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Nuclear receptor coactivator 3 (NCOA3) is a transcriptional coactivator that

has elevated expression in multiple tumor types, including colorectal cancer

(CRC). However, the molecular mechanisms that regulate the tumorigenic

functions of NCOA3 in CRC remain largely unknown. In this study, we

aimed to discover and identify the novel regulatory proteins of NCOA3 and

explore their mechanisms of action. Immunoprecipitation (IP) coupled with

mass spectrometry (IP-MS) analysis was used to detect, identify, and verify

the proteins that interacted with NCOA3 in CRC cells. The biological func-

tions of the candidate proteins and the underlying molecular mechanism were

investigated in CRC cells and mouse model in vitro and in vivo. The clinical

significance of NCOA3 and its interaction partner protein in CRC patients

was also studied. We identified mitotic arrest deficient 2-like protein 2

(MAD2L2, also known as MAD2B or REV7), with two signal peptide

sequences of LIPLK and EVYPVGIFQK, to be an interaction partner of

NCOA3. Overexpression of MAD2L2 suppressed the proliferation, migra-

tion, and clonogenicity of CRC cells by inducing the degradation of NCOA3.

The mechanism study showed that increased MAD2L2 expression in CRC

cells activated p38, which was required for the phosphorylation of NCOA3

that led to its ubiquitination and degradation by the proteasome. Moreover,

we found that MAD2L2 predicted favorable prognosis in CRC patients. We

have discovered a novel role of MAD2L2 in the regulation of NCOA3 degra-

dation and proposed that MAD2L2 serves as a tumor suppressor in CRC.

1. Introduction

Colorectal cancer (CRC) is the second most common

cancer in women and the third most common in men

(Tariq and Ghias, 2016), with global incidence, mortal-

ity, and 5-year prevalence of 9.7%, 8.5%, and 10.9%,

respectively, according to GLOBOCAN 2012 (Ferlay

et al., 2015). The molecular mechanisms in colorectal
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cancer development include chromosomal instability

(CIN) (Grady and Carethers, 2008), microsatellite

instability (MSI) (Walther et al., 2009), and CpG

island methylation (CIMP) (Issa et al., 2005), and dif-

ferent mechanisms can individually or simultaneously

exist in colorectal cancer. CIN is the major pathway in

CRC pathogenesis, mainly caused by replication

stress-related chromosomal breaks, with structural

chromosome abnormalities precipitating chromosome

missegregation in mitosis (Burrell et al., 2013). It is

associated with 65%–75% of sporadic CRC (Pino and

Chung, 2010) and featured with an abnormal number

of chromosomes (aneuploidy) and loss of heterozygos-

ity (LOH) (Lin et al., 2003). Moreover, mutations of a

group of specific tumor suppressor genes and oncoge-

nes, such as KRAS, PIK3CA, APC, TP53, and so

forth, are found to accumulate in CRCs with the typi-

cal karyotypic abnormalities caused by CIN (Colussi

et al., 2013), though it remains unclear whether these

mutations initiate CIN or vice versa.

Nuclear receptor coactivator 3 (NCOA3, also

known as SRC3, AIB1, RAC3, or ACTR) is a mem-

ber of the p160/SRC coactivator family and has intrin-

sic histone-acetyltransferase (HAT) activity. It binds

nuclear receptors in a hormone-dependent fashion,

remodels chromatin DNA to become more accessible

to the transcription machinery, recruits additional

transcription factors and coregulators, and thus func-

tions as a central player in the assembly of a coactiva-

tor complex to promote gene expression (Anzick et al.,

1997; Chen et al., 1997, 1999; Li et al., 1997; Xu et al.,

2009). NCOA3 has been found to be elevated in breast

cancer, liver cancer, prostate cancer, and colorectal

cancer, correlated with poor prognosis in most cases,

and a vital regulator in the process of tumorigenesis,

progression, metastasis, and survival (Anzick et al.,

1997; Chen et al., 2012; Shi et al., 2015; Xie et al.,

2005; Xu et al., 2010; Zhou et al., 2005). The breast

cancer, gastric cancer, and nonsmall cell lung cancer

patients with high expression of NCOA3 have signifi-

cantly shorter overall survival times, indicating that

NCOA3 may be an indicator of poor prognosis (Cai

et al., 2010; Sakakura et al., 2000; Zhao et al., 2003).

However, some studies have reported that amplifica-

tion of NCOA3 appears to be independently associ-

ated with poor prognosis in patients with

hepatocellular carcinoma, and moderate or high

expression of NCOA3 is associated with poor disease-

specific survival in patients with prostate disease

(Gnanapragasam et al., 2001; Song et al., 2012). Nev-

ertheless, the molecular mechanisms that regulate the

tumorigenic functions of NCOA3 in CRC remain

unclear so far. To identify protein regulators that

interact with NCOA3 in CRC cells, we performed

immunoprecipitation coupled with mass spectrometry

(IP-MS) and found mitotic arrest deficient 2-like pro-

tein 2 (MAD2L2, also known as MAD2B or REV7)

to be one of the candidates.

