
554 VOLUME 4 NUMBER 5 | SEPTEMBER 2011 | www.nature.com/mi

ARTICLES nature publishing group

 INTRODUCTION 
 Human immunodeficiency virus (HIV) infection is charac-

terized by progressive CD4     +      T-cell depletion and immuno-

deficiency that paradoxically occur in the context of a chronic 

state of immune system activation. Early in HIV infection, 

a profound CD4     +      T-cell depletion is found in the intestinal 

mucosa, resulting in deterioration of gut homeostasis. 1 – 3  The 

importance of gut-associated lymphoid tissue in the pathogen-

esis of HIV-1 infection has regained interest since Brenchley 

 et al.  4  found that gut-derived bacterial components in the 

blood of infected subjects are increased upon disease progres-

sion. Both gut immune activation and inflammation, as well 

as decreased mucosal repair and regeneration, contribute to 

HIV-1-associated enteropathy, suggested to lead to increased 

bacterial compounds into the circulation. 5  These bacterial 

components (lipopolysaccharide (LPS), peptidoglycan, and 

bacterial DNA) may further stimulate the vicious circle of 

immune activation, which in turn promotes viral replication 

and disease progression. After antiretroviral therapy initiation, 

activation of CD4     +      T cells still occurs and is related to less 

increase of CD4     +      T cells over time and predicts more rapid 

disease progression. 6 – 8  

 Recently, we showed that impairment of the gastrointestinal 

(GI) tract in HIV-1-infected adults is already present in the 

early phases of HIV-1 disease. The presence of opportunistic 

pathogens like  Pseudomonas aeruginosa  and  Candida albicans  
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was found to be 10-fold and 10,000-fold increased, respectively, 

compared with levels reported in a healthy population. In addi-

tion, lower levels of beneficial microbial groups were found, such 

as bifidobacteria and lactobacilli, compared with levels reported 

for the general population. 9  Both bifidobacteria and lactobacilli 

groups have a positive influence on mucosal immune function 

and gut health. 10  In addition, McKenna  et al.  11  demonstrated 

altered gut microbiota composition in Simian immunodefi-

ciency virus-infected macaques with colitis, strongly support-

ing the recent hypothesis that microbial alterations at GI-tract 

level are a key factor in the pathogenesis of chronic HIV infec-

tion. 9,12,13  The gut microbiota represents a crucial line of resist-

ance to colonization by pathogens, 14  controls proliferation and 

differentiation of epithelial cells, 15  and modulates maturation 

and activity of both innate and adaptive immune system. 16,17  

Impairment in microbiota composition can be addressed by 

using prebiotics. Prebiotics are nondigestible food ingredients, 

generally oligosaccharides, that modify intestinal microbiota 

balance by stimulating the growth of beneficial bacteria, such 

as bifidobacteria and lactobacilli. 18  Prebiotic oligosaccharides 

can act indirectly through microbiota-dependent mechanisms 

(i.e., rebalancing microbiota composition in the gut) and / or 

have a direct effect via activation or blockage of cellular recep-

tors. 19  Prebiotic oligosaccharides can improve immune bal-

ance in infants, resulting in lower incidence of infections early 

in life, and correlate with improvement of intestinal microbiota 

with increased bifidobacteria levels. 20,21  Given the imbalanced 

microbiota composition and altered immune function already 

present in the earlier stages of HIV-1 infection, we investigated 

in a pilot study the possible microbial- and immune-modulat-

ing effects of dietary supplementation with a unique mixture of 

prebiotic oligosaccharides in highly active antiretroviral therapy 

(HAART)-naive HIV-1-infected adults.   

 RESULTS  
 Study population 
 Between June 2005 and May 2006, 57 HAART-naive HIV-1-

positive adults were included and no differences between groups 

were observed with respect to baseline demographic and clini-

cal characteristics ( Table 1 ). Ten subjects did not complete the 

12-week intervention period and were therefore excluded from 

per-protocol study group. Four subjects dropped out because of 

adverse events (15   g   day  – 1 ,  n     =    3; 30   g   day  – 1 ,  n     =    1), two subjects 

withdrew consent (15   g   day  – 1 ,  n     =    1; 30   g   day  – 1 ,  n     =    1), and four 

were lost to follow-up (15   g   day  – 1 ,  n     =    1; 30   g   day  – 1 ,  n     =    1; control, 

 n     =    2).   

 Product tolerability 
 Both groups receiving the unique prebiotic mixture showed a 

nonsignificant increase in total GI score at week 4 of product 

intake compared with control group (1 and 2.5, respectively, for 

15 and 30   g   day  – 1  group). In the 30   g   day  – 1  group, complaints 

significantly increased at week 12 compared with baseline. The 

main complaints were flatulence and abdominal distension. At 

4 weeks after last product intake, scores had returned again to 

0, similar to baseline ( Table 2 ).   

 Product safety 
 Prebiotic supplementation did not result in any clinically rel-

evant changes in biochemical safety parameters of liver function 

(plasma aspartate aminotransferase, alanine aminotransferase, 

 � -glutamyltransferase, and albumin) and renal function (plasma 

creatinine). Furthermore, no unexpected clinical adverse events 

(i.e., other than GI, product-related complaints, as discussed in 

the previous paragraph) or serious adverse events were observed 

in this HIV-1-infected treatment-naive study population. 

