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Abstract: Particulate matter of aerodynamic diameter of less than 2.5 µm (PM2.5) is a recognised
carcinogen and a priority air pollutant owing to its respirable and toxic chemical components. There
is a dearth of information in South Africa on cancer and non-cancer risks of exposure to heavy metal
(HM) content of PM2.5. This study determined the seasonal concentration of HM in PM2.5 and the
cancer and non-cancer risks of exposure to HM in PM2.5. Ambient PM2.5 was monitored and samples
were collected during the winter and summer months in an industrialized area in South Africa.
Concentration levels of nine HMs—As, Cu, Cd, Cr, Fe, Mn, Ni, Pb, and Zn—were determined in the
PM2.5 samples using inductive coupled optical emission spectrophotometry. The non-cancer and
cancer risks of each metal through the inhalation, ingestion and dermal routes were estimated using
the Hazard Quotient and Excess Lifetime Cancer Risk (ELCR), respectively, among infants, children,
and adults. Mean concentration of each HM-bound PM2.5 was higher in winter than in summer. The
probability of the HM to induce non-cancer effects was higher during winter than in summer. The
mean ELCR for HMs in PM2.5 (5.24 × 10−2) was higher than the acceptable limit of 10−6 to 10−4.
The carcinogenic risk from As, Cd, Cr, Ni, and Pb were higher than the acceptable limit for all age
groups. The risk levels for the carcinogenic HMs followed the order: Cr > As > Cd > Ni > Pb. The
findings indicated that the concentrations of HM in PM2.5 demonstrated a season-dependent pattern
and could trigger cancer and non-cancer health risks. The formulation of a regulatory standard for
HM in South Africa and its enforcement will help in reducing human exposure to HM-bound PM2.5.

Keywords: heavy metals; PM2.5; hazard quotient; excess lifetime cancer risk; South Africa

1. Introduction

South Africa represents one of the largest industrialised economies in the Southern
Hemisphere with significant mining and metallurgical activities [1,2]. It is an arid country
with high naturally occurring dust levels, coupled with industrial and vehicular pollution
emissions [3]. Air quality in South Africa is characterised by a mixture of air pollution
problems arising from urban-industrial activities and the domestic use of biofuels [4]. High
Particulate matter (PM) pollution levels have been recorded in industrialised regions and
urban areas in South Africa [5–7]. Additionally, many communities have constantly be
exposed to experience high pollution levels from the use of unclean fuels, coal combustion
and other mobile and stationary sources.

The PM2.5 denotes a toxic fraction of PM and is recognised as a major threat to human
health due to its chemical toxicity and its ability to pass beyond the human larynx and
ciliated airways [8,9]. It can penetrate the alveolar regions, blood circulation system [10]
and getting into the extrapulmonary organs including the liver, spleen, heart, and brain [11].

Airborne PM is a heterogeneous mix of harmful chemical and biological substances
including heavy metals, polycyclic aromatic hydrocarbons, fungi, bacteria and viruses.
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Heavy metals bounded to the particulate matter have been the focus in many environmental
studies [12,13]. Heavy metals such as Cd, Cr, Cu, Mn, Ni, Pb, V, and Zn are typically present
in PM [14] and have, therefore, been classified as an environmental priority pollutant by
the United States Environmental Protection Agency [15]. Human exposure to heavy metal
bounded PM is through inhalation, ingestion, and dermal absorption pathways [16,17].

Although HM in PM account for ~10% of its mass, it still denotes an environmen-
tally key component due to its persistent bioavailability, long resident time in the envi-
ronment and toxicity, even at low concentration thresholds [18]. Past epidemiological
studies reported an association between exposure to PM-bound HMs and cardiovascular
effects [19,20], myocardial toxicity-associated health risks, stroke [19], decreased function-
ing of the lung, pulmonary disease, bone defects, lung cancer [21,22], kidney damage and
increased blood pressure [23,24]. Researchers assert that exposure to PM-bound metals
can cause pulmonary toxicity [25], inflammatory responses, DNA damage and oxidative
stress [26]. The International Agency for Research on Cancer classified As, Cd, Cr(VI)
and Ni compound as human carcinogens [27] and inorganic Pb compounds as probable
carcinogens [28]. Recently, Cr, Ni, Cu, Fe, V, and Zn have been reported to promote electron
exchange [29] and aid the formation of reactive oxygen species in the lung [26].

In South Africa, the standard for PM2.5 was established in 2012 in terms of section
9(1) of the NEMA: AQA as 40 µg/m3 and 20 µg/m3 for a day and annual average, respec-
tively [30]. Following the establishment of the standard, limited studies have determined
the levels of PM2.5 in industrial areas. Additionally, no information currently exists on
cancer and non-cancer risk assessment of exposure to HM bounded PM2.5 for specific
age groups.

Having an understanding of the concentration of HM contained in PM2.5 is important
for assessing the public health risk of exposure to PM2.5 as well as the potential non-cancer
and cancer risks of exposure to HM in PM2.5. Additionally, this study will provide the
evidence-based knowledge needed for the formulation of new environmental management
plans for HM in South Africa. Therefore, this study aimed to determine the seasonal
concentration of HM in PM2.5 and (2) the cancer and non-cancer health risks of exposure to
HMbound PM2.5.

