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Abstract: The tribological characteristics of ultra-high molecular weight polyethylene (UHMWPE)
under unsaturated lubrication of water and brine were studied. The friction coefficients and wear
rates of UHMWPE at different applied loads and sliding speeds were recorded by field tests, and
the effects of load and speed on the friction properties of UHMWPE were analyzed. The results
showed that under certain liquid drop (about 150–170 mL/h) lubrication, the tribological behaviors
of UHMWPE were better than those of dry sliding, and the friction coefficient and wear rate of
UHMWPE were reduced by more than 39% and 10% respectively. The lubrication form of UHMWPE
gradually transited from saturated lubrication to unsaturated lubrication with the increase in applied
load or sliding speed. The evaporation of water caused by frictional heat affected the water content
between the surface of UHMWPE and the counterface, which was the main reason for the change in
the lubrication form. In the current work, the critical values for the change of lubrication mode were
70 N and 700 r/min for load and speed, respectively, beyond which UHMWPE was in unsaturated
lubrication. Under brine-unsaturated lubrication, the anti-friction property of UHMWPE was better
than that in water-unsaturated lubrication at high speed because the precipitated salt granules played
a ball effect, which was opposite to that under saturated lubrication. The study of the wear resistance
with surface profiler showed that the wear rate of UHMWPE under water-unsaturated lubrication was
9% lower than that under brine-unsaturated lubrication at 110 N load. While the wear resistance of
UHMWPE under brine-unsaturated lubrication was better than that in water-unsaturated lubrication
at high speed, the wear rate of UHMWPE under brine-unsaturated lubrication was 10% lower than
that under water-unsaturated lubrication at 1100 r/min speed.

Keywords: ultra-high molecular weight polyethylene; tribological characteristic; unsaturated lubrication

1. Introduction

Ultra-high molecular weight polyethylene (UHMWPE) is a high-performance polymer
matrix composite material with high toughness, high strength, high modulus and low
density [1]. It is considered as one of the most ideal reinforcement materials and has played
a vital role in many fields due to its excellent comprehensive properties such as chemical
stability, bio-compatibility and abrasion resistance [2–4]. Specifically, UHMWPE has a
wide range of applications in the fields of military industry, mechanical engineering and
medicine due to its excellent friction response characteristics [5–8]. In a liquid environment,
due to the certain water absorption of UHMWPE, boundary lubrication regimes are formed
on its surface, which significantly reduce the friction coefficient of UHMWPE [9], and many
scholars have paid attention to the tribological properties of UHMWPE under different
liquid lubrication conditions. Cooper et al. [10] studied the effect of different tribological
conditions on the wear processes under deionized water lubrication condition using two
tri-pin-on-disc apparatuses. Xiong and Ge [11] investigated the tribological properties of
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UHMWPE sliding against ceramic under lubrication of distilled water, saline and fresh
plasma. Chang et al. [12] evaluated the effect of accelerated aging on the mechanical and
tribological properties of UHMWPE.

Other meaningful research has been conducted on the friction characteristics of
UHMWPE under different lubrication, and the friction mechanism has been fully investi-
gated [13–16]. Most of the existing studies were carried out under saturated lubrication
in a liquid bath, and less attention is being paid to tribological properties of UHMWPE
under unsaturated lubrication. Wang et al. [9] studied the friction and wear characteristics
of UHMWPE composites under water lubrication, which was applied by dropping distilled
water onto the sliding surface and was treated as saturated lubrication. However, unlike a
liquid bath, the evaporation of water due to frictional heat can cause changes in the water
content between the surface of UHMWPE and the counterface at a certain drop lubrication
rate, which will affect the friction characteristics of UHMWPE.

The friction heat is directly affected by applied load and sliding speed [17]. Therefore,
the main purpose of this experiment is to study the tribological characteristics of UHMWPE
at different loads and speeds under unsaturated lubrication. The friction and wear prop-
erties of UHMWPE sliding against steel ball under unsaturated lubrication of water and
brine were investigated. For comparison, wear tests were performed under dry condition.

2. Materials and Methods
2.1. Materials

The UHMWPE friction samples were manufactured by the Anyang City Ultra-high
Industrial Technology Co., Ltd., Anyang, China. The samples were 15 mm diameter
cylinders with a thickness of 5 mm. The basic technical performance is shown in Table 1.
Friction antithesis was 45# steel ball with a diameter of 5 mm. After hardening and
tempering, its hardness was HRC65 and surface roughness was Ra0.11 µm. The brine
lubricating liquid used in the test was prepared from the soil leaching solution of the test
field of Shihezi Paotai Town, Shihezi, China. The salinity of the solution is 7 g/L, and
the main ionic component contents are shown in Table 2. Pure water was obtained with
an ultrapure water machine (Shanghai Leading Water Treatment Equipment Co., Ltd.,
Shanghai, China, electric resistance rate of 18.25 MΩ·cm at 25 ◦C).