  Table 1     Patient demographic and clinical characteristics (mean ± s.d.) at baseline ( n =57)   

    
  Total group 

( n =57)  
  Control 
( n =19)  

  scGOS / lcFOS / pAOS 
15   g     day    – 1    ( n =19)  

  scGOS / lcFOS / pAOS 
30   g     day    – 1    ( n =19)  

   Sex (M / F)  42 / 15  12 / 7  13 / 6  17 / 2 

   Age (years)  38.3 ± 9.5  39.3 ± 12.1  37.4 ± 7.9  38.2 ± 8.2 

   Height (cm)  172.0 ± 8.2  170.8 ± 8.1  172.0 ± 9.1  173.1 ± 7.8 

   Weight (kg)  71.3 ± 14.9  68.3 ± 16.9  71.7 ± 16.1  73.8 ± 11.4 

   BMI (kg   m   –  2 )  24.0 ± 3.8  23.4 ± 4.8  24.0 ± 3.6  24.6 ± 3.2 

   CD4     +      count (cells per  � l)  520 ± 161  502 ± 149  536 ± 173  519 ± 166 

   HIV-1 RNA (copies per ml)  28.4 ± 40.5 × 10 3   28.9 ± 33.6 × 10 3   22.21 ± 46.3 × 10 3   34.8 ± 41.2 × 10 3  
     Abbreviations: BMI, body mass index; F, female; HIV-1, human immunodefi ciency virus type 1; lcFOS, long chain fructooligosaccharides; M, male; pAOS, pectin 
hydrolysate-derived acidic oligosaccharides; scGOS, short chain galactooligosaccharides.   

  Table 2     The composite GI symptom score (median (range)) 
for the ITT population ( n =57)   

    
  Controls 

( n =19)  

  scGOS / lcFOS / 
pAOS 15   g   day    – 1   

 ( n =19)  

  scGOS / lcFOS / 
pAOS 30   g   day    – 1   

 ( n =19)  

   Day 2 / 3  0 (0 – 2)  0 (0 – 3)  0 (0 – 8) 

   Week 4  0 (0 – 3)  1 (0 – 8)  2.5 (0 – 12) 

   Week 12  0 (0 – 6)  1 (0 – 6)  2 (0 – 6)  a   

   Week 16  0 (0 – 2)  0 (0 – 3)  0 (0 – 5)  b   
     Abbreviations: GI, gastrointestinal; ITT, intent-to-treat; lcFOS, long chain 
fructooligosaccharides; pAOS, pectin hydrolysate-derived acidic oligosaccha-
rides; scGOS, short chain galactooligosaccharides.   
   a    Signifi cant difference ( P =0.010) between 30   g   day  – 1  dose and control group 
on within-subject change from week 12 to day 2 / 3.   
   b    Signifi cant difference ( P =0.019) between 30   g   day  – 1  dose and control group 
on within-subject change from week 16 to week 12.   
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One serious adverse event, syphilis, occurred that was not 

related to the product.   

 Prebiotic effect of short chain galactooligosaccharides / long 
chain fructooligosaccharides / pectin hydrolysate-derived 
acidic oligosaccharides (scGOS / lcFOS / pAOS) on microbiota 
composition 
 After 12 weeks, a significant increase in bifidobacteria popu-

lation (median (range)) was found compared with baseline in 

both 15   g   day  – 1  (from 2.8 %  (0.0001 – 30.6) to 15.7 %  (1.2 – 36.4), 

 P     =    0.007) and 30   g   day  – 1  groups (from 3.6 %  (0.000001 – 22.3) to 

18.9 %  (0.9 – 46.9),  P     =    0.01), but not in the control group (from 

1.5 %  (0.0 – 24.9) to 5.2 %  (0.3 – 19.0)) ( Figure 1a ). This change 

from baseline in both groups receiving prebiotic intervention 

was significantly higher ( P     =    0.009 for 15   g   day  – 1  group and 

 P     =    0.015 for 30   g   day  – 1  group) compared with the control group. 

In addition, a significant higher level of bifidobacteria popu-

lation was detected at week 12 for groups receiving 15   g   day  – 1  

( P     =    0.014) and 30   g   day  – 1  ( P     =    0.007) dose, respectively, 

compared with the control group, suggesting improvement of 

bifidobacterial levels as depicted in  Figure 1a . 

 In the higher-dose group of prebiotics (30   g   day  – 1 ), a signifi-

cant decrease in  C. lituseburense  /  C. histolyticum  group, which 

includes pathogenic  Clostridium perfringens  and  Clostridium dif-

ficile  species (estimated marginal mean (95 %  confidence inter-

val)), was found compared with baseline levels (from 0.016 %  

(0.004 – 0.064) to 0.002 %  (0.001 – 0.007),  P     =    0.009) ( Figure 1b ). 