Mitotic arrest deficient 2-like protein 2 is a multi-

functional protein with roles in DNA damage repair,

cell cycle regulation, gene expression, and carcinogen-

esis. MAD2L2 was originally identified as a subunit

of DNA polymerase f critical for DNA translesion

synthesis (TLS) (Murakumo et al., 2001) and a com-

ponent of the mitotic spindle assembly checkpoint

that inhibits the anaphase-promoting complex (Chen

and Fang, 2001). Recent studies have revealed that

MAD2L2 blocks homologous recombination (HR)

and promotes nonhomologous end joining (NHEJ)

by inhibiting 5’ end resection downstream of 53BP1

and RIF1 and thus functions in DSB repair pathway

choices (Boersma et al., 2015) (Xu et al., 2015).

Besides, MAD2L2 has been reported to promote

Elk-1 phosphorylation by c-Jun N-terminal protein

kinase (JNK) and thus lead to the up-regulation of

Elk-1 target genes in the presence of DNA damage,

which suggests that MAD2L2 might be a central

player in coordinating the cellular response to DNA

damage (Zhang et al., 2007). Moreover, MAD2L2

has been reported to regulate the epigenetic repro-

gramming of germ cells (Watanabe et al., 2013;

Zhang et al., 2007) and the maintenance of pluripo-

tency in embryonic stem cells (ESCs) (Pirouz et al.,

2015), and promote the open chromatin configuration

through DPPA3 in ESCs (Rahjouei et al., 2017).

Accordingly, it is not surprising that dysregulation of

MAD2L2 has been found in multiple cancers. For

instance, MAD2L2 was overexpressed in glioma,

epithelial ovarian cancer, and breast cancer (Feng

et al., 2016; Niimi et al., 2014; Zhao et al., 2011),

while inactivation of MAD2L2 sensitized nasopha-

ryngeal carcinoma cells to DNA-damaging agents

(Cheung et al., 2006).

Our study identified MAD2L2 as an interaction pro-

tein of NCOA3 and revealed that MAD2L2 sup-

pressed CRC growth both in vitro and in vivo. Our

clinical data indicated that high expression of

MAD2L2 was associated with good prognosis in CRC

patients. Noteworthily, we showed for the first time

that MAD2L2 inhibited CRC development by down-

regulating the protein level of NCOA3. We further

demonstrated that increased MAD2L2 expression in

CRC cells activated p38, which phosphorylated

NCOA3 for its subsequent degradation by the ubiqui-

tin–proteasome pathway. Our study has discovered a

novel role of MAD2L2 in regulating the degradation
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of NCOA3 and suggested that MAD2L2 functions as

a tumor suppressor in CRC.

2. Materials and methods

2.1. Cell culture and chemicals

The human FHC, SW620, SW480, HCT116, HT29,

RKO, and DLD1 cells were obtained from American

Type Culture Collection (ATCC, Manassas, VA,

USA). FHC cells were cultured in DMEM, and the

other cells were cultured in RPMI-1640 supplemented

with 10% fetal bovine serum, 100 units�mL�1 peni-

cillin, and 100 lg�mL�1 streptomycin. All cells were

maintained in an incubator with a humidified atmo-

sphere of 95% air and 5% CO2 at 37 °C.
MG132, SB203580, cisplatin, and cycloheximide

(CHX) were purchased from Sigma (St. Louis, MO,

USA) and dissolved in DMSO. The stock solution of

MG132 and SB203580 was 10 mM, and the stock solu-

tion of CHX was 10 mg�mL�1. Methyl methanesul-

fonate (MMS) was dissolved in PBS, and the

concentration of the stock solution was 100 mM. All

the stock solutions were stored at �20 °C before use.

2.2. siRNA and stable cell lines

The MAD2L2 siRNA and flag-tagged MAD2L2 over-

expression adenovirus were purchased from Gene-

Pharma Co., Ltd (Suzhou, China). MAD2L2

knockdown adenovirus was purchased from Hanbio

Biotechnology Co., Ltd (Shanghai, China). NCOA3

overexpression adenovirus was purchased from Gene-

Chem (Shanghai, China). Cells were transfected with

siRNA duplexes (100 nM) using EndoFectinTM MAX

(GeneCopoeia, Inc., Rockville, MD, USA). HCT116

and SW480 cells were used to establish stable cell lines

by selection with 1 lg�mL�1 puromycin for 4 weeks.

2.3. Cell proliferation

Cell viability was determined by MTS assay (Promega

Biotech Co., Ltd., Madison, WI, USA). Cells were

seeded in 96-well plates (10 000 cells/well) 24 h after

MAD2L2 siRNA transfection. Cell viability was

detected 48 h after transfection. Cell viability of stable

cell lines with MAD2L2 overexpression was detected

48 h after plating in 96-well plates (5000 cells/well).

2.4. Scratch assay

Cells were transfected with MAD2L2 siRNA, seeded

in 6-well plates, and cultured overnight to a density of

70%–80%. Cell monolayers were scratched with a

100 lL pipette tip and washed with PBS two times to

remove detached cells. The scratches were imaged

using an Olympus microscope at 0 h, 36 h, and 48 h,

respectively, according to their growth rate. The

widths of the gap at 0 h (w1) and 36 h or 48 h (w2)

were measured, and the relative migration rate was

calculated as (w1-w2)/w1 * 100%.