Table 1. Basic technical performances of ultra-high molecular weight polyethylene.

Molecular
Weight

Density
(g/cm)

Distortion
Temperature

(◦C)

Brittle
Temperature

(◦C)

Tensile
Modulus

(MPa)

Elongation
at Break (%)

Impact
Strength
(kJ·m2)

Thermal
Conductivity

(w/(m·k))

4.5 × 106 0.93 85 −70 34 350 130 0.41

Table 2. The main ionic components of the brine.

Ions Concentration (g/L)

Na+ 0.055
Cl− 0.430

SO4
2− 1.524

Ca2+ 0.689
Mg2+ 0.141

CO3
2− 0.096

NO3
− 0.042

2.2. Experimental Device

The experiments were conducted at room temperature 20 ◦C and 35% relative humidity.
Before the test, in order to reduce the influence of refined grain abrasion, 800# metallo-
graphic sandpaper was used to polish the surface of the steel ball and the samples. The
test sample was fixed on the bottom chassis of the CFT-I multifunctional material surface
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comprehensive performance tester (Lanzhou Zhongke Kaihua Technology Development
Co, Ltd., Lanzhou, China), which would record 90 data per minute and draw the friction
coefficient curve on the LCD screen, and the steel ball was mounted on the tester arm, as
shown in Figure 1. The UHMWPE/steel ball friction wear test began when the sample
remained stationary and the friction pairs slid against each other, and the rotating diameter
was 5 mm. Unsaturated lubrication was applied by dropping water or brine onto the
sliding surface at a flow rate of 55–60 drops per minute (about 150–170 mL/h).
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Figure 1. Schematics of the test configuration.

AUW220D electronic balance (Shimadzu Company, Shimane, Japan) was used to
measure the weight of the sample. After the friction test of UHMWPE under the liquid
lubrication condition, the residual lubricant on the surface of UHMWPE was absorbed
with fiber absorbent cotton, and after natural drying, the carbon film was sprayed on
the surface of UHMWPE by EMS150RE vacuum coater (Electron Microscopy Sciences
Company, Hatfield, PA, USA) for observation in scanning electron microscope (SEM), and
SIGMA 300 scanning electron microscope (Carl Zeiss, Oberkochen, Germany) was used
to observe the worn surface morphology of UHMWPE samples. GENESIS 2000 X-ray
spectrometer (EDAX Co., Ltd., Pleasanton, CA, USA) was used to analyze the distribution
of elements on the worn surface of samples. ST400 surface profiler (NANOVEA, Irvine,
CA, USA) was used to analyze the micro-morphology of the worn surface to determine
the wear of UHMWPE samples under different experimental conditions. The hand-held
infrared temperature gun was used to record the temperature of the UHMWPE surface
every 30 s during the test.

3. Results and Discussion

Figure 2 shows the relation between the friction coefficient and time for the different
lubrication conditions at 500 r/min speed and 70 N applied load. The friction coefficient
changed with time at the beginning of the test but then reached a stable value. The
steady-state friction coefficients showed a maximum value (approximately 0.10) for dry
sliding and minimum (about 0.032) for water lubrication. The water absorption resulted
in the swelling of UHMEPE and decreased the shear strength of UHMWPE, thus forming
boundary lubrication regimes that reduced the friction coefficient [9, 11], and the water
absorption in brine was lower than that in water; thus, the friction coefficient of UHMWPE
was higher than that in the water lubrication condition [11].
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After sliding for about 20 min, under lubrication of water and brine, the friction
coefficient reached steady state as the water absorption rate of UHMWPE surface entered
steady state, and the friction coefficient of the dry condition reached steady state after
sliding for about 22 min due to the stability of the transfer film, which strongly depended
on time and temperature [17]. Under other pressures and speeds, the friction coefficient
could reach a stable state within 25 min. Therefore, the friction coefficient values in this
paper were recorded after 25 min of the test.