In contrast, a significant increase (from 0.011 %  (0.003 – 0.041) 

to 0.044 %  (0.015 – 0.125),  P     =    0.030) was observed in the con-

trol group. Moreover, at week 12, a significant lower level of 

 C. lituseburense  /  C. histolyticum  group was detected in both 15 

and 30   g   day  – 1  dose groups ( P     =    0.011 and  P     <    0.001, respec-

tively) compared with the control group. In addition, a signifi-

cant decrease from baseline of  Eubacterium rectale / Clostridium 

coccoides  cluster was found in both 15   g   day  – 1  ( P     =    0.035) and 

30   g   day  – 1  dose groups ( P     =    0.05) ( Figure 1c ), whereas no 

change from baseline was seen in the control group. There were 

no changes found in other measured intestinal bacterial 

groups, including  P. aeruginosa ,  C. albicans ,  Bacteroides / 

Prevotella ,  lactobacilli ,  Escherichia coli , and  Atopobium .   

 Prebiotic effect of scGOS / lcFOS / pAOS on plasma LPS and 
soluble CD14 (sCD14) concentration 
 The levels of sCD14 were measured in plasma of all patients at 

baseline as well as after 4, 12, and 16 weeks of prebiotic inter-

vention. The analysis of sCD14 levels in plasma showed that 

patients treated with 15   g   day  – 1  had significantly lower levels 

after 4 and 12 weeks of treatment compared with placebo 

group (week 4: 9,952   pg   ml  – 1  (s.d. ± 1,245) vs. 11,237   pg   ml  – 1  

(s.d. ± 1,342),  P     =    0.02; week 12: 9,720   pg   ml  – 1  (s.d. ± 1,442) vs. 

11,302   pg   ml  – 1  (s.d. ± 1,721),  P     =    0.02) and significantly lower 

levels after 12 weeks compared with patients treated with 

30   g   day  – 1  (11,244   pg   ml  – 1  (s.d. ± 1,997),  P     =    0.04) ( Figure 2 ). 

 LPS analysis did not show differences between treatment 

groups; however, patients treated with 15   g   day  – 1  showed 

a significant decrease in LPS levels at week 16 compared with 
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     Figure 1             Improved gastrointestinal (GI) microbiota composition 
upon 12-week intake of short chain galactooligosaccharides / long 
chain fructooligosaccharides / pectin hydrolysate-derived acidic 
oligosaccharides (scGOS / lcFOS / pAOS). A 12-week prebiotic 
intervention with scGOS / lcFOS / pAOS in highly active antiretroviral 
therapy (HAART)-naive human immunodeficiency virus type 1 (HIV-1)-
infected individuals was associated with ( a ) increased bifidobacterial 
levels expressed as median (range) percentage of total fecal bacteria, 
( b ) reduced levels of the pathogenic  Clostridium histolyticum  cluster 
expressed as estimated marginal mean percentage ( ± s.e.) of the 
total fecal bacteria, and ( c ) reduced levels in the  Eubacterium 
rectale / Clostridium coccoides  cluster expressed as estimated marginal 
mean percentage ( ± s.e.) of total fecal bacteria.  P -values indicate 
significant changes from either baseline within the groups as well 
as between groups (as tested with Mann – Whitney, analysis of 
variance (ANOVA)).  
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baseline values (519.5   pg   ml  – 1  (s.d. ± 59.2) vs. 588.2   pg   ml  – 1  

(s.d. ± 104.5),  P     =    0.04).   

 scGOS / lcFOS / pAOS reduces immune activation of 
CD4     +      T cells 
 Although HIV-1 plasma viral load changes were found in groups 

receiving prebiotics (log viral load changed from 3.91 ± 0.21 

to 3.73 ± 0.20 (15   g   day  – 1 ) and from 4.28 ± 0.24 to 3.98 ± 0.21 

(30   g   day  – 1 ) (estimated marginal mean ( ± s.e.m.)) when com-

pared with control (log viral load changed from 4.06 ± 0.22 to 

4.07 ± 0.19 estimated marginal mean ( ± s.e.m.)), these were not 

statistically significant ( Table 3 ). CD4     +      T-cell count did not 

change upon the short 12 weeks of dietary prebiotic supple-

mentation, neither between groups nor within groups over time, 

as shown in detail in  Table 3 . Nevertheless, a dose-dependent 

reduction of activated CD4     +      / CD25     +      T cells, expressed as per-

centage of total lymphocytes, was detected upon 12 weeks of 

prebiotic intervention ( Figure 3 ). Subjects receiving the lower 

dose (15   g   day  – 1 ) showed a clear trend toward reduced levels of 

activated CD4     +      / CD25     +      T cells (median (min – max)) after 12 

weeks compared with baseline levels (from 0.36 %  (0.04 – 1.9) 

to 0.22 %  (0.02 – 1.25),  P     =    0.09), whereas the higher-dose group 

(30   g   day  – 1 ) showed a statistically significant reduction compared 

with baseline (from 0.52 %  (0.01 – 7.21) to 0.27 %  (0.02 – 1.54), 

 P     <    0.01). Compared with the control group, the group receiv-

ing 15   g   day  – 1  dose showed statistically significant lower CD4     +      

T-cell activation (CD25) at week 12 ( P     <    0.05). The reduction in 

activated CD4     +      / CD25     +      T-cell levels was not accompanied by 

a change from baseline in levels of activated CD8     +      T cells (as 

measured by percentage of CD8     +      / CD38     +      / CD45RO     +      T cells) 

nor by change from baseline in levels of FoxP3 (forkhead box 

P3)-expressing regulatory CD4     +      / CD25     +        +      T cells. Also, no sig-

nificant changes from baseline were found in B7-H1 percentages 

on either monocytes or B cells ( Table 3 ) or in cytokine profiles 

upon  ex vivo  re-stimulation with gag peptides or phytohemag-

glutinin (data not shown).   