2. Materials and Methods
2.1. Study Area

The study was conducted in an industrial area in Pretoria West, located in the Gauteng
province. It is situated to the north of Johannesburg and extends from Centurion in
the south to Temba in the north, encompassing an area of 2200 km2 [31]. Sited in the
industrial area are industrial facilities with approved air emission licences, power plants
and metallurgical industries and facilities with small boilers [32]. The detailed information
on the study area has been reported in our earlier published works [33–35].

2.2. Sampling Procedure for PM2.5

The BetaPLUS Particle measurement system—model 602, which was part of an existing
ambient air quality monitoring network sited at Pretoria West industrial area—was used
for sampling of PM2.5. The BetaPLUS Particle measurement system continuously measures
PM2.5 mass concentration in the ambient air. Sampled PM2.5 was collected on a 47 mm
glass fibre filter with a porosity of 2 µm by the BetaPLUS Particle measurement system
operating at a constant flow rate of 1 m3/h for 24 h. Filters were thereafter retrieved for
heavy metal analysis. The full description of the sampling process and the gravimetric
analysis of PM2.5. has been reported in our earlier publication [35].

2.3. Analysis of Heavy Metals in PM2.5

The analysis of HMs in PM2.5 was done following the procedure described by Hugelin
et al. [36] To one-fourth of each of the 47 mm PM2.5 loaded quartz fiber filter portion in
25 mL flask was added 5 mL of 65% nitric acid (HNO3) and 1 mL of 30% hydrogen peroxide
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(H2O2) to extract the metals contained in PM2.5. The solution was then digested by placing
the flask on a hot plate for about 24 h at a temperature of 100 ◦C. The temperature was
later increased to 260 ◦C until white smoke appeared. A Whatman qualitative filter paper
of diameter 47 mm was used for filtering the digested solution and to the effluent was
added indium (internal standard) and 50 mL double distilled water. The solution was
subsequently stored in refrigeration until instrumental analysis was done. Blank filters and
duplicate samples were analysed following the same procedure earlier stated.

The concentrations of selected heavy metals in PM2.5 were determined using inductive
coupled optical emission spectrophotometry (ICP-OES) (Perkin-Elmer Optima 2100 DV).
Nine heavy metals: As, Cu, Cd, Cr, Fe, Mn, Ni, Pb, and Zn were determined in this study.
Calibration of the instrument was done through the use of ICP-OES standard solution
containing known amounts of the metals. For accuracy and precision of the test procedure,
certified reference materials were used.

The values obtained for heavy metals were compared with the WHO air quality
guidelines and the US EPA regulatory guideline (Table 1). It is important to note that the
South African national ambient air quality standard (NAAQS) only has an exposure limit
for Pb. Note that Mn and Zn recommended values were not seen in the literature.

Table 1. Permissible limits of concentrations of metals in ambient air.

Metal Winter (µg/m3) Summer (µg/m3) Limit Value (µg/m3)

As 0.035 0.07 0.006
Cd 0.026 0.022 0.0002
Cr 0.354 0.309 0.012
Cu 0.2 0.2 100
Fe 4.3 3.4 10,000
Ni 0.067 0.061 0.00024
Pb 0.5 0.5 0.5

NAAQS: National Ambient Air Quality Standards; USEPA: United States Environmental Protection Agency;
NIOSH: National Institute for Occupational Safety and Health. Source: Agarwal et al. [37].

2.4. Health Risk Assessment of HMs in PM2.5

The health risk assessment (HHRA) model adopted for the estimation of the non-
cancer and cancer risks from exposure to HMs (As, Cu, Cd, Cr, Fe, Mn, Ni, Pb, and Zn) in
PM2.5 was based on the US EPA human health evaluation method [38]. Human exposure
to a heavy metal component of PM2.5 can occur through ingestion, inhalation and dermal
routes [39,40]. Human exposure was explained in terms of average daily dose and was
computed for each metal and each exposure routes as follows:

ADDinh = C ∗ InhR ∗ EF ∗ ED (1)

BW ∗ AT
ADDing = C ∗ IngR ∗ EF ∗ ED (2)

BW ∗ AT
ADDderm = C ∗ SA ∗ AF ∗ ABS ∗ EF ∗ ED (3)

BW ∗ AT
where ADDinh, ADDing, ADDderm is the average daily dose of each metal in PM2.5 through
the inhalation, ingestion and dermal routes; C is the amount of PM2.5 in ambient air
(µg/m3); ED is the exposure duration (days), BW is the body weight of the exposed group
(kg); AT is the averaging time (days); IngR is the ingestion rate (mg/day), InhR is the
inhalation rate (m3/day); SA is the surface area of the skin exposed to pollutants (cm2), AF
is the skin adherence factor (mg/cm2/day), ABS is the dermal absorption factor [41,42]; EF
is the exposure frequency (days/year). An EF of 350 days per year was used to calculate
the lifetime exposure of human receptors (both child and adult) with the assumption that
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all population in Pretoria West spends a maximum of 14 days per year away from the study
area [43]. The values of these parameters are stated in Table 2.

