates (346, 347 and 348) to the aldehydes (349 and
350) with the same configuration as C6 and C7, respectively. When the aldehyde group in
compound 349 was treated with trimethylorthothioborate, compound 351a was produced.
The aldehyde group in compound 350 could be treated with trimethylsilylcyanide to yield
the protected product, cyanohydrin (351b), as a mixture of two diastereoisomers. Both
compounds, 351a and 351b, can be regarded as potential acylanion equivalents (Figure 19).

Gotschi et al. [103] have synthesized the correctly substituted aromatic portion of may-
tansine, as well as its C9 to C15 moiety. The synthesis was initiated from the ethyl vanillate
derivative (352) via the aldehyde (353). The aldehyde (353) was then condensed with
propionaldehyde to (354). The elongation of the sidechain was realized by the reaction of
compound 354 with Grignard reagent yielding the alcohol (355), which was dehydrated to
form the diene (356). The hydrolysis of the acetal function necessitated prior acylation of the
amino group. The reaction of compound 356 with 2,2,2-trichloroethoxycarbonyl chloride
in pyridine, then the hydrolysis of the crude carbamate derivative formed (357) with 1 N
aqueous hydrochloric acid/acetone, gave a 2:1 mixture of the two stereo-isomeric dienals
(358) and (359). Reaction of this mixture with 2-lithio-1,3-dithiane, followed by the removal
of the trichloroethoxycarbonyl group, resulted in obtaining a corresponding mixture of the
stereo-isomeric of C9-N fragments of maytansine (360 and 361). The E,E-configuration was
the major component (360) of the mixture of compounds formed (Figure 20).
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Pan et al. [104] reported the stereo-selective synthesis of the C1–C8 fragment of may-
tansine. Starting from (-)-(2R,3R)-2-hydroxy-3methyl-succinic acid (362) as a raw material
which was obtained by resolution of threo-(±)-methyl-malio acid with the aid of cino-
honino, E-α,β-unsaturated aldehyde (363) was prepared via a multi-step reaction sequence.
Reformatsky reaction of the aldehyde derivative (363) with (-)-menthyl bromoacetate in the
presence of n-propyl cadmium formed the β-hydroxyester, which was then hydrolyzed to
the free acid and then re-esterified with diazomethane to give the b-hydroxy methyl ester
(364). Compound 364 was mainly of the S configuration. Acetylation of compound 364
with acetic anhydride in the presence of pyridine followed by epoxidation of the double
bond with vanadium acetyl acetonate and t-butyl hydrogen peroxide gave compound 365,
which had the required configuration. The C1–C8 fragment had five ohiral centers in the
natural configuration (Figure 21).

Zhou et al. [105] were able to synthesize the corresponding derivatives to the C9-N
fragment of maytansine. Starting from 2-methoxy-6-nitroaniline, 4-chioro-3-methoxy-5-
methyl-aminobenzaldehyde (366) was prepared through six separate steps. The long
side chain in (367), with high stereo-specificity, was derived from the aldehyde group in
compound 366, via a reaction sequence of twelve steps (Figure 22).
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Gu et al. [106] reported the synthesis of an important intermediate, the C5-N fragment
of maytansine. This fragment possesses an aromatic moiety, two conjugated trans double
bonds and three asymmetrical carbons, as well as the C6, C7 and C10 of maytansine. A
Wittig–Horner reaction of compound 368 with 369 gave the aromatic diene ester derivative
(370). Reduction of compound 370 to the dienol (371) was followed by treatment with
trifluoroacetic anhydride and methanol, to give the trifluoroacetamide (372). Oxidation of
compound 372 formed the dienal (373). Lithiation of compound 374 with n-butyllithium,
which could then be coupled with compound 373 to afford a pair of epimers (375a and
375b). Oxidation of (375b) with active manganese dioxide in methylene chloride produced
the corresponding ketone (376). Reduction of compound 376 with the R-binaphthol-
lithium aluminum hydrogen-ethanol complex produced compound 375a, which could be
methylated with sodium hydride and methyl iodide in tetrahydrofuran to give the C5-N
fragment (377) of maytansine (Figure 23).