2.5. Tumor-induced clonogenicity assay

Different stable cell lines were seeded in 6-well plates

(500 cells/well) and incubated. Two weeks later, cells

were fixed with formalin and stained by crystal violet.

The images of the clones were captured, and the num-

bers of the clones were counted by the software

Image-Pro Plus 6.0.

2.6. RNA extraction and quantitative RT-PCR

(qRT-PCR)

Total RNA from cells was extracted using RaPure

Total RNA Micro Kit (Magen, Guangzhou, China).

Endogenous cDNA was generated using ReverTra

Ace� qPCR RT Master Mix kit (ToYoBo, Shanghai,

China). The primers for qRT-PCR were purchased

from GeneCopoeia, Inc. (Rockville, MD, USA):

MAD2L2 (HQP000552), NCOA3 (HQP020041), and

GAPDH (HQP006940). qRT-PCR was performed

with the SYBR� Green Real-time PCR Master Mix

(ToYoBo, Shanghai, China).

2.7. Antibodies and western blot analysis

Equal amounts of protein lysates were separated by

SDS/PAGE and transferred onto polyvinylidene diflu-

oride (PVDF) membranes. The membranes were

sequentially incubated with primary and secondary anti-

bodies, and the protein bands were detected by enhanced

chemiluminescence. Anti-MAD2L2, anti-GAPDH, and

anti-Flag were purchased from Proteintech (Wuhan,

China); anti-NCOA3, anti-p-p38, anti-p-ERK1/2, anti-p-

JNK, anti-ubiquitin, and anti-histone H3 were from Cell

Signaling Technology (Danvers, MA, USA); and

antiphosphoserine/threonine was from Bioss (Woburn,

MA, USA).

2.8. Co-immunoprecipitation (co-IP) assays

Protein extracts were prepared and incubated with the

antibodies for NCOA3, flag, or IgG for 24 h at 4 °C
on a rotating wheel. Then, the sepharose-conjugated

protein-A/G beads (Santa Cruz Biotechnology, Dallas,
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TX, USA) were added and incubated at 4 °C for

another 24 h on a rotating wheel. After extensive

washings with cold PBS containing PMSF, the beads

were boiled, and the precipitated proteins were sepa-

rated by SDS/PAGE and transferred to PVDF mem-

branes for further analysis.

2.9. Silver staining and mass spectroscopy (MS)

After electrophoresis, the protein gel was immersed

in stationary liquid with 10% acetic acid, 50% etha-

nol, and 40% water at room temperature on shaker

overnight, and then, the protein bands were visual-

ized by the Fast Silver Stain Kit (Beyotime, Haimen,

China) and analyzed by MS by Honortech (Beijing,

China).

2.10. Animal experiments

Female BALB/c nude mice (4 weeks old) were pur-

chased from Vital River Laboratory Animal Technol-

ogy Co., Ltd. (Beijing, China) and quarantined for

1 week before use for tumor formation experiments.

All animal experiment procedures were approved by

the Animal Care and Use Committee of Sun Yat-sen

University, and every effort was made to reduce the

suffering of animals. 3 9 106 cells were suspended in

100 lL of PBS and subcutaneously injected into

BALB/c mice. The weight of the mice and the

volume of the tumors were measured every 2 days

for 3 weeks. At the end of the experiments, the mice

were sacrificed, and the tumors were excised, pho-

tographed, and processed for immunohistochemical

analyses.

2.11. Immunohistochemistry (IHC)

Tissue microarrays with 190 samples were purchased

from Outdo Biotech Co., Ltd (Shanghai, China). The

microarrays were incubated with anti-MAD2L2 and

anti-NCOA3 primary antibodies and secondary anti-

bodies, and after color development, scoring was done.

The antibodies’ specificity against MAD2L2 and

NCOA3 was detected in Fig. S1.

2.12. Statistical analysis

Statistical analyses were performed using the SPSS sta-

tistical software package (version 17.0). Chi-square test

and t-test were applied for variance analysis, Spearman

rank correlation method was for correlation analysis,

and Kaplan–Meier analysis was for survival analysis.

The mean � SEM was calculated by GraphPad Prism

6.0 and presented in graphs. P < 0.05 was considered

statistically significant.

3. Results

3.1. MAD2L2 was inversely correlated with

NCOA3 and predicted favorable prognosis in

colorectal cancer (CRC) patients

To identify protein regulators that interacted with

NCOA3 in CRC cells, we performed immunoprecipita-

tion combined with mass spectrometry (IP-MS) in

SW620, HCT116, and HT29 CRC cells with IgG con-

trol or NCOA3 antibodies. MAD2L2, with two signal

peptide sequences of LIPLK and EVYPVGIFQK, was

found to be a candidate interacting with NCOA3

(Fig. 1A), and the interaction between NCOA3 and

MAD2L2 was further confirmed by co-IP in HCT116

cells (Fig. 1B). Next, the expression of MAD2L2 and

NCOA3 in a panel of CRC cell lines were detected by

western blot, and the basic expression levels of

MAD2L2 and NCOA3 in CRC cells tend to be inver-

sely correlated (Fig. 1C).