Table 2. Recommended values in equations of the daily exposure dose of PM2.5.

Parameter Definition Value for Age Categories Reference

Infant
(0–1 yr)

Child
(2–5 yrs)

Child
(6–12 yrs)

Adult
(19–75 yrs)

C
Mean concentration of
PM2.5 in ambient air

(µg/m3)
IngR Ingestion rate (mg/day) 60 60 60 30 US EPA [44]

EF Exposure frequency
(days/year) 350 350 350 350 Morakinyo et al. [7],

US EPA [45]

ED Exposure duration (years) 1 6 12 30 Matooane and Diab [46]
US EPA [45]

ET Exposure time (h) 1 8 6 3 Matooane and Diab [46]
US EPA [45]

AT Averaging time (days);
AT = ED × 365 days 365 2190 4380 10,950 Matooane and Diab [46]

US EPA [45]
BW Body weight (kg) 11.3 22.6 45.3 71.8 Matooane and Diab [45]
SA Skin surface area (cm2) 2800 2800 2800 5700 US EPA [47]

AF Adherence factor of soil to
skin (mg/cm2/event) 0.2 0.2 0.2 0.07 US EPA [47]

ABS Dermal absorption fraction 0.001 0.001 0.001 0.001 US EPA [47]
InhR Inhalation rate (m3/day) 9.2 16.74 21.02 21.4 US EPA [45]

2.5. Estimation of Non-Carcinogenic Risks of Heavy Metals in PM2.5

The non-carcinogenic risk of each metal through the inhalation, ingestion and dermal
routes was estimated using the Hazard Quotient (HQ). This was achieved by dividing
the ADD from each exposure route by a definite reference dose (RfD). The HQ is defined
as follows:

HQ = ADD (4)

RfD
For the inhalation route,

HQ = ADD (5)

RfCi × 1000 µg mg−1

where RfD (reference dose, mg kg−1day−1) is the estimated maximum allowable risk
to humans from daily exposure to a known pollutant [40]; RfCi is inhalation reference
concentrations (mg m−3). An HQ of less than 1 signifies that no adverse health risk will
occur while and HQ of more than 1 signifies that potential non-cancer effects would
occur [48]. The RfD values used in estimating the HQ are presented in Table 3.

Table 3. Recommended values of Reference Doses.

As Cu Cd Cr Fe Mn Ni Pb Zn

RfD-ADDing 3.00 × 10−04 4.00 × 10−02 1.00 × 10−03 3.00 × 10−03 - 4.60 × 10−02 2.00 × 10−02 3.50 × 10−03 3.00 × 10−01

RfD-ADDderm 1.23 × 10−04 4.02 × 10−02 1.00 × 10−05 2.86 × 10−05 - 1.43 × 10−05 2.06 × 10−02 5.25 × 10−04 6.00 × 10−02

RfDi-ADDinh 1.50 × 10−05 1.20 × 10−02 1.00 × 10−05 1.00 × 10−04 7.00 × 10−01 5.00 × 10−05 1.40 × 10−05 3.50 × 10−03 3.00 × 10−01

Source: Izhar et al. [40] Note: RfD-ADDing: Ingestion reference dose (mg/kg/day), RfD-ADDderm: Dermal contact reference dose
(mg/kg/day), RfDi-ADDinh: Inhalation reference dose (mg/kg/day).
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To determine the possible non-cancer effects that could arise from exposure to the
synergistic effects of several metals, the sum of HQ values of all the metals were computed
and expressed as a hazard index (HI):

HI =
n

∑
i=1

HQ1 + HQ2 + . . . + HQi (6)

where HQi denotes the HQ for the ith element. HI < 1 stands for no significant risk of
non-carcinogenic effects while HI > 1 shows the likely occurrence of non-carcinogenic
effects [49].

The non-carcinogenic risks through the total exposure route (HIt) were calculated
as the sum of all HI for the inhalation, ingestion and dermal routes. It was expressed
as follows:

i

∑
1

HI (7)

When HIt is less than 1, protracted health risks are unlikely to occur, although non-
carcinogenic risks are likely to occur when HIt > 1 [50].

2.6. Estimation of Carcinogenic Risks of Heavy Metals in PM2.5

The Excess Lifetime Cancer Risk (ELCR—likelihood of developing cancer over the
lifespan of an individual as a consequence of exposure to a carcinogenic metal) of exposure
to As, Cd, Cr, Ni, and Pb was computed as follows:

ELCR = EC × IUR (8)

where EC is the exposure concentration via the inhalation route; IUR (mg m−3)−1 is the
inhalation unit risk of HMs in PM2.5. The RfCi and IUR values are shown in Table 4.

Table 4. Recommended values of RfC and IUR.