3.1. Effect of Applied Load on Friction Coefficient under Unsaturated Lubrication of Water
and Brine

Figure 3 shows the variation of friction coefficients of UHMWPE at 500 r/min speed
and 30, 50, 70, 90, 110 N applied loads in dry, water-unsaturated lubrication and brine-
unsaturated lubrication conditions. For UHMWPE sliding against steel ball under dry
conditions, the friction coefficient decreased with the increase in applied load. The trend
has been described using the equation in [18]:

µ = kL(n − 1), (1)

where µ is the friction coefficient, L the load, k a constant and n a constant. According to
the formula, the friction coefficient decreased with increasing load [19].
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The variation of friction coefficient with load under water-saturated lubrication also
followed the equation in [9]. In other words, the friction coefficient of UHMWPE decreased
with the increasing load under water-saturated lubrication. However, there are different
phenomena in Figure 3 that the friction coefficient of UHMWPE first decreases and then
increases with the increasing load under water-unsaturated lubrication. The worn surfaces
of UHMWPE were examined using SEM. Figure 4 shows the SEM micrographs of worn
surfaces of UHMWPE under water-unsaturated lubrication at 50 and 110 N loads. It can
be seen that the surface of the sample is smooth, and there is only peeling on the surface
at 50 N load, as shown in Figure 4a–c. However, peeling, furrows, tear fracture and wear
debris are found on the surface at 110 N load (Figure 4d–g), and the profile of the debris
in Figure 4g is similar to the profile of the debris found on the sample surface under dry
condition, as shown in Figure 5.
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Therefore, under certain water drop lubrications, UHMWPE gradually transited from
saturated lubrication to unsaturated lubrication with the increase in load, and the criti-
cal load was 70 N in this paper, beyond which UHMWPE samples were in unsaturated
lubrication. The main reason for the phenomenon was the evaporation of water caused
by frictional heat. When the load was less than the critical value, the water evaporation
rate due to frictional heat was much smaller than the water drop rate, and the UHMWPE
samples were in a saturated lubrication state. When the load exceeded the critical value,
the temperature rise effect caused by the load increase could not be ignored (as shown in
Table 3), the water evaporation rate was higher, and the water content between the surfaces
of UHMWPE and counterface decreased with the increase in load, which in turn caused
the friction coefficient to increase. On the whole, water-unsaturated lubrication signifi-
cantly improved the anti-friction performance of UHMWPE, and the friction coefficient of
UHMWPE decreased by more than 50% compared with that of dry sliding.

Table 3. Temperatures of UHMWPE surface at 500 r/min speed under different friction conditions.

Loads (N)
Temperature (◦C) under Different Friction Conditions

Dry Friction Water Lubrication Brine Lubrication

30 43.42 ± 4.21 30.64 ± 3.20 31.11 ± 3.53
50 49.75 ± 3.09 33.23 ± 3.51 34.94 ± 3.70
70 57.62 ± 5.20 37.14 ± 2.88 37.16 ± 3.06
90 61.21 ± 4.55 41.57 ± 3.64 42.81 ± 3.40

110 65.17 ± 3.98 44.36 ± 2.31 44.28 ± 4.33

It can be seen from Table 3 that the surface temperature of UHMWPE under brine
lubrication is basically the same as that under water lubrication. Due to the same dripping
rate as that of water lubrication, it was considered that the UHMWPE also transitioned
from saturated lubrication to unsaturated lubrication with the increase in load under
brine lubrication, and the critical load was also 70 N. In the load range of 50–110 N, the
friction coefficient of brine-unsaturated lubrication was more than 42% lower than that of
dry sliding.

Figure 6 shows SEM micrographs of the worn surface of UHMWPE under brine-
unsaturated lubrication at 50 and 110 N loads. In the sample at 50 N load (Figure 6a), very
few granules were observed, and there were many peels on the surface of the sample. At
110 N load, there were more granules on the surface of the sample (Figure 6c). Elements Mg,
Na, S, Cl and Ca were found in the area where granules appeared under brine-unsaturated
lubrication, while these elements were absent under pure water-unsaturated lubrication,
as shown in Figure 7, and the count of these elements increased with the increase in load.
Therefore, it can be judged that the granules on the surface of UHMWPE are salt particles
under brine-unsaturated lubrication.

This indicated that as load increased, the increasing frictional heat led to an increase in
water evaporation rate. Therefore, precipitated salt granules increased with increasing load.
The granules were inevitably pressed into the sample under the action of external force,
resulting in micro scratches on the surface of the sample. Although this worsened the wear
performance of UHMWPE (to be mentioned later), these granules still acted as rolling balls,
reducing the friction coefficient. Therefore, for brine-unsaturated lubrication, the friction
coefficient of UHMWPE monotonic decreased with increasing load, as shown in Figure 3.
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110 N load; (b,d,f) are EDS spectra of the sample surface labeled in (a,c,e), respectively.
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3.2. Effect of Speed on Friction Coefficient under Unsaturated Lubrication of Water and Brine