We then examined whether the expression of

MAD2L2 and NCOA3 was also correlated with CRC

patients. Immunohistochemical (IHC) analysis revealed

that both proteins had significantly higher expression

in CRC tissues than in adjacent normal tissues (ANT)

(P < 0.001, Table 1), and the patients with high

MAD2L2 expression tend to have a low level of

NCOA3 (Fig. 1D case 1), while the patients with low

MAD2L2 expression tend to have a high level of

NCOA3 (Fig. 1D case 2), and the Spearman rank cor-

relation analysis showed that MAD2L2 was in inverse

correlation with NCOA3 (rs = �0.238, P = 0.017)

(Fig. 1E). Moreover, the Kaplan–Meier survival anal-

ysis of 100 CRC patients showed that high levels of

MAD2L2 predicted favorable prognosis (Fig. 1F),

high expression of NCOA3 was associated with

poor prognosis (Fig. 1G), and patients with high

MAD2L2 combined with low NCOA3 had the best

outcome, whereas patients with low MAD2L2 com-

bined with high NCOA3 had the worst outcome

(Fig. 1H).

We further investigated the relationship between the

expression of MAD2L2 and NCOA3 and the patients’

clinicopathological characteristics. As is shown in

Table 2, high MAD2L2 expression was correlated with

small tumor volume (P = 0.017), superficial infiltration

(P = 0.023), rare metastasis (P = 0.008), and good

clinical staging (P = 0.046). In contrast, high expres-

sion of NCOA3 was correlated with deep infiltration

(P = 0.026).
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Altogether, these results indicated that the expres-

sion of MAD2L2 was inversely related to that of

NCOA3 in CRC, and MAD2L2 was associated with

good prognosis in CRC patients, which suggested that

MAD2L2 might inhibit the development of CRC.

3.2. MAD2L2 inhibited the proliferation,

clonogenicity, and migration of CRC cells by

down-regulating NCOA3

To investigate the effect of MAD2L2 on CRC develop-

ment, we knocked down MAD2L2 with its specific

shRNA in HCT116 and SW480 cells and found that

MAD2L2 knockdown promoted the proliferation of

CRC cells and western blots showed that the level of

NCOA3 was elevated when MAD2L2 was down-regu-

lated (Fig. 2A,C). In contrast, overexpression of

MAD2L2 inhibited CRC cell proliferation, which was

A

Ig G NCOA3

35

40

55
kDa

25

Colorectal cancer

SW620
HT29

HCT116    
SW620

HT29
HCT116    

MAD2L2

NCOA3

GAPDH

C

FHC

SW62
0

SW
48

0

HCT11
6

HT29

RKO
DLD

1

kDa

160

24

37

HCT116 MAD2L2
Ig G MAD2L2

IB NCOA3

Input: MAD2L2

kDa

160

24

B

MAD2L2 NCOA3 MAD2L2

Case 1 Case 2
CRC ANT

×200

×400

NCOA3 MAD2L2 NCOA3 MAD2L2
CRC ANT

NCOA3

D

E

Months after surgery

C
um

ul
at

iv
e 

su
rv

iv
al

C
um

ul
at

iv
e 

su
rv

iv
al

C
um

ul
at

iv
e 

su
rv

iv
al

Months after surgery Months after surgery

F G

The score of MAD2L2

Th
e 

sc
or

e 
of

 N
C

O
A3 P = 0.017

rs= –0.238

0 2 4 6 8 10 12
0
2
4
6
8

10
12

H

0 20 40 60 80 100
0.0

0.2
0.4
0.6
0.8

1.0

MAD2L2

P 0.001
(n = 25)

(n = 32)

(n = 38)
(n = 5)

0,1
2–4
5–8
9–12
0,1-censored
2–4-censored
5–8-censored
9–12-censored

0,1
2–4
5–8
9–12
0,1-censored
2–4-censored
5–8-censored
9–12-censored

(n = 5)

(n = 36)

(n = 38)
(n = 21)

P 0.001

NCOA3

0 20 40 60 80 100
0.0

0.2
0.4
0.6
0.8

1.0

0.0

0.2
0.4
0.6
0.8

1.0

0 20 40 60 80 100

(n = 32)

(n = 34)

(n = 34)

P 0.001

MAD2L2&

M = 5–12, N = 0–4

M = 0–4, N = 5–12
M = 5–12, N = 5–12&
M = 0–4, N = 0–4
M = 5–12, N = 0–4-consored

M = 0–4, N = 5–12-consored

M = 5–12, N = 5–12&
M = 0–4, N = 0–4-consored NCOA3

Re
la

tiv
e 

pr
ot

ei
n 

le
ve

l 1.2

0.8

0.0

0.4 *

* *

* *

*
*

FHC
SW62

0

SW
48

0

HCT11
6

HT29

RKO
DLD

1

MAD2L2
NCOA3

Fig. 1. MAD2L2 expression was inversely correlated with NCOA3 expression and predicted favorable prognosis in CRC patients. (A)