Gu et al. [107] also linked the C5-N fragment (377) with compound 378, and a ring
closure led to the production of the macrolide (379); then, the selective removal of the
protective group formed the small ring lactone and epoxidation of the product gave the
maytansinol (380). Finally, the introduction of side chain amino acids led to the synthesis
of maytansine (381) (Figure 24).
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4. Pharmacological Activities
4.1. Antitumor Activities

Scholars at home and abroad have successively isolated the maytansinoids from
the genus Maytenus since the 1970s. These compounds have high anti-tumor activities,
and their properties were proven through clinical trials and subsequent application for a
number of years. The Chinese Cancer Institute has conducted medical studies [8] to prove
that the effective constituents isolated from M. hookeri Loes have strong anti-cancer activity,
and they published that these compounds are able to inhibit cancer cells undergoing the
final disintegration in the middle stage of cell mitosis. Clinical trials have shown that crude
methanol extracts of M. hookeri Loes have significant effects on lympho-sarcomas, peritoneal
mesotheliomas as well as multiple myelomas. Other studies outside China have shown that
maytansine is active against human nasopharyngeal carcinoma cells, melanoma B16 cells
and mouse leukemia L1210. It has also been shown to have effects on P388 tumors, mast
cell tumor P815, plasmacytoma YPC-1 and rat W-256 carcinosarcoma. In the first clinical
trial, maytansine was shown to have anti-tumor activity against lymphocytic leukemia,
lymphoma, ovarian cancer, breast cancer and melanoma [9]. Hiroshi et al. [10] isolated
triterpenes from the bark of M. chuchuhuasca, all of which were shown to markedly inhibit
the polymerization of tubulin. Kuo et al. [11] reported that emarginatine F demonstrated
strong cytotoxicity against human epidermoid carcinoma of the nasopharynx (KB), ileocecal
adenocarcinoma (HCT-8), melanoma (RPMI-7951) and medulloblastoma (TE-671) tumor
cells, as well as against murine leukemia (P-388).

The researchers at the 62nd Hospital of the People’s Liberation Army [108] used
tablets and decoction of M. hookeri Loes methanol extracts for clinical treatment, and con-
ducted the necessary animal tests. Clinical treatment was also performed on 17 cases of
malignant tumors in 14 different cancers, including leukemia, lymphocytic cell tumors,
nasopharyngeal carcinoma, lung cancer, esophageal adenocarcinoma and liver cancer. The
results of animal experiments showed it inhibited ascites-type liver cancer and rat Wacker
carcinoma in mice. The clinical studies showed that the methanol extracts and decoction
resulted in varying degrees of efficacy in 10 cases of malignant tumors of the 14 diseases,
including tumor shrinkage, symptom reduction and increased appetite. Among the pa-
tients, two cases were markedly effective and eight cases were described as effective. It is
believed that the constituents of M. hookeri Loes are a promising anti-cancer botanical drug.
Ning et al. [109] studied the changes of morphology and structure of the epithelial cell line,
Eca109, which was derived from a type of human esophageal cancer. They found that the
effects of maytansine treatment on cancer cells were similar to those caused by microtubule
inhibitors, such as vincristine. This suggests that maytansine is an alternative microtubule
inhibitor with anti-tumor effects.