Figure 8 shows the variation of frication coefficient with speed under dry, water-
unsaturated lubrication and brine-unsaturated lubrication conditions at 50 N load and
300, 500, 700, 900 and 1100 r/min speeds, and it can be seen that the friction coefficient
under liquid lubrication is 39% less than that under dry friction in the speed range. For
UHMWPE sliding against steel ball under dry conditions, the friction coefficient increased
with increasing speed, as shown in Figure 7.
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The variation of frication coefficient with speed under water-unsaturated lubrication
was basically stable at first and then increased with the increasing speed, as shown in
Figure 8. Compared with the SEM micrograph of UHMWPE at 50 N load and 500 r/min
speed (Figure 4a), it can be seen that the surface of UHMWPE under water-unsaturated
lubrication has not only peeling but also furrows and ridges at 50 N load and 1100 r/min
speed, and similar furrows and ridges were found on the surface of UHMWPE under dry
sliding at 50 N load and 1100 r/min speed (Figure 9a,c).

Similar to load, frictional heat played an important role in the influence of speed
on the friction coefficient of UHMWPE under water-unsaturated lubrication. When the
speed was low (<700 r/min in this experiment), the rate of water evaporation due to
frictional heat was lower than the water drop rate. Therefore, the surface of UHMWPE
was in a saturated lubrication state. At a higher speed, more heat was generated per
unit time, and the surface temperature of UHMWPE increased rapidly (as shown in
Table 4), leading to most of the dripped water evaporation. Only a small amount of
water was absorbed by the surface of UHMWPE, which resulted in the sample surface
being a state between water-saturated lubrication and dry sliding. As the speed increased,
the water-unsaturated lubrication state approached the dry-slip state, the friction coefficient
of UHMWPE increased, and furrows and ridges appeared on the UHMWPE surface due to
thermal deformation and compression.
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Figure 9. SEM micrographs of worn surfaces of UHMWPE at 1100 r/min speed (a) dry friction,
(c) water-unsaturated lubrication and (f) brine-unsaturated lubrication; (b,d–e,g) are the images taken
at the marked positions in the micrographs.

Table 4. Temperatures of UHMWPE surface at 50 N load under different friction conditions.

Speed (r/min)
Temperature (◦C) under Different Friction Conditions

Dry Friction Water Lubrication Brine Lubrication

300 38.15 ± 3.25 25.17 ± 2.93 27.26 ± 2.60
500 49.75 ± 3.09 33.23 ± 3.51 35.94 ± 3.70
700 61.26 ± 4.98 45.36 ± 3.59 46.21 ± 3.66
900 76.74 ± 5.21 60.23 ± 2.07 59.95 ± 6.13

1100 88.38 ± 5.55 77.72 ± 3.68 78.61 ± 2.33

Some salt granules are found on the surface of UHMWPE at 1100 r/min speed and
50 N load under brine-unsaturated lubrication, as shown in Figure 9g, and the variation
of the friction coefficient illustrated that the effect of speed on the friction coefficient of
UHMWPE under brine-unsaturated lubrication was affected by the combined effect of the
evaporation rate of water and the precipitation rate of salt granules. When the speed was
low, there were few salt granules precipitated, and the key factor affecting the frication
coefficient was the water content between the surface of UHMWPE and the counterface. As
the speed increased, the rate of water evaporation increased, and the lubricating effect of
brine decreased, causing the friction coefficient to increase. When the speed exceeded the
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critical value (700 r/min in present work), a large number of salt granules were precipitated
out. It can be seen from Figure 10 that the counts of elements Mg, Na, S, Cl and Ca on the
sample surface at 1100 r/min speed are more than those at 110 N load, and the effect of the
rolling balls on the friction coefficient was dominant. With the increase in speed, the friction
coefficient under brine-unsaturated lubrication decreased, and the anti-friction properties
superior to water-unsaturated lubrication were obtained in the high-speed region.
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1100 r/min speed, where (b) is EDS spectra of the sample surface labeled in (a).

3.3. Wear Rate

The wear rate is considered to be a key indicator for studying the wear performance of
the rubbing pair. In this experiment, the wear volume and wear rate were derived by mark-
ing the width of the wear scar using the ST400 surface profiler produced by NANOVEA
of the United States, which was a 3D non-contact high-precision surface topography mea-
suring instrument that could achieve a resolution of less than 2 nm. Figure 11 shows
3D surface morphologies of UHMWPE in the three-friction conditions. Taking the 50 N
load and 500 r/min speed as the benchmark, it can be seen that under water- and brine-
unsaturated lubrication, the increase in the peak-to-valley height difference when the load
is increased to 110 N is far greater than that when the speed is increased to 1100 r/min. This
indicated that for unsaturated lubrication, the effect of load on the wear rate of UHMWPE
was more significant than that of speed.