NCOA3 interaction partners were identified in SW620, HCT116, and HT29 cells stably overexpressing NCOA3 by IP-MS. (B) The interaction

between MAD2L2 and NCOA3 was confirmed by co-IP in HCT116 cells with stable MAD2L2 overexpression. (C) The basic expression of

MAD2L2 and NCOA3 in FHC colon epithelial cells and different CRC cells (SW620, SW480, HCT116, HT29, RKO, and DLD1) and the

relative protein level in different CRC cells were shown in C right. (D) Representative images of MAD2L2 and NCOA3 expression in CRC

tissues and adjacent normal tissues (ANT). (E) The expression of MAD2L2 and NCOA3 was negatively correlated with CRC tissues. (F) High

expression of MAD2L2 was associated with good prognosis in CRC patients. (G) High expression of NCOA3 was related to poor prognosis

in CRC patients. (H) High expression of MAD2L2 with low expression of NCOA3 (green curve) predicted favorable prognosis in CRC

patients, compared with low expression of MAD2L2 and high expression of NCOA3 (red curve), along with both low and high expression of

MAD2L2 and NCOA3 (yellow curve). M means MAD2L2 and N means NCOA3.

Table 1. The expression of MAD2L2 and NCOA3 in CRC is higher

than ANT.

Variable

CRC ANT

v2 Pn (%) n (%)

MAD2L2

�/1+ 43 (43) 58 (72.5) 15.71 <0.001

2 + /3+ 57 (57) 22 (27.5)

NCOA3

�/1+ 41 (41) 69 (86.3) 38.29 <0.001

2 + /3+ 59 (59) 11 (13.7)
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reversed by overexpression of NCOA3, whereas

NCOA3 expression was repressed when MAD2L2 was

overexpressed (Fig. 2B,D). Next, clonogenicity experi-

ment showed that knockdown of MAD2L2 increased

the clonogenicity of CRC cells (Fig. 2E,G), while over-

expression of MAD2L2 decreased the cell clonogenicity

and this decrease was reversed by NOCA3 overexpres-

sion (Fig. 2F,H). Finally, scratch assay showed that

knockdown of MAD2L2 accelerated the migration rate

of CRC cells (Fig. 3A,C,E, and G), while overexpres-

sion of MAD2L2 reduced the cell migration rate and

this reduction was reversed by NCOA3 overexpression

(Fig. 3B,D,F and H). To explore the downstream target

genes of NCOA3 on CRC development, we knocked

down MAD2L2 in HCT116 cells and found that

NCOA3 activates the key targets of PI3K/AKT and

Notch signaling pathway in RNA levels, which are

involved in CRC progression (Fig. 4A). Collectively,

these cellular experiments supported the inhibitory role

of MAD2L2 in CRC development and suggested that

MAD2L2 functioned as a tumor suppressor in CRC

through the down-regulation of NCOA3.

3.3. MAD2L2 promoted NCOA3 degradation in

CRC cells

To explore the molecular mechanism by which

MAD2L2 down-regulated the expression of NCOA3,

Table 2. Correlation between MAD2L2, NCOA3, and clinicopathological characteristics with CRC.

Variable n

MAD2L2

v2 P

NCOA3

v2 P�/1+ 2 + /3+ �/1+ 2 + /3+

Age

< 70 55 27 (49.1) 28 (50.9) 1.85 0.174 27 (49.1) 28 (50.9) 3.308 0.069

≥ 70 45 16 (35.6) 29 (64.4) 14 (31.1) 31 (68.9)

Gender

Male 58 27 (46.6) 31 (53.4) 0.711 0.399 22 (37.9) 36 (62.1) 0.538 0.463

Female 42 16 (38.1) 26 (61.9) 19 (45.2) 23 (54.8)

Pathological type

Canalicular adenoma 83 34 (41.0) 49 (59.0) 0.826 0.363 32 (38.6) 51 (61.4) 1.207 0.272

Mucinous adenocarcinoma 17 9 (52.9) 8 (47.1) 9 (52.9) 8 (47.1)

Pathological grade

I+II 70 32 (45.7) 38 (54.3) 0.701 0.402 28 (40.0) 42 (60.0) 0.096 0.756

III 20 1 (36.7) 19 (63.3) 13 (43.3) 17 (56.7)

Tumor volume (cm3)

< 30 51 16 (31.4) 35 (68.6) 5.741 0.017 25 (49.0) 26 (51.0) 2.767 0.096

≥ 30 49 27 (55.1) 22 (44.9) 16 (32.7) 33 (67.3)

General type

Infiltrate type 25 10 (40.0) 15 (60.0) 1.851 0.604 10 (40.0) 15 (60.0) 1.542 0.673

Gel type 8 4 (50.0) 4 (50.0) 4 (50.0) 4 (50.0)

Ulcerative type 47 18 (38.3) 29 (61.7) 21 (44.7) 26 (55.3)

Protrude type 20 11 (55.0) 9 (45.0) 6 (30.0) 14 (70.0)

Tumor location

Left hemicolon 47 20 (42.6) 27 (57.4) 0.007 0.932 15 (31.9) 32 (68.1) 3.026 0.082

