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ABSTRACT

Predictive biomarkers have the potential to facilitate cancer precision medicine 
by guiding the optimal choice of therapies for patients. However, clinicians are faced 
with an enormous volume of often-contradictory evidence regarding the therapeutic 
context of chemopredictive biomarkers.

We extensively surveyed public literature to systematically review the predictive 
effect of 7 biomarkers claimed to predict response to various chemotherapy drugs: 
ERCC1-platinums, RRM1-gemcitabine, TYMS-5-fluorouracil/Capecitabine, TUBB3-
taxanes, MGMT-temozolomide, TOP1-irinotecan/topotecan, and TOP2A-anthracyclines. 
We focused on studies that investigated changes in gene or protein expression as 
predictors of drug sensitivity or resistance. We considered an evidence framework 
that ranked studies from high level I evidence for randomized controlled trials to low 
level IV evidence for pre-clinical studies and patient case studies.

We found that further in-depth analysis will be required to explore methodological 
issues, inconsistencies between studies, and tumor specific effects present even 
within high evidence level studies. Some of these nuances will lend themselves 
to automation, others will require manual curation. However, the comprehensive 
cataloging and analysis of dispersed public data utilizing an evidence framework 
provides a high level perspective on clinical actionability of these protein biomarkers. 
This framework and perspective will ultimately facilitate clinical trial design as well 
as therapeutic decision-making for individual patients.

INTRODUCTION

Rapid advances in cancer research have enabled the 
identification and characterization of driver mutations, 
expression changes and structural variations in genes 

that should translate into better selection of therapies for 
patients. Remarkable successes in this field include the 
FDA approval of Trastuzumab for breast cancer patients 
overexpressing the HER2 protein [1] and Erlotinib for 
metastatic non-small cell lung cancer patients (NSCLC) 
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with exon 19 deletion or exon 21 (L858R) substitution in 
the EGFR gene [2]. However, not all tumors have actionable 
genomic alterations and/or available matching targeted 
therapies. For example, majority of pancreatic cancers that 
harbor activating KRAS mutations have no effective targeted 
therapies [3]. Therefore, despite the promise of targeted 
therapies, chemotherapy still remains the most widely used 
standard of treatment for both advanced, metastatic cancer 
patients, and in the adjuvant setting.

While the use of predictive biomarkers in personalizing 
targeted cancer therapies is common, it is not yet a standard 
approach for chemotherapy. This is primarily due to the lack 
of compelling evidence from biomarker-driven studies to 
support their clinical utility [4–6]. Therefore, there is a clear 
need to comprehensively curate and evaluate literature-
based datasets within an evidence framework to determine 
the quantity and quality of evidence supporting or refuting 
the clinical utility of these biomarkers. Such evidence 
frameworks currently exist to determine the clinical utility of 
predictive biomarkers for targeted therapies [7–9]. However, 
to our knowledge, this approach has not been used to assess 
the clinical utility of chemopredictive biomarkers. Our goal 
was to perform an exhaustive literature review to assess the 
overall levels of evidence supporting the clinical utility of a 
shortlist of chemopredictive biomarkers, using an evidence 
framework that is based on widely accepted guidelines. We 
hope this work can serve as a reference to evaluate future 
predictive biomarkers published in the field.

Numerous studies have shown that the expression 
of DNA repair genes like ERCC1, β-tubulins or 
topoisomerases can predict response to platinum, taxanes 
and other cytotoxic agents respectively [10–12]. We 
identified 7 biomarkers that have been evaluated in a 
number of tumor types (Table 1) for their role in predicting 
response to commonly approved chemotherapy drugs in 
the first-line, advanced, metastatic and adjuvant treatment 
settings. These biomarker therapy combinations are 
ERCC1–platinum drugs, RRM1–gemcitabine, TUBB3–
taxanes, TYMS–5-fluorocuracil (5-FU)/Capecitabine, 
MGMT–temozolomide, TOP1–irinotecan/topotecan 
and TOP2A–anthracyclines. Several CLIA and/or CAP 
certified molecular diagnostic assays measure expression 
levels of these biomarkers in cancer tissue to determine 
their sensitivity to chemotherapy drugs. Therefore, we 
specifically examined how gene or protein expression 
changes in these biomarkers affect sensitivity or resistance 
to the associated chemotherapy agents.