 scGOS / lcFOS / pAOS improves natural killer (NK) cell activity 
 In addition to significant changes in the levels of activated 

CD4     +      / CD25     +      T cells, NK cell activity significantly improved 

upon prebiotic intervention. The strongest effect was observed 

in the group receiving 15   g   day  – 1  dose, with significant increases 

in all effector – target (E / T) ratios tested (12.5:1, 25:1, and 50:1) 

with respectively 4.25-fold ( P     =    0.002) 3.63-fold ( P     =    0.001), 

and 3.44-fold ( P     <    0.001) higher levels compared with baseline 

( Figure 3 ). Similar effects, although not statistically significant 

for two of three ratios tested, were observed in the group receiv-

ing 30   g   day  – 1  dose, in whom NK activity was increased from 

baseline 2.15-fold ( P     =    0.026), 2.01-fold ( P     =    0.083), and 1.93-fold 

( P     =    0.107) for E / T ratios 12.5:1, 25:1, and 50:1, respectively. No 

differences were found in control group compared with baseline. 

In addition, in the group receiving 15   g   day  – 1  dose, NK cell activ-

ity at week 12 was significantly improved compared with sub-

jects receiving control product at E / T ratios of 25:1 ( P     =    0.006) 

and 50:1 ( P     =    0.003).    

 DISCUSSION 
 Data herein suggest that dietary supplementation with a unique 

mixture of prebiotic oligosaccharides, consisting of scGOS /

 lcFOS / pAOS, may positively modulate gut microbiota com-

position, resulting in decreased sCD14 and LPS levels, CD4     +      

T-cell activation (CD25), and increased activity of NK cells in 

HAART-naive HIV-infected adults. 

 The epithelial surface of the intestine is colonized by a 

high number of bacteria communities considered to be the first 

component of the defensive gut barrier. It represents a crucial 

line of resistance to colonization by pathogens, thereby decreas-

ing the likelihood of bacterial translocation. Improved growth 

of bifidobacteria upon prebiotic feeding leads to a decrease 

in the pH and modulation of the short-chain fatty acids 

pattern that could contribute to the protection against 

pathogens. This study shows that supplementation with 

scGOS / lcFOS / pAOS mixture increased significantly the level 

of bifidobacteria in both intervention groups and reduced 

the levels of pathogenic clostridia-related species. Despite 

the reduced levels of pathogenic clostridia-related species, 

a full reduction of pathogenic load upon 12 weeks of inter-

vention was not achieved, as levels of other pathogenic spe-

cies like  P. aeruginosa  or  C. albicans  remained unchanged. In 

both prebiotic groups, a reduction in the level of  E. rectale / 

C. coccoides  cluster was observed. This bacterial cluster repre-

sents almost 75 %  of the  Firmicutes , a major group of gut micro-

biota, including most of butyrate producers and has recently 

been implicated to play a role in human energy sequestration 

from diet. 16  Although specific relevance of alterations within 

this cluster to HIV-1 infection remains unclear, alterations found 

in this study are indicative for rebalancing intestinal microbiota 
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  Figure 2             Effective reduction on plasma soluble CD14 (sCD14) 
concentration after administration of short chain galactooligosaccharides /
 long chain fructooligosaccharides / pectin hydrolysate-derived acidic 
oligosaccharides (scGOS / lcFOS / pAOS). Evaluation of sCD14 plasma 
levels at baseline and after 4, 12, and 16 weeks of prebiotic intervention. 
The analysis of sCD14 levels in plasma showed that patients treated with 
15   g   day  – 1  had significantly lower levels after 4 and 12 weeks of treatment 
compared with placebo group and significantly lower levels after 12 
weeks compared with patients treated with 30   g   day  – 1 .   
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in treatment-naive HIV-1 infected upon supplementation with 

the specific prebiotic mixture. This reassess is also confirmed by 

the significant decrease of sCD14 plasma levels in the patients 

receiving 15   g   day  – 1  compared with placebo group and by the 

reduction of LPS plasma levels at week 16 in patients treated 

with 15   g   day  – 1  compared with baseline values. 