Fan et al. [110] showed that the ethyl acetate extract 761-1 of M. confertiflorus had
an effect on transplanted animal tumors, such as EAC, L7212 and W256, and the sper-
matogonium are positive. The stem portion M2 was also effective for tumors, such as
EAC, HepA and W256. The anti-cancer compound, maytansine, was found to be effective
for EAC, HepA, L1210, S180, B16 melanoma and W256. Gong et al. [111] showed that
extracts of M. hainanensis can induce and differentiate tumor cells in the human body,
leading to an effective inhibition of the synthesis of tumor cell DNA. Nabende et al. [112]
showed that the extracts of M. senegalensis showed a certain degree of anti-proliferative
activity in breast cancer and colon cancer cells, although they were not toxic to Vero
cells. Zeng et al. [113] reported that the compounds isolated from Maytenus had sig-
nificant anti-cancer activities against human cancer H226 and HeLa cells, both in vitro
and in vivo, highlighting that they may be an anti-cancer medicine. Compound (16β)-16-
hydroxy-pristimerin was isolated from M. salicifolia, which exhibited an anti-proliferative
effect on HeLa, A-549 and HL60 human cell lines [29]. Maytenfoliol was separated from
M. diversifolium, which showed significant anti-leukemic activity [37]. Chavez et al. [61]
isolated 6β,8β-15-triacetoxy-1α,9α-dibenzoyloxy-4β-hydroxy-β-dihydroagarofuran and
1α,6β,8β,15-tetraacetoxy-9α-benzoyloxy-4β-hydroxy-β-dihydroagarofuran from the aerial
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parts of M. macrocarpa, and both compounds showed marginal anti-tumor activities against
four cell lines grown in cell culture.

4.2. Anti-Bacterial Activities

Gonzalez et al. [12] isolated 6-oxo-iguesterol, 6-oxo-tingenol and 3-O-methoxy-6-
oxo-tingenol from the root barks of M. canariensis. Three compounds showed antibiotic
activities against B. subtilis, with minimal inhibitory concentrations (MICs) of 12–14, 35–39
and 25 µg/mL, respectively. 6-oxo-tingenol was also active against Staphylococcus aureus
with a MIC of 40–50 µg/mL. Alvarenga et al. [17] obtained a new nortriterpene quinone
methide, 15α-hydroxy-21-keto-pristimerine, from the root barks of M. catingarum, which
showed potent activity against Gram-positive bacteria. A new norquinonemethide triter-
pene with a netzahualcoyene type skeleton, scutione, was isolated from the root barks of
M. scutioides, which showed antibiotic activity against Gram-positive bacteria [34]. Muham-
mad et al. [51] isolated the oleanane triterpenoid, koetjapic acid, from M. undata, which in-
hibited the growth of S. aureus, including a penicillin-resistant strain of this bacteria as well
as Pseudomonas aeruginosa, with a MIC range of 3.125–6.25µg/mL. Ni et al. [114] isolated the
fungal strain, Chaetomium globosum Ly50′, from the leaf of M. hookeri Loes, which showed
anti-bacterial activity. The fermentation extracts of this strain yielded two compounds
that were active against Penicilium avellaneum, UC-4376 and Mycobacterium tuberculosis,
and these were determined to be chaetoglobosins A and B, respectively. Wu et al. [115]
demonstrated that maytansine actively inhibited the growth of eukaryotic cells, and had
anti-fungal activities against some pathogenic plant fungi. Maytansine can be absorbed
by the leaves of Chinese cabbage, and it has been also shown to have anti-bacterial effects,
while the latter also had anti-microbial activity [116]. Liu et al. [117] isolated a lignan
tanegool from the 95% ethanol extracts of Gymnosporia varialilis that also had anti-bacterial
activity. The results showed that the inhibition ratio against Selerotinia scleotiorum, Bipolaris
sorokiniana, Alternaria solani and Fusarium oxysporum f. sp. niveum were more than 75%,
when the concentration of G. varialilis Loes used was 10 mg/mL.