We conducted a comprehensive literature review 
from 1990-2015 on the predictive effect of gene or 
protein expression of these 7 biomarkers and associated 
chemotherapy drugs. The information from each study was 
systematically organized to minimize bias and maximize 
retrieval of relevant information in order to create a gold 
standard dataset (data available in supplementary tables). 
The level of evidence for each study was evaluated within 
an evidence framework which was adapted from widely 

accepted guidelines [13–15] Figure 1C. This dataset 
can inform future automation of information extraction 
through Natural Language Processing (NLP) approaches. 
Our results highlight a general need for more and higher 
quality level I evidence supporting clinical utility of 
chemopredictive biomarkers. Such an approach can help 
researchers and clinicians evaluate the clinical utility of 
chemopredictive biomarkers, thus enabling design of 
clinical trials and decision-making for patient care.

METHODS

Figure 1 shows the overall workflow used to 
evaluate and summarize the evidence supporting the use 
of the 7 chemopredictive biomarkers for personalizing 
cancer treatment

Search and retrieval

We searched PubTator [16] for the following keyword 
combination: gene/protein name, the term “expression” and 
“drug name”; for example “TUBB3 expression and taxanes”. 
Studies published between 1/1/1990 – 12/31/2015 that focused 
on predictive biomarkers whose gene or protein expression 
influenced response to chemotherapy were shortlisted for 
manual curation, Figure 1A. Articles that primarily focused on 
prognostic biomarkers were excluded. Non-English articles 
were excluded unless the abstracts contained all the necessary 
information to populate the framework. Important citations 
from the selected articles were also curated.

Data collection

The following data elements were collected from 
each article and organized using controlled vocabulary 
wherever possible, Figure 1B:

• Disease – type of cancer and stage (early, 
advanced, metastatic, etc.)

• Biomarker – biomarker name, assay type used, 
other genes being studied, over and/or under expression 
status. The expression status is defined by the study and 
can be based on comparisons with all tumor samples, 
adjacent normal samples, or normal samples from 
unaffected individuals.

• Therapy – combinations of chemotherapy drugs 
that the patient/s was/were given and the therapy setting 
(first line, second line, adjuvant, etc.).

• Outcomes – outcome measures including, but not 
limited to, progression-free survival (PFS), disease-free 
survival, overall survival (OS), tumor response rate and 
tumor recurrence.

• Study details – model system being studied, for 
example cell line, animal models or human. For human studies 
we collected the inclusion, exclusion criteria and sample size, 
if available. Study metadata such as journal name, year of 
publication and publication source were also collected.
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• Therapeutic context – predictive effect of 
biomarker expression on therapy outcome was interpreted 
from the results of the study.

Biocuration

Expert curation and analysis was conducted 
by a multi-disciplinary group including: oncologists, 
molecular biologists, translational researchers, a surgeon, 
biocurators, bioinformaticians and biostatisticians.

Predictive effect of biomarker

The predictive effect of the biomarker was 
determined from the results and conclusions reported in 
each study, captured under the following categories:

• Benefit: Over or under expression of the biomarker 
predicted sensitivity to therapy

• No Benefit: Over or under expression of the 
biomarker did not predict response to therapy

• Not Assessable: Results of the study were 
inconclusive for over and/or under expression of the 
biomarker.

Evidence framework

Evidence levels broadly ranging from I-IV were 
assigned to each publication based on its study design 
Figure 1C, adapted from widely accepted guidelines 
[13–15]. Randomized clinical trials were assigned the 
highest evidence level I, followed by level II evidence 
for non-randomized trials, level III evidence for 
observational studies and lowest evidence level IV for 
pre-clinical studies, expert opinions and case studies. 
Within each evidence level, we incorporated sub-levels 
of evidence based on additional characteristics of study 
type, including prospective and retrospective analysis 
and sample size. Meta-analyses were usually assigned 
the highest sub-level evidence, since they integrate all 
the available evidence pertaining to a scientific question 
of interest and quantitatively summarize the results [17]. 
Depending on the type of studies (e.g. randomized, non-
randomized, etc.) included in the meta-analyses, they 
were categorized under the corresponding evidence levels 
I-IV. Furthermore, within each evidence category ranging 
from I-III, prospective studies were ranked higher than 
retrospective studies. Systematic reviews were carefully 

Figure 1: Workflow for search and retrieval and curation. A. Search & retrieval and selection criteria for studies B. data collection 
and organization and C. Assignment of studies in the proposed evidence framework.
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selected based on stringent study inclusion criteria and 
were assigned high evidence level (IB). The term “high 
quality” meta-analysis or review in the figure refers to 
these stringent criteria, not to journal impact factor. Expert 
opinions that had a built-in rigorous meta-analysis were 
assigned to level I. Reviews including different study types 
and lacking stringent patient and/or study inclusion criteria 
were assigned a lower evidence level (IVD). Each study 
was considered individually for evidence assignment and 
no effort was made to combine evidence across studies 
using meta-analysis approaches.