 Although in this study a healthy control group was not 

included, we recently reported  Bifidobacterium  levels to be lower 

in HAART-naive HIV-1-infected adults than those reported 

in the general population. 9  Modulating the GI tract toward a 

bifidogenic microbiota has long been regarded as a benefi-

cial health effect for the host. Bifidobacteria supplementation 

has been associated with lower bacterial translocation, lead-

ing to a decrease in the inflammatory cascade activation in 

several models of bacterial translocation. 22  Similarly, other 

studies have demonstrated that modulation of the gut micro-

biota via prebiotic or probiotic ingestion may improve or 

prevent disruption of intestinal permeability in animal models 

and humans. 23  Furthermore, increased levels of fecal bifido-

bacteria have been shown to reduce intestinal LPS in murine 

     Table 3     Immune parameters; baseline and after 12 weeks of product intake (PP population)   

    EMM ± s.e.m.  
  Control 
( n =17)  

  scGOS / lcFOS / pAOS 
15   g     day    – 1    ( n =14)    

  scGOS / lcFOS / pAOS 
30   g     day    – 1    ( n =16)     P -value   a   

    CD4 count (cells per  � l)  

      Baseline  497 ± 49.6  531 ± 49.7    501 ± 49.6  0.850 

      Week 12  548 ± 66.8  478 ± 71.5    520 ± 74.9  0.745 

              

    Viral load (log   10    )  

      Baseline  4.06 ± 0.22  3.96 ± 0.21    4.28 ± 0.24  0.564 

      Week 12  4.07 ± 0.19  3.73 ± 0.20    3.98 ± 0.21  0.422 

              

    CD4 ( % )  

      Baseline  23.2 ± 2.3  24.6 ± 2.4    24.6 ± 2.5  0.862 

      Week 12  24.7 ± 2.3  23.4 ± 2.2    25.2 ± 2.3  0.821 

              

    CD8 ( % )  

      Baseline  48.2 ± 3.1  49.5 ± 3.3    48.5 ± 3.3  0.953 

      Week 12  48.8 ± 3.3  50.5 ± 3.5    48.8 ± 3.6  0.909 

              

    
Median (range)  

  
Control  

  scGOS / lcFOS / 
pAOS 15   g     day    – 1   

  
 P -value   b   

  scGOS / lcFOS / 
pAOS 30   g     day    – 1   

 
  P -value   b   

     % CD8       +        / CD38 / CD45RO       +       

      Baseline  13.2 (5.2 – 19.1)  7.3 (3.4 – 15.7)  0.009  8.4 (3.0 – 17.7)  0.073 

      Week 12  8.6 (0.7 – 42.1)  8.6 (1.7 – 16.0)  0.940  6.8 (0.2 – 38.8)  0.335 

              

     % CD4       +        / CD25       +        / FoxP3       +       

      Baseline  1.12 (0.38 – 4.35)  0.85 (0.15 – 6.08)  0.158  0.74 (0.22 – 2.69)  0.408 

      Week 12  0.73 (0.30 – 8.88)  1.03 (0.11 – 2.43)  0.118  0.78 (0.20 – 4.69)  0.910 

              

     % CD14       +        / B7-H1       +       

      Baseline  14.9 (0.23 – 31.7)  15.6 (0.70 – 45.9)  0.565  16.5 (0.11 – 62.6)  0.169 

      Week 12  16.4 (0.00 – 25.0)  18.5 (1.32 – 41.0)  0.615  14.6 (0.65 – 45.4)  0.487 

              

     % CD19       +        / B7-H1       +       

      Baseline  2.95 (0.12 – 17.5)  4.42 (0.87 – 9.38)  0.688  3.50 (0.69 – 11.3)  0.766 

      Week 12  3.01 (0.00 – 7.33)  5.64 (0.36 – 11.8)  0.054  3.37 (0.67 – 8.63)  0.958 
     Abbreviations: EMM, estimated marginal mean; lcFOS, long chain fructooligosaccharides; pAOS, pectin hydrolysate-derived acidic oligosaccharides; PP, per 
protocol; scGOS, short chain galactooligosaccharides.   
   a    Tested with ANOVA ( � =0.05), testing for overall differences between the three intervention groups.   
   b    Mann – Whitney, comparison with control group (multiple comparisons �  � =0.10 / 3=0.033).   
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models and to improve the mucosal barrier function. 24  Thus, 

particular bacterial species from the intestinal microbiota, 

including bifidobacteria, may well possess immunomodulatory 

properties during HIV-1 infection, although that study popula-

tion was different compared with the HAART-naive subjects in 

our study. 25 – 28  In addition, probiotic supplementation has been 

indicated to possibly influence CD4 count. 29  

 As it is well recognized that translocation of luminal 

bacteria and toxins is linked namely to disruption of the normal 

balance in the gut microbiota, impaired immune function and 

gut barrier function, 30  it is postulated that the clinical benefits 

from consumption of prebiotics are obtained through their 

effect on the colonic microbiota or directly through the immune 

system. In addition to the observed intestinal microbiota 

changes in our study, a clear dose-dependent inhibition of 

CD4     +      T-cell activation, although only measured by CD25 

expression, was demonstrated. Although no statistically sig-

nificant effect of the intervention was found on CD4     +      T-cell 

levels in HIV-1-infected adults and only a slight reduction 

(0.2 – 0.3 log) in viral load was observed. T-cell activation in 

our study was measured by the expression of CD38, mem-

ory CD45RO     +     CD8     +      T cells, and CD25 on CD8     +      and CD4     +      

T cells, respectively. In contrast to the reduced CD4     +      T-cell 

activation, the CD38 expression on CD8     +      T cells was not 

altered, although these data may have been distorted because 

of high variation and differences in activation of CD38 by 

memory (CD45RO     +     ) CD8     +      T cells, a measure of pathologic 

immune activation in HIV-1 infection associated with disease 

progression ( Table 3 ). 