Right hemicolon 53 23 (43.4) 30 (56.6) 26 (49.1) 27 (50.9)

Depth of invasion

T1/T2/T3 68 24 (35.3) 44 (64.7) 5.148 0.023 33 (48.5) 35 (51.5) 4.98 0.026

T4 32 19 (59.4) 13 (40.6) 8 (25.0) 24 (75.0)

Lymph node metastases

N0 52 23 (44.2) 29 (55.8) 0.067 0.796 20 (38.5) 32 (61.5) 0.289 0.591

N1/N2/N3 48 20 (41.7) 28 (58.3) 21 (43.7) 27 (56.3)

Distant metastasis

M0 95 38 (40.0) 57 (60.0) 6.977 0.008 39 (41.1) 56 (58.9) 0.002 0.963

M1 5 5 (100) 0 (0) 2 (40.0) 3 (60.0)

Clinical staging

I 4 1 (25.0) 3 (75.0) 8.001 0.046 1 (25.0) 3 (75.0) 0.518 0.915

II 47 21 (44.7) 26 (55.3) 19 (40.4) 28 (59.6)

III 44 16 (36.4) 28 (63.6) 19 (43.2) 25 (56.8)

IV 5 5 (100) 0 (0) 2 (40.0) 3 (60.0)
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Fig. 2. MAD2L2 suppressed CRC cell proliferation and inhibited the clonogenicity of CRC cells by down-regulating NCOA3. (A,C)

Knockdown of MAD2L2 elevated the expression of NCOA3 and promoted the proliferation of HCT116 and SW480 cells * P < 0.05 (n = 3).

(B,D) Overexpression of MAD2L2 inhibited the expression of NCOA3 and suppressed CRC cell proliferation, which was reversed by NCOA3

overexpression. * P < 0.05 (n = 3). (E, G) Knockdown of MAD2L2 increased the clonogenicity of CRC cells. * P < 0.05 (n = 3). (F, H)

Overexpression of MAD2L2 inhibited the clonogenicity of CRC cells, which was reversed by NCOA3 overexpression. * P < 0.05 (n = 3).
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we first tested whether MAD2L2 suppressed the tran-

scription of NCOA3. As is shown in Fig. 4B,C, the

mRNA level of NCOA3 remained largely unchanged

when MAD2L2 was overexpressed or knocked down,

which indicated that MAD2L2 did not regulate

NCOA3 on the transcription level. We then tested

whether MAD2L2 regulated the protein turnover of

NCOA3. HCT116 cells without (vector) or with

MAD2L2 overexpression (MAD2L2) were treated

with 1 lg�mL�1 CHX for 0, 1, 2, 3, and 4 h to inhibit

protein synthesis, and the expression of NCOA3 was

detected by western blot. Excitingly, we found that

NCOA3 was stilled detected in the control cells 4 h

after CHX treatment (Fig. 4D), but it became barely

detectable in cells overexpressing MAD2L2 only 2 h

after CHX treatment (Fig. 4D). The half-life curve of

NCOA3 showed a considerable short half-life of 0.6 h,

compared to the vector cells with a half-life of 2.3 h.

These results indicated that overexpression of

MAD2L2 accelerated the degradation of NCOA3.

Next, we examined whether MAD2L2 induced

NCOA3 degradation by the ubiquitin–proteasome

pathway. Immunoprecipitation (IP) experiments were

performed with NCOA3 antibodies in HCT116 cells,

and the amount of ubiquitinated NCOA3 was larger

in cells overexpressing MAD2L2 (Fig. 4E). Moreover,
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the degradation of NCOA3 induced by MAD2L2

overexpression was inhibited by the proteasome inhibi-

tor MG132 (Qiang et al., 2017) (Fig. 4F), confirming

that NCOA3 was degraded by the proteasome.

3.4. MAD2L2 activated p38 to phosphorylate

NCOA3 for its subsequent ubiquitination and

degradation

Previous studies had reported that ubiquitination of

NCOA3 was mediated by its phosphorylation (Ferry

et al., 2011; Gianni et al., 2006; Wu et al., 2007), so we

investigated whether MAD2L2 affected the phosphory-

lation of NCOA3. IP with NCOA3 antibodies in

HCT116 cells showed that the phosphorylation of

NCOA3 was enhanced in cells with MAD2L2 overex-

pression (Fig. 5A). Multiple kinases can differentially

phosphorylate NCOA3, and it has several MAPK phos-

phorylation sites (Wu et al., 2004). We therefore tested

whether MAD2L2 activated p38, JNK, or ERK1/2 to

phosphorylate NCOA3. As is shown in Fig. 5B, the

level of p-p38 was positively correlated with the expres-

sion MAD2L2 and negatively with NCOA3. Further-

more, we detected interaction among MAD2L2,

NCOA3, and p-p38 by co-IP in HCT116 cells with flag-

tagged MAD2L2 overexpression (Fig. 5C). In addition,

the p38 kinase inhibitor SB203580 consistently inhibited

the degradation of NCOA3 induced by MAD2L2

(Fig. 5D). Collectively, these findings supported our

hypothesis that MAD2L2 activated p38 to phosphory-

late NCOA3, which primed NCOA3 for the subsequent

ubiquitination and degradation by the proteasome.