As (Inorganic) Cd (Diet/Water) Cr (VI) Mn (Diet) Ni Pb

RfC (mg/m3) 1.50 × 10−05 1.00 × 10−05 1.00 × 10−04 5.00 × 10−05 1.40 × 10−05 -
IUR (mg/m3)−1 4.30 × 10−03 1.80 × 10−03 8.40 × 10−02 - 2.40 × 10−04 1.20 × 10−05

The RfC and IUR were obtained from the US EPA website—http://www.epa.gov/region9/superfund/prg/index.html (accessed on 9
April 2016) [38] and the study of Li et al. [51].

The exposure concentration was estimated as:

EC = C ∗ InhR ∗ EF ∗ ED (9)

ATn
where ATn is the average time for carcinogens (70-year × 365 days/year
× 24 h/day) [38,39].

The IUR of carcinogenic risk through the ingestion and dermal routes were not
provided in the literature, so only the carcinogenic risk of HMs in PM2.5 through the
inhalation pathway was computed. The allowable or tolerable ELCR for the regulatory
purpose is 1 × 10−6–1 × 10−4.3.

3. Results and Discussion
3.1. PM2.5-Bound Heavy Metal Concentration

Higher mean concentrations of metals in PM2.5 were found in winter than in summer
(Table 5). The winter/summer concentration ratio of greater than 1 was observed for
all metals: As (1.4), Cu (1.4), Cd (1.2), Cr (1.1), Fe (1.2), Mn (1.1), Ni (1.7), Pb (1.4) and
Zn (1.2). In terms of non-carcinogenic metals, the pattern of Fe > Cu > Zn > Mn was
observed whereas, the pattern was Pb > Ni > As > Cd, > Cr for carcinogenic metals in

http://www.epa.gov/region9/superfund/prg/index.html
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winter and summer months, respectively. Similar studies carried out in other countries
such as China [51], India [37], Italy [52], reported a higher mean concentrations of metals
in winter than in summer.

Table 5. Seasonal variation of ions and metals in PM2.5.

Heavy Metal
Winter Summer

Mean (µg/m3) SD Mean (µg/m3) SD

As 4.72 3.97 3.32 2.68
Cu 7.31 5.44 5.23 3.50
Cd 2.81 2.79 2.28 2.23
Cr 2.39 2.10 2.18 1.23
Fe 7.10 5.34 5.71 2.63
Mn 1.66 1.01 1.58 1.05
Ni 6.29 3.67 5.40 3.32
Pb 8.48 6.21 5.83 4.24
Zn 3.23 1.70 2.76 1.78

A plausible explanation for increased metal concentration in PM during winter was
attributed to stable weather conditions occasioned by less precipitation, stagnation of
air movement, low wind speed and turbulence, thermal and strong inversion, and high
relative humidity that are predominant during winter [53].

Furthermore, the metal-bound PM2.5 measured in this study was compared with
national and international regulatory guidelines shown in Table 1. The mean values
of As, Cd, Cr, Mn, Ni, Pb, and Zn were higher than the recommended exposure safe
limit. Higher concentrations of HMs in PM exceeding recommended limits have been
reported [54]. The proximity of the monitoring station to the emission sources like the
power plants and metallurgical industries in the study site may play a significant role in
the higher concentration of metals that was recorded. Arsenic, Pb, Cd, Cr and Ni in PM
had been reported to be markers of industrial emissions majorly from coal-fired power
plants, metallurgical industries, and oil refineries [55].

3.2. Average Daily Exposure Dose

The average daily exposure dose (ADD), which is the dose rate of heavy metals (HMs)
in PM2.5 via the ingestion, dermal and inhalation exposure pathways, is expressed as a
daily dose on a per-unit-body-weight basis is presented in Table 6. The ADD of HMs
in PM2.5 through the three exposure pathways for the different age groups followed the
pattern Cu > Fe > Zn > Mn > Pb > Ni > As > Cd > Cr.

The ADD of the HMs also differs for the different exposure groups. For example, the
ADDs of Fe, Mn, and Zn were greater for infants than for adults while the ADDs of As, Cr,
Ni, and Pb were highest for adults than for infants.
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Table 6. Average daily dose of HMs in PM2.5 via inhalation, ingestion, and dermal routes.