 In light of the critical role of regulatory T cells in the regula-

tion of immune cells, and suggested role in immunopathology 

during chronic HIV-1 infection also, the number of regulatory 

T cells was measured in our study. A rapid disease progression 

seems to be associated with the expansion of regulatory T cells 
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   Figure 3             Beneficial immune changes because of intake of short 
chain galactooligosaccharides / long chain fructooligosaccharides / pectin 
hydrolysate-derived acidic oligosaccharides (scGOS / lcFOS / pAOS). 
Flow cytometry measurement of CD25 expression on CD4     +      T cells on 
lymphocytes first gated on CD45 and CD3. In ( a ) cells are visualized 
labeled with isotype control, whereas ( b ) represents the CD25 labeling. 
The 12-week scGOS / LcFOS / pAOS intake was associated with ( c ) 
reduced CD4     +      T-cell activation and ( d ) improved natural killer (NK) cell 
cytotoxicity. Individual percentages of CD4     +      / CD25     +      T cells are shown 
as dots, with median values displayed per group as lines. The  P -values 
indicate statistical significant changes from baseline as tested with 
Mann – Whitney ( �     =    0.033 for three multiple comparisons). Percentage 
cytotoxicity is expressed as estimated marginal means ( ± s.e.) of target 
cell lysis at indicated effector – target (E / T) ratios. The  P- values indicate 
significant changes from baseline within the groups as well as between 
groups (analysis of variance (ANOVA)).  
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  Figure 4             Overview of patient inclusion. Patients were randomized 
based on study in and exclusion criteria and evenly divided over the 
three arms. Patients who did not complete the 12-week supplementation 
period were excluded from the per-protocol (PP) study group and 
analyzed in the intent-to-treat (ITT) study group. lcFOS, long chain 
fructooligosaccharides; pAOS, pectin hydrolysate-derived acidic 
oligosaccharides; scGOS, short chain galactooligosaccharides.  
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in the course of HIV-1 infection. In addition, Cao  et al.  31  

recently suggested that CD4     +     , but not CD8     +     , T-cell activa-

tion was correlated with the proportion of regulatory T cells in 

HIV-1-infected individuals. 31  The present results did not 

indicate any modification in the number of CD4     +      / CD25     +      /

 Foxp3     +      regulatory T cells as result of 12 weeks of prebiotic 

intake. 

 One of the notable findings from our preliminary study is 

that upon prebiotic supplementation, a significant improvement 

in NK cell cytotoxicity was found, with the most pronounced 

effect in 15   g   day  – 1  dose group. This suggests that for NK cell 

improvement the effect can already be reached using 15   g   day  – 1  

and there is no additive value on this marker to use the 30   g   day  – 1  

dose. In HIV-1 infection in humans, an inverse association exists 

between viral load / replication during chronic infection and both 

NK cell frequency and function. 32 – 35  Our finding might be 

explained by reduced levels of translocated bacterial components 

from the gut upon re-establishment of the gut microbial ecosys-

tem, as chronic exposure to LPS, which is known to be related 

to reduced NK cell cytotoxicity. 36  Furthermore, programmed 

cell death-1 (PD-1) / PD-1L pathway, was previously found to 

be associated with NK and T-cell dysfunction, in that upregu-

lation of PD-1 expression in rapid progressors is associated 

with a reduced cytolytic activity, i.e., perforin and interferon- �  

production. 37  However, no significant changes were observed 

on either B7-H1 expression on monocytes nor on CD8     +      T-cell 

activation upon 12 weeks of product intake. Taken together, the 

mechanism explaining the significant improvement in NK cell 

cytotoxicity as well as the reduction of HIV-1-induced immune 

activation by prebiotics remains to be elucidated. 

 To confirm acceptance of prebiotic supplementation in 

HIV-1-infected adults, tolerability and safety of scGOS / lcFOS / 

pAOS mixture upon prolonged intake (12 weeks) was deter-

mined. In general, prebiotics might lead to gut symptoms 

including flatulence and abdominal distension. Therefore, initial 

increase observed in total GI score at week 4 was anticipated. 

The increase however was nonsignificant, and in general only 

 “ mild ”  scores in GI symptoms were recorded from subjects. 

Furthermore, a decrease in GI symptom incidence at the end 

of intervention was found compared with the incidence at 

week 4, which may well be explained by adaptation of micro-

biota composition and therefore improved / adapted fermenta-

tion of prebiotics. Apart from the observed GI symptoms, no 

other safety issues were identified (as demonstrated by liver 

and renal safety markers) with supplementation of this unique 

prebiotic mixture in HAART-naive HIV-1-infected adults. 

Therefore, the tested prebiotic mix can be regarded as tolerable 

and safe for this particular target population. 

 In conclusion, our study, although preliminary, suggests that 

in nonsymptomatic HAART-naive HIV-1-infected adults, gut 

microbiota can at least partially be restored by a unique prebiotic 

mixture consisting of scGOS / lcFOS / pAOS, with stimulation of 

bifidobacteria growth and reduction in fecal pathogenic load. 