Under 110 N load and 500 r/min speed, the height difference of UHMWPE under dry
friction was the largest, exceeding 280 µm, followed by that under saltwater-unsaturated
lubrication, about 220 µm, and that under pure water-unsaturated lubrication was the
smallest, which was 210 µm. When the case changed to 50 N load and 1100 r/min speed, the
height difference of UHMWPE under dry sliding was still the largest, but that under brine-
unsaturated lubrication was smaller than that under pure water-unsaturated lubrication.
This is different from the general belief that the wear resistance of UHMWPE under
pure water lubrication is better than that under saltwater lubrication, indicating that the
wear mechanisms of UHMWPE under unsaturated lubrication and saturated lubrication
are different.

The formula for the fraying volume V is as follows:

V = B

[
R3arcsin

b
2R

− b
2

√
R2 − b2

4

]
, (2)

where B is the width of the grinding mark (mm), R friction pair ring radius (mm), and b the
sample width (mm). The specific wear rate K (mm3/(N·m)) is:

K =
V

L·d , (3)
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where d is the sliding distance (m) and L the applied load (N). According to the calculation
results, the bar graphs of K under dry sliding, water-unsaturated lubrication and brine-
unsaturated lubrication were drawn, as shown in Figure 12.
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Figure 11. Three-dimensional surface morphologies of UHMWPE under dry friction, water-
unsaturated lubrication and saltwater-unsaturated lubrication conditions: (a–c) 110 N load and
500 r/min speed, (d–f) 50 N load and 1100 r/min speed, and (g–i) 50 N load and 500 r/min speed.

It can be seen in Figure 12 that for the same sliding variables, as it should be, the dry
sliding wear rate is the largest. For the sliding variables of 50 N load and 1100 r/min speed,
the wear rate of UHMWPE under brine-unsaturated lubrication was the smallest, which
was 4.4 × 10−6 mm3/(N·m) and which was 10% lower than that of water-unsaturated
lubrication. While under the sliding variables of 110 N load and 500 r/min speed, the
water-unsaturated lubrication had the smallest wear rate, which was 9.32% lower than that
of brine-unsaturated lubrication.

Under unsaturated lubrication, the wear rate in brine was lower than that in water at
high speed, which was exactly the opposite of the saturated lubrication [11]. It was mainly
due to the fact that water-unsaturated lubrication was close to dry sliding at high speed,
while salt granules precipitated from the saltwater during brine-unsaturated lubrication
played a ball effect. However, at high load conditions, the salt granules were squeezed
into the surface of the sample, and scratches were produced under unsaturated lubrication,
resulting in a higher wear rate than that under water-unsaturated lubrication.
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4. Conclusions

The tribological behaviors of UHMWPE under unsaturated lubrication of water and
brine were studied, and the following conclusions can be drawn from the present study:

1. Under certain liquid drop (about 150–170 mL/h) lubrication, the lubrication form of
UHMWPE gradually transited from saturated lubrication to unsaturated lubrication
with the increase in applied load or sliding speed due to the evaporation of water
caused by frictional heat. When the load exceeds 70 N or the speed exceeds 700 r/min,
UHMWPE is in unsaturated lubrication, and its tribological behaviors are better than
those of dry sliding. Compared with those of dry sliding, the friction coefficients of
UHMWPE under water-unsaturated lubrication are reduced by 50.07–69.43% and
51.81–63.92% at different loads and speeds, respectively, while those under brine-
unsaturated lubrication are reduced by 42.34–56.43% and 39.00–68.45%, respectively.
The wear rate of UHMWPE under water-unsaturated lubrication is 17.11–23.64%
lower than that under dry sliding, and the wear rate of UHMWPE under saltwater-
unsaturated lubrication is 10–25.42% lower than that under dry sliding.

2. The anti-friction property in brine-unsaturated lubrication is better than that in
water-unsaturated lubrication due to the rolling effect of precipitated salt granules
at high speed. When the sliding speed is 1100 r/min, the friction coefficient of
UHMWPE under brine-unsaturated lubrication is 32.44% lower than that under
water-unsaturated lubrication.

3. The wear resistance of UHMWPE under brine-unsaturated lubrication is better than
that in water-unsaturated lubrication at high speed, and the wear rate of UHMWPE un-
der brine-unsaturated lubrication was 10% lower than that under water-unsaturated
lubrication at 1100 r/min speed. However, at high load conditions, UHMWPE has
better wear resistance under water-unsaturated lubrication.
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