Metal Season
ADD Inhalation ADD Ingestion ADD Dermal

Infant Child Child Adult Infant Child Child Adult Infant Child Child Adult

As Winter
Summer

5.26 × 10−02

3.70 × 10−02
2.87 × 10−01

2.02 × 10−01
3.60 × 10−01

2.53 × 10−01
5.78 × 10−01

4.07 × 10−01
3.43 × 10−01

2.41 × 10−01
1.03 × 10+00

7.25 × 10−01
1.03 × 10+00

7.22 × 10−01
8.10 × 10−01

5.70 × 10−01
3.20 × 10−03

2.25 × 10−03
9.61 × 10−03

6.76 × 10−03
9.59 × 10−03

6.75 × 10−03
1.08 × 10−02

7.58 × 10−03

Cu Winter
Summer

5.71 × 10+00

4.25 × 10+00
5.91 × 10+00

3.86 × 10+00
3.25 × 10+00

2.42 × 10+00
2.09 × 10+00

1.53 × 10+00
3.72 × 10+01

2.66 × 10+01
1.86 × 10+01

1.33 × 10+01
9.28 × 10+01

6.64 × 10+01
2.93 × 10+01

2.10 × 10+01
3.47 × 10−01

2.49 × 10−01
1.74 × 10−01

1.24 × 10−01
8.67 × 10−02

6.20 × 10−02
3.90 × 10−02

2.79 × 10−02

Cd Winter
Summer

3.13 × 10−02

2.54 × 10−02
1.71 × 10−01

1.39 × 10−01
2.14 × 10−01

1.74 × 10−01
3.44 × 10−01

2.79 × 10−01
2.04 × 10−01

1.67 × 10−01
6.13 × 10−01

5.00 × 10−01
6.12 × 10−01

5.00 × 10−01
4.80 × 10−01

3.91 × 10−01
1.91 × 10−03

1.55 × 10−03
5.72 × 10−03

4.64 × 10−03
5.71 × 10−03

4.63 × 10−03
6.42 × 10−03

5.21 × 10−03

Cr Winter
Summer

2.67 × 10−02

2.43 × 10−02
1.46 × 10−01

1.33 × 10−01
1.82 × 10−01

1.66 × 10−01
2.93 × 10−01

2.67 × 10−01
1.74 × 10−01

1.59 × 10−01
5.22 × 10−01

4.76 × 10−01
5.20 × 10−01

4.75 × 10−01
4.10 × 10−01

3.74 × 10−01
1.62 × 10−03

1.48 × 10−03
4.87 × 10−03

4.44 × 10−03
4.86 × 10−03

4.43 × 10−03
5.46 × 10−03

4.98 × 10−03

Fe Winter
Summer

5.54 × 10+00

4.46 × 10+00
5.04 × 10+00

4.06 × 10+00
3.16 × 10+00

2.54 × 10+00
2.03 × 10+00

1.63 × 10+00
3.61 × 10+01

2.91 × 10+01
1.81 × 10+01

1.45 × 10+01
9.02 × 10+00

7.25 × 10+00
2.84 × 10+00

2.29 × 10+00
3.37 × 10−01

2.71 × 10−01
1.69 × 10−01

1.36 × 10−01
8.42 × 10−02

6.77 × 10−02
3.78 × 10−02

3.04 × 10−02

Mn Winter
Summer

1.30 × 10+00

1.23 × 10+00
1.18 × 10+00

1.12 × 10+00
7.39 × 10−01

7.03 × 10−01
4.74 × 10−01

4.52 × 10−01
8.45 × 10+00

8.05 × 10+01
4.23 × 10+00

4.02 × 10+01
2.11 × 10+00

2.01 × 10+00
6.65 × 10−01

6.33 × 10−01
7.89 × 10−02

7.51 × 10−02
3.94 × 10−02

3.73 × 10−02
1.97 × 10−02

1.87 × 10−02
8.85 × 10−03

8.42 × 10−03

Ni Winter
Summer

7.02 × 10−02

6.02 × 10−02
3.83 × 10−01

3.29 × 10−01
4.80 × 10−01

4.11 × 10−01
7.70 × 10−01

6.61 × 10−01
4.58 × 10−01

3.93 × 10−01
1.37 × 10+00

1.18 × 10+00
1.37 × 10+00

1.18 × 10+00
1.08 × 10+00

9.27 × 10−01
4.27 × 10−03

3.67 × 10−03
1.28 × 10−02

1.10 × 10−02
1.28 × 10−02

1.10 × 10−02
1.44 × 10−02

1.23 × 10−02

Pb Winter
Summer

9.46 × 10−02

6.50 × 10−02
5.16 × 10−01

3.55 × 10−01
6.47 × 10−01

4.50 × 10−01
1.04 × 10+00

7.14 × 10−01
6.17 × 10−01

4.24 × 10−01
1.85 × 10+00

1.27 × 10+00
1.85 × 10+00

1.27 × 10+00
1.46 × 10+00

1.00 × 10+00
5.76 × 10−03

3.96 × 10−03
1.73 × 10−02

1.19 × 10−02
1.72 × 10−02

1.18 × 10−02
1.94 × 10−02

1.33 × 10−02

Zn Winter
Summer

2.52 × 10+00

2.15 × 10+00
2.29 × 10+00

1.96 × 10+00
1.44 × 10+00

1.23 × 10+00
9.23 × 10−01

7.89 × 10−01
1.65 × 10+01

1.41 × 10+01
8.22 × 10+00

7.03 × 10+00
4.10 × 10+00

3.51 × 10+00
1.29 × 10+00

1.11 × 10+00
1.53 × 10−01

1.31 × 10−01
7.67 × 10−02

6.56 × 10−02
3.83 × 10−02

3.27 × 10−02
1.72 × 10−02

1.47 × 10−02
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3.3. Non-Carcinogenic Risks of HMs in PM2.5

The non-carcinogenic risks of HMs in PM2.5 via dermal contact, ingestion and inhala-
tion exposure pathways are shown in Table 7. Findings from this study showed that the
probability of exposure to HMs to induce non-cancer effects was higher during winter
than in summer. Cadmium, Mn, and Ni may induce non-carcinogenic effects (HQ > 1)
through the inhalation routes for all age groups while Mn is the only HM in PM2.5 that
may cause non-carcinogenic health effects through dermal contact. Arsenic possessed
significant non-cancer risks for all age groups through the inhalation and ingestion routes.
None of the HMs possessed the ability to induce non-cancer through the dermal contact,
ingestion and inhalation exposure pathways.