In addition, we demonstrated a significant reduction in sCD14 

and LPS levels, CD4     +      T-cell activation (CD25), and improved 

NK cell cytolytic activity in these HIV-1-infected adults after 

prebiotic supplementation. The mechanisms responsible for 

these observations remain to be elucidated as well as persist-

ence of these effects upon prolonged supplementation. Although 

prebiotic dietary fibers have been extensively investigated for 

their therapeutic effects in other settings, to our knowledge this 

is the first study demonstrating clear health beneficial effects 

of prebiotics in HIV-1 infection. Despite that statistically sig-

nificant differences were observed, the data presented herein 

came from a small sample size patient cohort. It will therefore 

be important to validate these results in a larger cohort of HIV-

infected individuals.   

 METHODS  
 Study design 
 In a double-blind, randomized, placebo-controlled, pilot study (COPA 
trial:  C linical trial with  O ligosaccharides  P owder for  A pplication in 
HIV-1 infection), 57 nonsymptomatic HAART-naive HIV-1-positive 
adults were recruited in three Italian centers. Subjects were randomized 
in three groups, receiving three sachets of powder (16   g per sachet) daily. 
In two of these groups, the powder contained three different prebiotic 
oligosaccharide materials, i.e., scGOS (Borculo Domo, Zwolle, The 
Netherlands; 45 %  scGOS), lcFOS (Orafti, Wijchen, The Netherlands; 
100 %  lcFOS), and pAOS (Sudzucker, Mannheim, Germany; 85 %  
galacturonic acid). The prebiotics were mixed in a ratio of 9:1:10 based 
on prebiotic purity, with one group receiving 15   g   day  – 1  and the other 
30   g   day  – 1  of these prebiotics. The control group received solely digest-
ible sugar maltodextrin. In order to get accustomed to the oligosaccha-
rides, which could lead to GI effects like flatulence, subjects gradually 
increased product intake with the complete daily dose from the third 
week onward. Total study duration was 16 weeks, consisting of 12 weeks 
of intervention and 4 weeks of follow-up. Product tolerability and safety 
were assessed on the intent-to-treat study group. In order to analyze 
both immune and microbiota responses related to the intervention, 
these parameters were analyzed from those subjects who completed 
the 12-week supplementation period as depicted in more detail 
in  Figure 4 . All analysis and laboratory staff members were blinded 
during the entire duration of the study. The study was approved by 
the institutional review board of the  “ Luigi Sacco ”  Hospital, Milano, 
Italy, by the institutional review board of the Busto Arsizio Hospital, 
Busto Arsizio, Italy, and by the institutional review board of the Spedali 
Civili di Brescia Hospital, Brescia, Italy. The study has been conducted 
in compliance with  “ Declaration of Helsinki ”  principles and with local 
Italian laws and regulations. Written informed consent was obtained 
from all subjects before study participation.   

 Product tolerability and safety 
 GI tolerability was assessed on days 2 or 3 from baseline and at weeks 4, 
12, and 16 by a 4-point scale recall questionnaire based on Van Aerde 
 et al.  38  Seven GI symptoms (nausea, burping, abdominal distention, 
flatulence, diarrhea, constipation, and urgent need for defecation) 
were each scored by the patients on  “ 0 ”  (no complaint) to  “ 3 ”  (severe 
complaint) scale. Total GI score was calculated as the sum of all scores. 
For product safety, liver function (plasma aspartate aminotransferase, 
alanine aminotransferase,  � -glutamyltransferase, and albumin) and renal 
function (plasma creatinine) were assessed at baseline and week 12.   

 Gut microbiota composition  
  Fecal sample collection and preparation   .   Stool samples, collected 
at baseline and after 12 weeks, were immediately stored at     −    20    ° C 
until further processing. Frozen samples were thawed on ice water 
and 0.5   g was fixed with paraformaldehyde as described previously. 39  
For DNA extraction, 0.2   g fecal sample was resuspended in 0.05    M  phos-
phate-buffered saline. DNA was isolated using bead beating method 
as described previously. 39    
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  Real-time PCR   .   Quantification of total bifidobacteria, lactobacilli, 
and  P. aeruginosa  was performed with real-time PCR using duplex 
5 � -nuclease assay. Measurement of bifidobacteria and lactobacilli 
was performed as previously described. 39,40   P. aeruginosa  was deter-
mined using the method described by Pirnay  et al.  41  with some minor 
modifications; fluorescent labels were changed to 6FAM and TAMRA. 
Fluorescence signal was measured in annealing phase on ABI 7900HT 
Fast (Applied Biosystems, Nieuwerkerk a / d IJssel, The Netherlands). 
Total bacterial load was determined as described by Nadkarni  et al.  42  
Relative percentage of  P. aeruginosa  was subsequently calculated using 
comparative Ct method according to Liu  et al.  43    

  Fluorescent  in situ  hybridization   .   Oligonucleotide probes used in 
this study were: (i) Chis150 to detect  C. histolyticum  group, 44  (ii) Clit135 
for  C. lituseburense  group, 44  (iii) Bac303 for  Bacteroides / Prevotella  
group, 45  (iv) Erec482 for members of  E. rectale / C. coccoides  cluster, 44  
(v) Eco1531 for  E. coli  and related species, 46  (vi) Caal for  C. albicans , 47  
and (vii) Ato291 for  Atopobium  cluster. 48  These probes were covalently 
linked at their 5 � -end either to fluorescein isothiocyanate (FITC) or 
Cy3. Fixed fecal samples were hybridized with probes as described 
previously. 49  Fluorescent cells were then counted automatically 50  with 
a Leica DMRXA epifluorescence microscope (Leica, Wetzlar, Germany). 
For each analysis, 25 microscopic fields were counted and the target 
bacterial groups were recorded as a percentage of total bacterial cell 
count. 51     