Considering that chromosome instability is the major

cause of CRC (Pino and Chung, 2010), and the expres-

sion of MAD2L2 was higher in CRC cells and tissues

(Fig. 1C, Table 1), we presumed that MAD2L2 had

elevated expression in response to DNA damages to

serve as a protective factor in CRC. Cisplatin, a DNA-

damaging chemotherapy drug in the clinical treatment

of colorectal cancer, can interact with the DNA gua-

nine bases and prevent the replication of DNA. We

treated HCT116 cells with the DNA-damaging agent

MMS and cisplatin and found that the expression of

MAD2L2 was significantly increased within 1 h after

MMS treatment, while noticeable p38 activation and

NCOA3 degradation were detected about 2 h after

MMS and cisplatin treatment (Fig. 5E,F).

3.5. MAD2L2 knockdown promoted CRC growth

in a mouse xenograft model

The significant association of MAD2L2 with NCOA3

expression revealed in cellular experiments and clinical

outcomes led us to further verify the roles of
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MAD2L2 and NCOA3 in CRC in a mouse xenograft

model. HCT116 cells were subcutaneously injected into

the left flank of nude mice, and tumors developed at

the injection sites after 1 week. Tumor volumes were

measured and recorded every 2 days, and the tumor

xenografts were harvested, weighed, and processed for

IHC staining 3 weeks after CRC cell injection. As is

shown in Fig. 6A-D, MAD2L2 knockdown promoted

tumor growth, while MAD2L2 overexpression inhib-

ited tumor growth, and this inhibition was rescued by

elevated NCOA3 expression. IHC analysis showed that

the levels of MAD2L2 and NCOA3 were inversely

correlated (Fig. 6E). These in vivo results were consis-

tent with our in vitro observations and confirmed the

tumor suppressor role of MAD2L2 in CRC.

4. Discussion

Accumulating evidence shows that NCOA3 is highly

expressed in a various human cancers (Anzick et al.,

1997; Xu et al., 2010; Zhou et al., 2005), and it can

interact with nuclear receptors and other transcrip-

tion factors to regulate the expression of their target

genes involved in many signaling pathways, including

EGFR, Akt, MAPK, E2F1, and Notch (Long et al.,

2012; Louie et al., 2004; Mo et al., 2015; Yan et al.,

2006). However, little is known about how NCOA3

is regulated in colorectal cancer (CRC). In this

study, we discovered that MAD2L2 interacted with

NCOA3 and regulated its protein level in CRC.

MAD2L2 is a regulatory subunit of DNA
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polymerase f that is involved in DNA translesion

synthesis (TLS) (Boersma et al., 2015), and the alter-

ations of MAD2L2 are implicated in the pathogene-

sis of a wide variety of tumors (Feng et al., 2016;

Niimi et al., 2014; Okina et al., 2015). Our in vivo

and in vitro results showed that MAD2L2 suppressed

CRC development by down-regulating NCOA3, and

our clinical data suggested that MAD2L2 predicted

favorable prognosis in CRC patients. Our mecha-

nism study showed that MAD2L2 had increased

expression in the presence of DNA damage and acti-

vated p38 to phosphorylate NCOA3 for its

subsequent degradation by the ubiquitin–proteasome

pathway.

Colorectal cancer is one of the most common can-

cers and continued to be a serious public health prob-

lem in clinic. To provide valuable information for the

clinical outcome prediction, we analyzed the expression

of MAD2L2 and NCOA3 in CRC patients. Our

results showed that there was a reverse correlation

between MAD2L2 and NCOA3 expression in CRC

tissues (Fig. 1D,E), which was in accordance with our

findings in CRC cells (Fig. 1C). Moreover, higher

expression of MAD2L2 was associated with lower
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Fig. 6. MAD2L2 knockdown promoted CRC growth in a mouse xenograft model and MAD2L2-regulated NCOA3 phosphorylation,

ubiquitination, and degradation in CRC cells. Nude mice were subcutaneously injected with HCT116 cells with nonspecific siRNA (NC),

MAD2L2 knocked down by its specific shRNA (sh1), vector, MAD2L2 overexpression (MAD2L2), MAD2L2 + vector, MAD2L2 + NCOA3

overexpression (NCOA3). (A) Images of the CRC tumor xenograft from each mouse (n = 5 mice/group). (B) Tumor weights were analyzed.

*P < 0.05 (n = 5) (C, D) Tumor volumes were recorded and analyzed. ***P < 0.001 (n = 5) (E) The expression of MAD2L2 and NCOA3 in

tumor tissues was analyzed by IHC staining. (F) (1) MAD2L2 had elevated expression in response to the increased DNA damage and

chromosome instability in CRC cells. (2) MAD2L2 activated p38. (3) p-p38 phosphorylated NCOA3. (4) Phosphorylated NCOA3 was

ubiquitinated. (5) Ubiquitinated NCOA3 was degraded by the proteasome.
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tumor volume, earlier TNM stage, less invasion, and a

smaller chance of distant metastasis in CRC patients

(Table 2), which suggested that MAD2L2 was a sup-

pressor of CRC growth and metastasis. Consistently,

survival analysis indicated that MAD2L2 suppressed

but NCOA3 promoted CRC development (Fig. 1F,G).