4.3. Other Pharmacological Activities

A new compound 3-O-methyl-6-oxo-pristimerol was isolated from the hexane/Et2O
1:1 extracts of the root barks of M. chubutensis, which showed moderate multidrug-
resistance reversal activity [26]. Zhang et al. [118] found that the 95% ethanol extracts of the
aerial parts of G. varialilis Loes showed angiotensin-converting enzyme (ACE) inhibitory
activity, and this could be allocated to two active compounds from G. varialilis Loes. These
were (+)-catechin and caffeic acid. Hamisi et al. [119] found that the ethanolic extracts of
root barks of M. senegalensis possessed potent anti-plasmodial effects, and may, therefore,
serve as a potential source of an alternative safe, effective and affordable anti-malarial
drug. Bishnoi [120] studied the anti-hyperglycemic activity of the hydroalcoholic extracts
of the leaves of M. emarginatus. The results showed that the dried extracts M. emarginatus
(250 and 500 mg/kg) significantly reduced the levels of blood glucose comparable to
glibenclamide (10 mg/kg), a well-known glyburide, which is a medication used to treat
type 2 diabetes mellitus. Thus, Bishnoi and his colleagues concluded that the extracts of
the leaves of M. emarginatus had anti-hyperglycemic activity. In addition, the plants of
Maytenus have long been used as a traditional Chinese medicine for the treatment of anti-
inflammatory [51] conditions, as well as HIV infections [121]. 1α,2α,9β,15-tetracetoxy-8β-
benzoyloxy-β-dihydroagarofuran was isolated from the leaves of M. spinosa, and it was
shown to have anti-HIV activity [65]. Elmer et al. [5] reported that M. macrocarpa leaves had
anti-inflammatory activity and concomitant neuro-behavioral side-effects. Joshi et al. [122]
reported that the plant, M. emarginata, could be used as a potential antioxidant.

5. Toxic Effects

The American Cancer Research Institute [9] found that the main toxicity of maytansine
was against the gastrointestinal system and included nausea, vomiting and diarrhea. This
was discovered in phase I~II clinical trials, and the effects were directly related to the dose
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administered. Hepatotoxicity was manifested as a clinically insignificant transient rise
of some liver enzymes with the appearance of jaundice. Neurotoxicity was experienced
at both the central and peripheral levels, and toxicity of the central nervous system was
characterized by dizziness, anxiety and insomnia, together with peripheral neurotoxic
symptoms, such as paresthesia as well as muscle pain and weakness. Hematological toxicity
was found to be uncommon, and usually manifested as transient thrombocytopenia and
myelosuppression; however, symptoms were slight, reversible and unrelated to dose used.
The studies from the 62nd Hospital of the People’s Liberation Army [108] involved only a
few people who took the methanol extracts of M. hookeri Loes. Afterwards, they generally
experienced a slightly higher level of thirst, when even a single decoction was taken on an
empty stomach. Also, a few people had some light nausea. Meneguetti et al. [123] found
that M. guyanensis did not present genotoxic effects during their animal experiments.

6. Conclusions

This paper systematically summarizes the advances made in the research on the
medicinal effects of Maytenus, with respect to its chemical constituents and pharmacological
activities. Its structural diversity is linked to its biological diversity. The carbonyl group
in the E ring of friedelane triterpenoids and the presence of the hydroxyl and C(21)=O
groups enhances its anti-bacterial activity. The C-28 carboxyl of triterpenes is usually an
important group for conferring its cytotoxic activity. The antibiotic activity of friedelane
triterpenoids may be associated with the presence of free hydroxyl groups in the ring
A. For sesquiterpenes and its alkaloids with the same skeletons, its biochemical activity
was found to vary with the nature of the esterification residues present. The greater
the number of acetyl residues, the greater the anti-feedant activity. The opposite was
observed with the benzoyl residues, where increasing the frequency of these groups was
observed to decrease anti-feedant activity. Insecticidal activity was roughly correlated
with the presence of a carbonyl group at the C-8 position. Cytotoxicity was noticeably
affected by the type of functional group substitution in sesquiterpene pyridine alkaloids
at the C-1 and C-9 positions, and by the configuration of the proton at position C-8 (cz or
fi). The furoyloxy groups in the dihydro-β-agarofuran sesquiterpenoids at positions C-6
and C-9 seemed to be important in the modulation of NF-κB, which correlates with the
anti-inflammatory activity. Based on the accumulated information and the advancements
in synthetic methods, maytansine can be increasingly important as an anti-cancer drug.
Any adverse reactions can potentially be reduced through structural modifications of the
molecule. This compound is expected to give rise to new anti-tumor drugs, and these will
be at the forefront of our endeavors to combat cancer. Due to the existence of the rich active
ingredients present in Maytanus, researchers have not stopped exploring and researching
the many and varied bioactivities of the compounds from this valuable plant resource.
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