 Immunological markers  
  Blood collection, CD4     +      T-cell counts, and viral load measurements   . 
  Whole blood was collected by venipucture in Vacutainer tubes contain-
ing EDTA (BD Biosciences, Erembodegem, Belgium). CD4     +      T-cell 
counts were determined by flow cytometry. Plasma HIV-1 RNA levels 
were quantified by nucleic acid signal-amplification assay with detection 
limit of 50   copies per ml. Peripheral blood mononuclear cells (PBMCs) 
were separated on lymphocyte separation medium (Organon Teknika, 
Dublin, Ireland), and washed twice in phosphate-buffered saline. Freshly 
isolated PBMCs were kept at room temperature and used within 12   h. 
Additionally, PBMCs were also frozen in dimethyl sulfoxide and stored 
in liquid nitrogen until further use (see also FoxP3 staining and NK cell 
activity).   

  Immunophenotypic analyses   .   Lymphocyte subsets were evaluated by 
flow cytometric analysis, using 50    � l of EDTA peripheral blood incu-
bated for 30   min at 4    ° C with fluorochrome-labeled monoclonal anti-
bodies (CD4 R-PE-Cyanine 5 Tandem – PE-Cy5-; CD3 PE-Cy5; CD8 
PE-Cy5; CD14 PE-Cy5; CD19 PE-Cy5; CD25 PE; CD38 PE; CD8 FITC; 
CD45RO FITC) (Caltag Laboratories, Burlingame, CA). After incuba-
tion, erythrocyte lysis and fixation was performed using Immuno-Prep 
EPICS kit (Coulter Electronics, Milano, Italy) and Q-prep Work Station 
(Coulter Electronics). For indirect immunofluorescence staining, freshly 
isolated PBMCs were incubated with mouse-anti-human B7-H1 antibody 
(2.5    � g   ml  – 1 ) a gift of Dr L. Chen (Johns Hopkins University School of 
Medicine, Baltimore, MD). After 30   min at 4    ° C, cells were washed and 
incubated for 30   min at 4    ° C with rat-anti-mouse IgG (H    +    L) Ab-FITC 
(1    � g   ml  – 1 ) or with a mouse-anti-hamster IgG-PE (1    � g   ml  – 1 ) (Caltag 
Laboratories).   

  Cytometric analysis   .   Cytometric analyses were performed using 
an EPICS XL flow cytometer (Beckman Coulter, Brea, CA). For each 
analysis, 20,000 events were acquired and gated on CD4 (or CD8, CD14, 
CD19) expression and side scatter properties. For FoxP3 intracellular 
staining, cryo preserved PBMCs were thawed and washed with phosphate-
buffered saline containing 2 %  bovine serum albumin. Subsequently, 
1 × 10 6  cells were stained according to the manufacturer ’ s protocol 
(eBioscience, San Diego, CA). Acquisition of data was performed on the 
same day as staining.   

  Plasma LPS and sCD14 concentration   .   LPS and sCD14 concentration 
was measured on plasma samples using LAL Chromogenic Endopoint 
Assay (Hycult Biotechnology, Uden, The Netherlands) and sCD14 ELISA 
kit (R & D Systems, Minneapolis, MN; Bender MedSystems, Vienna, 
Austria), respectively. All the analyses were conducted following the 
manufacturer ’ s instructions. Plasma concentration of each protein was 
calculated relatively to standard curve.   

  NK cell cytotoxicity   .   Cytotoxic activity of NK cells against target 
cell line (K562) was measured by flow cytometry using NKTEST-
kit in accordance with the manufacturer ’ s instructions (ORPEGEN 
Pharma, Heidelberg, Germany). In brief, K562-target cells were 
labeled with lipophilic green fluorescent membrane dye discriminat-
ing effector and target cells. Cryopreserved PBMCs were thawed, 
washed, and subsequently incubated at ET ratios of 50:1, 25:1, and 12.5:1. 
After 4   h of incubation, killed target cells are identified by DNA stain. 
Percentage of target cells killed by effector NK was determined using 
FC 500 (Beckman Coulter).    

 Statistical analyses 
 Comparisons are made between results obtained at week 12 compared 
with baseline for all three groups. Also, change from baseline was com-
pared between control group and the two treatment groups. The statis-
tical analyses used for these comparisons are analysis of variance and 
Dunnett ’ s test for multiple comparisons using SPSS (SPSS, Chicago, IL) 
version 12.1 or higher. For two comparisons,  P -values of     <    0.05 were 
considered to be statistically significant, and for three comparisons,  �  of 
0.10 was used. In case data were not normally distributed, log transfor-
mations were performed to obtain normal distributions and values are 
reported as estimated marginal mean with s.e.m. When transforming 
the data did not result in normal distribution of the parameter, nonpara-
metrical testing (Mann – Whitney) was performed and values are reported 
as median with range.    
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