Epidemiological studies conducted in the past have reported an association between
exposure to elevated levels of some metals such as Ni, Cd, Cu, and As in PM2.5 and
markers of cardiovascular disease [19,56]. The association between exposure to Cd and
the occurrence of hypertension resulting in atherosclerosis and myocardial infarction
was established in an epidemiological study. In toxicological studies, the incidence of
hyperglycemia, insulin resistance and glycemic deregulation from exposure to Ni have
been reported [57,58].

In this study, there was no consistent pattern for the non-cancer effects across the
age groups. For instance, through the inhalation route, As, Cr, and Ni will likely induce
the highest non-cancer effects in adults; Cu and Mn will cause greater health outcomes
in infants while it is in children for Cd. Children were previously identified to be more
prone to the adverse effects of pollutants than adults [49,59]. The reason being that children
breathe in more air per their unit body weight, and their not fully formed immune system
cannot handle environmental pollutants amidst other physiological [60,61]. However,
a possible explanation for the higher susceptibility of adults to non-carcinogenic effects
of HMs in PM2.5 was that adults engaged more in physically demanding activities that
required a higher rate of inhalation than children.

Furthermore, the hazard index (HI) of all the HMs in this study, computed as the
sum of all HQs for individual metals for each pathway [49], is presented in Table 6. It
was observed that the cumulative non-carcinogenic effects of the all the HMs through the
different exposure routes exceeded the safe limit of 1. This implied that the probability
that non-carcinogenic effects will occur from exposure to the synergy of HMs in PM2.5 was
higher compared to the risk from exposure to individual metals. This also suggested that
the metals would have a cumulative non-cancer effect on all age groups. Seasonal variation
in HI of metals for the different age groups was also observed with the HI value been
greater than 1 during winter months. Incidence of the HI for multi-elemental exposure
exceeding safe the limit has also been reported [42].
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Table 7. Summary of non-carcinogenic risks of HMs in PM2.5 via dermal contact, ingestion and inhalation exposure pathways.