Interestingly, the expression of both MAD2L2 and

NCOA3 was higher in CRC tissues than normal tis-

sues (Table 1). Given that CRC cells have increased

DNA damage and chromosome instability (Guo et al.,

2016; Ribeiro et al., 2008; Xia et al., 2016), and

MAD2L2 plays a critical role in DNA repair, we pro-

posed that the expression of MAD2L2 was elevated in

CRC tissues as a stress response, and this was sup-

ported by our result that MMS and cisplatin treatment

induced MAD2L2 expression (Fig. 5E,F). Collectively,

our data have revealed that MAD2L2 is a protective

factor in the pathogenesis of CRC.

To further study the biological relationship between

MAD2 l2 and NCOA3, we knocked down or overex-

pressed MAD2L2 in CRC cells to determine the effects

of MAD2L2 on the protein level of NCOA3, cell pro-

liferation, colony formation, and migration capacity.

Our data demonstrated that knockdown of MAD2L2

increased NCOA3 expression and enhanced the prolif-

eration, colony formation, and migration of CRC

cells, whereas overexpression of MAD2L2 had the

opposite effects, which were reversed by NCOA3 over-

expression (Fig. 2,3 and 6A-D). Consistent with our

findings, knockdown of NCOA3 decreased cell prolif-

eration, colony formation, and tumorigenesis of CRC

cells in vitro and in vivo (Mo et al., 2015), suggested

that MAD2L2 was a novel regulator of NCOA3 in

CRC progression. However, the effects of MAD2L2

on cell proliferation were not the only suppressor

mechanism, and it has been reported that other mech-

anisms also play an important role in tumorigenesis of

CRC cells (Kramer et al., 2016; Siraj et al., 2017).

To validate that the observed effects on proliferation

and migration are reflected at the functional level of

NCOA3, the mRNA levels of known downstream tar-

get genes of NCOA3 were detected when MAD2L2

was knocked down in HCT116 cells (Fig. 4C). Studies

have shown NCOA3 activates the PI3K/AKT pathway

and its downstream effectors in mammary tumor cells

derived from AIB1-tg mice (Torres-Arzayus et al.,

2004). As the key genes of PI3K/AKT pathway, the

mRNA levels of AKT1, PIK3CA, and CCND1 were

significantly increased, suggested that NCOA3 promotes

CRC progression through regulating the PI3K/AKT

pathway-related genes. Increasing evidence has shown

that Notch signaling is related to CRC progression, and

NRARP represents Notch signaling activity in CRC

(Kim et al., 2012; Mo et al., 2015). Moreover, Notch

signaling can directly activate MYC, and a protoonco-

gene holds a central role in regulating tumor growth

(Jitschin et al., 2015; Xiao et al., 2011). Our study

found that the mRNA levels of NRARP and MYC

was significantly elevated, and revealed that typical tar-

get gene of Notch signaling plays an important role in

CRC development. Further study showed that

MAD2L2 did not regulate NCOA3 on the transcription

level (Fig. 4B,C), but promoted the protein degradation

of NCOA3 (Fig. 4D). Moreover, we confirmed that the

degradation of NCOA3 induced by MAD2L2 happened

through the ubiquitin–proteasome pathway (Fig. 4E,

5A), which controls the degradation of the majority of

regulatory proteins in mammalian cells (Naujokat and

Saric, 2007; Vriend and Reiter, 2015). Previously, phos-

phorylation of NCOA3 was found to promote its ubiq-

uitination and degradation (Ferry et al., 2011; Wu

et al., 2007). NCOA3 can be phosphorylated by kinases

including MAPKs, GSK3, PKA, and CKI (Wu et al.,

2004). Among them, MAPKs are key signaling mole-

cules in cell growth, proliferation and development, and

functionally important for NCOA3 phosphorylation

(Ferry et al., 2011). Extracellular signal-regulated kinase

(ERK), c-Jun N-terminal protein kinase (JNK), and

p38 kinase are the three major MAPKs (Chang and

Karin, 2001), and Wu et al. found that p38 and JNK

were able to phosphorylate multiple sites of NCOA3

(Wu et al., 2004). In this study, we identified that p38

was the chief mediator of MAD2L2-induced NCOA3

ubiquitination and degradation (Fig. 5B-D). Here, we

propose a model for the MAD2L2-regulated NCOA3

phosphorylation, ubiquitination, and degradation in

CRC cells (Fig. 6F): In response to the increased DNA

damage and chromosome instability in CRC cells,

MAD2L2 had elevated expression and activated p38,

which then phosphorylated NCOA3 for subsequent

degradation through the ubiquitin–proteasome pathway.

In summary, we have discovered that MAD2L2

inhibited CRC development by promoting NCOA3

degradation. Our work has demonstrated that modula-

tion of the MAD2L2 gene product has the potential to

become a new therapy for CRC.
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