RESULTS

Results from the curation of the 7 chemopredictive 
biomarker-drug combinations are summarized in 
Table 1, presenting the total number of studies screened 
and shortlisted based on our inclusion criteria; the most 
commonly represented cancers for each biomarker-drug 
combination and a summary of the overall evidence 

supporting the predictive effect of each biomarker. 
Figure 2 shows a breakdown of the number of studies in 
each evidence level demonstrating the predictive effect 
of biomarker expression on response to corresponding 
chemotherapy drugs defined in terms of benefit, no benefit 
or not assessable. Further details on therapy setting, 
sample size, outcomes and other study details are available 
in the supplementary tables.

Excision repair cross-complementing group 1 
(ERCC1) - platinum drugs

Pre-clinical studies have suggested that 
underexpression of ERCC1 sensitizes cancer cells 
to platinum agents whereas overexpression induces 
resistance [18, 19]. 70% of the studies in our dataset 
confirm this hypothesis, where the majority of the 
evidence is from levels I-III retrospective studies. The 
predictive effect of ERCC1 underexpression on response 
to platinum agents has been widely studied in NSCLC 

Table 1: Summary of data for each biomarker-drug combination
Biomarker – Drug 
combination

# of studies 
screened (# of 

studies curated)

Most common 
cancer studied (# of 

studies)

Other cancers studied 
(# of studies, if ≥ 2)

Overall Evidence

ERCC1 – Platinum 
agents

266 (85) Non-small cell lung 
cancer (43)

Ovarian cancer (10), 
Esophageal cancer (5), 

Small-cell lung cancer (4), 
Squamous cell head and 
neck cancers (HNSCC) 
(3), Colorectal cancer 

(3), Pancreatic cancer (2), 
Bladder cancer (2)

Consistent evidence from 
levels I-IV retrospective 

studies

MGMT – 
Temozolomide

366 (55) Gliomas (25) Pituitary tumors 
(9), Melanoma (6), 

Neuroendocrine tumors (2)

Modest evidence from 
levels III-IV studies

RRM1 – 
Gemcitabine

131 (55) Non-small cell lung 
cancer (33)

Pancreatic cancer (7), 
Breast cancer (2)

Consistent evidence from 
levels I-IV retrospective 

studies

TS – 5-fluorouracil 
(5-FU), 
Capecitabine

617 (55) Colorectal cancer 
(27)

Gastric cancer (13), 
esophageal cancer (5), 

Hepatocellular cancer (2), 
Pancreatic cancer (2)

Modest evidence from 
levels III-IV studies

TUBB3 – Taxanes 61 (40) Non-small cell lung 
cancer (14)

Breast cancer (9), Gastric 
cancer (7), Ovarian cancer 

(3) Melanoma (2)

Modest evidence from 
levels III-IV studies

TOPO1 – Irinotecan, 
Topotecan

50 (11) Colorectal cancer (5) Weak evidence from few 
level III and IV studies

TOP2A – 
Anthracyclines

62 (17) Breast cancer (13) Hepatocellular carcinoma 
(2)

Weak evidence from few 
level III and IV studies

Total number of studies screened and curated based on our inclusion criteria; the most commonly represented cancers for 
each biomarker-drug combination and the overall evidence supporting the predictive effect of each biomarker.
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(Table 1). Out of the two level IC clinical trials in our 
dataset, one study had no benefit for PFS. In this study, 
an internal control suggested the possibility of biased 
randomization, thereby confounding the result, and 
therefore we have determined the results of this study to 
be not assessable [20]. A second level IC study confirmed 
a modest response rate advantage (the primary endpoint), 
while failing to confirm PFS benefit (secondary 
endpoint). While we have counted this study as 
supporting the biomarker hypothesis, a study evaluating 
the clinical benefit endpoint as primary would be very 
helpful in determining the clinical significance of this 
result [21]. Two level III studies showed contradictory 
evidence in advanced NSCLC and metastatic pancreatic 
cancer patients where overexpression of ERCC1 showed 
benefit from platinum based chemotherapy [22, 23]. 22 
studies in our dataset had results that were not assessable 
due to various reasons including different methods of 
biomarker quantification, disease type, stage and small 
sample size [24–28] (Supplementary Table 1). While 
the evidence supporting the chemosensitizing effect of 
ERCC1 underexpression in response to platinum agents 
was somewhat consistent across all retrospective studies 
in NSCLC, the evidence for other cancer types was often 
inconclusive or contradictory. The overall evidence 
for other cancer types was mainly from low-level III-
IV studies [29–33]. Moreover, the predictive effect of 
immunostaining for ERCC1 protein has been difficult 