Metal Season
HQ Inhalation HQ Ingestion HQ Dermal

Infant Child Child Adult Infant Child Child Adult Infant Child Child Adult

As Winter
Summer

3.51 × 10+00

2.47 × 10+00
1.91 × 10+01

1.35 × 10+01
2.40 × 10+01

1.69 × 10+01
3.85 × 10+01

2.71 × 10+01
1.14 × 10+00

8.03 × 10−01
3.43 × 10+00

2.42 × 10+00
3.43 × 10+00

2.41 × 10+00
2.70 × 10+00

1.90 × 10+00
2.60 × 10−02

1.83 × 10−02
7.81 × 10−02

5.50 × 10−02
7.80 × 10−02

5.49 × 10−02
8.78 × 10−02

6.16 × 10−02

Cu Winter
Summer

4.08 × 10+02

3.04 × 10+02
4.22 × 10+02

2.76 × 10+02
2.32 × 10+02

1.73 × 10+02
1.49 × 10+02

1.09 × 10+02
9.30 × 10−01

6.65 × 10−01
4.65 × 10−01

3.33 × 10−01
2.32 × 10+00

1.66 × 10+00
7.33 × 10−01

5.25 × 10−01
8.26 × 10−03

5.93 × 10−03
4.14 × 10−03

2.95 × 10−03
2.06 × 10−03

1.48 × 10−03
9.29 × 10−04

6.64 × 10−04

Cd Winter
Summer

3.13 × 10+00

2.54 × 10+00
1.71 × 10+02

1.39 × 10+01
2.41 × 10+01

1.74 × 10+01
3.44 × 10+01

2.79 × 10+01
2.04 × 10−01

1.67 × 10−01
6.13 × 10−01

5.00 × 10−01
6.12 × 10−01

5.00 × 10−01
4.80 × 10−01

3.91 × 10−01
1.91 × 10−01

1.55 × 10−01
5.72 × 10−01

4.64 × 10−01
5.71 × 10−01

4.63 × 10−01
6.42 × 10−01

5.21 × 10−01

Cr Winter
Summer

2.67 × 10−01

2.43 × 10−01
1.46 × 10+00

1.33 × 10+00
1.82 × 10+00

1.66 × 10+00
2.93 × 10+00

2.67 × 10+00
5.80 × 10−02

5.30 × 10−02
1.74 × 10−01

1.59 × 10−01
1.73 × 10−01

1.58 × 10−01
1.37 × 10−01

1.25 × 10−01
5.66 × 10−02

5.18 × 10−02
1.70 × 10−01

1.55 × 10−01
1.70 × 10−01

1.55 × 10−01
1.91 × 10−01

1.74 × 10−01

Fe Winter
Summer

7.91 × 10−03

6.37 × 10−03
7.20 × 10−03

5.80 × 10−03
4.51 × 10−03

3.63 × 10−03
2.90 × 10−03

2.33 × 10−03
5.16 × 10−02

4.16 × 10−02
2.59 × 10−02

2.07 × 10−02
1.29 × 10−02

1.04 × 10−02
4.06 × 10−03

3.27 × 10−03
4.81 × 10−04

3.87 × 10−04
2.41 × 10−04

1.94 × 10−04
1.20 × 10−04

9.67 × 10−05
5.40 × 10−05

4.34 × 10−05

Mn Winter
Summer

2.60 × 10+01

2.46 × 10+01
2.36 × 10+01

2.24 × 10+01
1.48 × 10+01

1.41 × 10+01
9.48 × 10+00

9.04 × 10+00
1.84 × 10−01

1.75 × 10−01
9.20 × 10−02

8.74 × 10−01
4.59 × 10−02

4.37 × 10−02
1.45 × 10−02

1.38 × 10−02
5.52 × 10+00

5.25 × 10+00
2.76 × 10+00

2.61 × 10+00
1.38 × 10+00

1.31 × 10+00
6.19 × 10−01

5.89 × 10−01

Ni Winter
Summer

5.01 × 10+00

4.30 × 10+00
2.74 × 10+01

2.35 × 10+01
3.43 × 10+01

2.94 × 10+01
5.50 × 10+01

4.72 × 10+01
2.29 × 10−02

1.97 × 10−02
6.85 × 10−02

5.90 × 10−02
6.85 × 10−02

5.90 × 10−02
5.40 × 10−02

4.64 × 10−02
2.07 × 10−04

1.78 × 10−04
6.21 × 10−04

5.34 × 10−04
6.21 × 10−04

5.34 × 10−04
6.99 × 10−04

5.97 × 10−04

Pb Winter
Summer

2.69 × 10−02

1.85 × 10−02
1.47 × 10−01

1.01 × 10−01
1.84 × 10−01

1.28 × 10−01
2.95 × 10−01

2.03 × 10−01
1.76 × 10−01

1.21 × 10−01
5.29 × 10−01

3.63 × 10−01
5.29 × 10−01

3.63 × 10−01
4.17 × 10−01

2.86 × 10−01
1.10 × 10−02

7.54 × 10−03
3.30 × 10−02

2.27 × 10−02
3.28 × 10−02

2.25 × 10−02
3.70 × 10−02

2.53 × 10−02

Zn Winter
Summer

8.37 × 10−03

7.14 × 10−03
7.61 × 10−03

6.51 × 10−03
4.78 × 10−03

4.09 × 10−03
3.07 × 10−03

2.62 × 10−03
5.50 × 10−02

4.70 × 10−02
2.74 × 10−02

2.34 × 10−02
1.37 × 10−02

1.17 × 10−02
4.30 × 10−03

3.70 × 10−03
2.55 × 10−03

2.18 × 10−03
1.28 × 10−03

1.09 × 10−03
6.38 × 10−04

5.45 × 10−04
2.87 × 10−04

2.45 × 10−04

HI Winter
Summer

4.46 × 10+02

3.38 × 10+02
6.65 × 10+02

3.51 × 10+02
3.31 × 10+02

2.53 × 10+02
2.90 × 10+02

1.81 × 10+02
2.82 × 10+00

3.67 × 10+00
5.42 × 10+00

4.75 × 10+00
7.21 × 10+00

5.22 × 10+00
4.54 × 10+00

3.29 × 10+00
5.82 × 10+00

5.49 × 10+00
7.76 × 10+00

3.31 × 10+00
2.24 × 10+00

2.01 × 10+00
1.58 × 10+00

1.37 × 10+00

Hit
Infant Child Toddler Adult

Winter
Summer

4.55 × 10+02

3.47 × 10+02
6.78 × 10+02

3.59 × 10+02
3.41 × 10+02

2.60 × 10+02
2.96 × 10+02

1.86 × 10+02

The values in bold depict that the levels of the heavy metals through the different exposure pathways were exceeded; HI (∑HQ): Represents the sum HQ value of 9 heavy metals in winter and summer, HIt (∑HI):
Represents the sum HI value of three exposure pathways.
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3.4. Carcinogenic Risks of PM2.5-Bound HMs

Findings from this study showed that the total average value of the ELCR for HMs in
PM2.5 was 5.24 × 10−2, which is higher than the acceptable limit of 10−6 to 10−4 (Table 8).
The carcinogenic risk from As, Cd, Cr, Ni, and Pb were higher than the acceptable limit
for all age groups except for Ni and Pb that will not likely induce any cancerous effects
in infants. The risk levels for the carcinogenic HMs followed the order: Cr > As > Cd >
Ni > Pb. In addition, these HMs posed the greatest cancer risk to adults, then to children
and lastly to infants. Similar epidemiological studies have reported higher cancer risks in
adults than in infants [39,50,62]. Hu and his colleagues reported that adults have higher
exposure time to carcinogenic HMs, hence the greater the dose of HMs accumulated in
the body [39]. This study also found that cancer risk increased during winter (2.75 × 10−2)
compared to summer (2.50 × 10−2). Raaschou-Nielsen and colleagues have earlier reported
an association between the incidence of lung cancer and exposure to heavy metal contents
of PM2.5 in a cohort study conducted in fourteen European countries [25].

Table 8. Carcinogenic risks via inhalation exposure to heavy metals in PM2.5.

Metal Season
EC Inhalation IUR

(µg/m3)−1
ECLR

Infant Child Child Adult Infant Child Toddler Adult

As Winter
Summer

2.69 × 10−03

1.90 × 10−03
1.29 × 10−01

9.10 × 10−02
1.94 × 10−01

1.36 × 10−01
2.42 × 10−01

1.71 × 10−01 4.30 × 10−03 1.16 × 10−05

8.17 × 10−06
5.55 × 10−04

3.91 × 10−04
8.34 × 10−04

5.85 × 10−04
1.04 × 10−03

7.35 × 10−04

Cd Winter
Summer

1.60 × 10−03

1.30 × 10−03
7.70 × 10−02

6.25 × 10−02
1.16 × 10−01

9.37 × 10−02
1.44 × 10−01

1.17 × 10−01 1.80 × 10−03 2.88 × 10−06

2.34 × 10−06
1.39 × 10−04

1.23 × 10−04
2.09 × 10−04

1.69 × 10−04
2.59 × 10−04

2.11 × 10−04

Cr Winter
Summer

1.36 × 10−03

1.24 × 10−03
6.55 × 10−02

5.97 × 10−02
9.82 × 10−02

9.59 × 10−02
1.23 × 10−01

1.12 × 10−01 8.40 × 10−02 1.14 × 10−04

1.04 × 10−04
5.50 × 10−03

5.02 × 10−03
8.25 × 10−03

8.06 × 10−03
1.03 × 10−02

9.41 × 10−03

Ni Winter
Summer

3.59 × 10−03

3.08 × 10−03
1.72 × 10−01

1.48 × 10−01
2.58 × 10−01

2.22 × 10−01
3.23 × 10−01

2.77 × 10−01 2.40 × 10−04 8.61 × 10−07

7.39 × 10−07
4.13 × 10−05

3.55 × 10−05
6.19 × 10−05

5.33 × 10−05
7.75 × 10−05

6.65 × 10−05

Pb Winter
Summer

4.84 × 10−03

3.33 × 10−03
2.32 × 10−01

1.60 × 10−01
4.65 × 10−01

3.19 × 10−01
4.36 × 10−01

3.00 × 10−01 1.20 × 10−05 5.80 × 10−08

3.90 × 10−08
2.78 × 10−06

1.92 × 10−06
2.16 × 10−05

3.83 × 10−06
5.23 × 10−06

3.60 × 10−06

Winter
Summer Total ECLR 1.29 × 10−04

1.15 × 10−04
6.24 × 10−03

5.57 × 10−03
9.38 × 10−03

8.87 × 10−03
1.17 × 10−02

1.04 × 10−02

Limitation of Study

One of the limitations of this study was the assumption that the levels of PM2.5
recorded by the fixed monitoring station are representative of the total concentration of
PM2.5 to which the residents within the study area are exposed. However, PM concentration
obtained from a fixed site may not be a true measurement of personal PM exposure due to
individual activities and other factors. Additionally, certain uncertainties are associated
with the use of the health risk assessment framework. However, the human health risk
assessment framework has been useful in quantitative studies for estimating health risks
and for making informed decisions in regarding risk abatement.

4. Conclusions

In this study, the seasonal concentrations of PM2.5-bound HM and their cancer and non-
cancer risks in the Pretoria West industrial area were determined. The findings indicated
that the concentrations of HM in PM2.5 demonstrated a season-dependent pattern.

The average concentration of As, Cd, Cr, Mn, Ni, Pb, and Zn in PM2.5 exceeded the
recommended safe limit for humans. For all age groups, there is the likelihood that Fe, Pb,
and Zn will induce non-cancer risk through the inhalation, ingestion and dermal pathways.
Exposure to the cumulative effects of all HMs in PM2.5 through both the individual and the
total pathways will result in non-carcinogenic health effects. Arsenic, Cd, Cr, Ni, and Pb
have higher cancer risk than safe limits with them posing the greatest cancer risk to adults
and least to infants.

The results provided evidence that the levels of HM in the study area may be a threat
to human health. It also gave additional insights into the pollution issues in the study area
and it is a pointer to the need for more rigorous strategies for controlling emissions. These
findings would be useful for policymakers and relevant stakeholders in coming up with
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measures that will mitigate trace metal concentrations in PM. New air quality guidelines
for HM should be established in South Africa. Besides Pb, there are no existing regulatory
standards for HM in South Africa. Additionally, industrial processes should be monitored
by the government by enforcing the installation of newer technologies that produce cleaner
emissions. This study recommends future studies focusing on determining the effects
of other components of PM2.5 from varied sources on measures of health outcomes in
different urban areas in South Africa.
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