to confirm in validation studies. This can be attributed 
to discrepancies in the performance of antibody batches 
over the years and also a lack of understanding of the 
heterogeneous expression and function of different 
ERCC1 protein isoforms [34].

O6-methylguanine DNA methyltransferase 
(MGMT) - temozolomide

Underexpression of MGMT is thought to sensitize 
tumor cells to temozolomide (TMZ)-based therapies 
whereas overexpression induces resistance [35–38]. 
This hypothesis was widely tested and confirmed in 
gliomas and pituitary tumors (Table 1, Supplementary 
Table 2). We found that the overall evidence supporting 
the chemosensitizing effect of MGMT underexpression 
on TMZ response is mainly from level IV pre-clinical 
studies and a few level II-III retrospective studies 
(Figure 2). The results from 13 studies, including a 
high-level ID retrospective biomarker study were 
not assessable [39–42]. In addition to gene/protein 
expression, we also found several studies that evaluated 
the predictive effect of MGMT promoter methylation 
on TMZ response, including the landmark study by 
Hegi et.al [43] that drives the current clinical use of 
MGMT as a predictive biomarker for TMZ response 
in glioblastoma multiforme. Such studies were not 
included in our dataset since they did not meet our 

Figure 2. Overall evidence supporting the clinical utility of chemopredictive biomarkers. Overall evidence associated with 
the predictive effect of biomarker expression on response to corresponding chemotherapy drugs defined in terms of benefit, no benefit or 
not assessable. Studies where chemotherapy response was not assessable for both, over and under expression of biomarkers have been 
represented twice, in the over and under expression section. For example, in the RRM1-Gemcitabine plot, a total of six level III studies 
showed that gemcitabine response is not assessable for both over and under expression of RRM1 and the same six studies are plotted in 
both over and under expression histograms (blue).
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inclusion criteria, which focused only on predictive 
biomarkers whose gene/protein expression influenced 
response to chemotherapy. In studies that tested the 
predictive effect of both MGMT expression and 
promoter methylation on TMZ response, there was 
often poor correlation between the two, which resulted 
in inconclusive results [44].

Ribonucleotide reductase subunit M1 (RRM1) - 
gemcitabine

Pre-clinical studies have shown that RRM1 
underexpression is associated with benefit of gemcitabine-
based therapy whereas overexpression is associated with 
resistance [45–47]. This trend is consistent in 80% of the 
studies across all evidence levels I-IV. The predictive 
effect of RRM1 underexpression on benefit of response 
to gemcitabine was mainly studied in NSCLCs and 
confirmed by a level IC clinical trial [20]. In pancreatic 
cancers, the overall evidence supporting the predictive 
effect of RRM1 was equivocal and investigated only in 
levels III-IV studies [48–55].

A number of NSCLC studies analyzed the combined 
predictive effect of both RRM1 and ERCC1 expression, 
perhaps because treatment for NSCLCs usually includes 
gemcitabine in combination with platinum drugs. While a 
level IIA multi-trial NSCLC study confirmed that patients 
who received personalized first-line therapy based on 
their RRM1 and ERCC1 gene expression status had better 
survival than patients on standard therapy [56], a level IIIF 
study of a three drug concurrent regimen [57] produced 
results which were contradictory to previous studies, in 
that responders had low gene expression levels ERCC1 
as expected but high levels of RRM1. It can be difficult 
to determine single marker outcomes from such multi-
marker studies.

Thymidylate synthase (TYMS)-5-fluorouracil/
capecitabine

Pre-clinical studies have demonstrated that 
underexpression of TYMS predicts benefit of response 
to 5-fluorouracil (5-FU)-based therapies whereas 
overexpression predicts no benefit [58–64]. Our dataset 
also included studies that tested TYMS expression and 
response to 5-FU’s prodrug, Capecitabine [10, 64–68]. 
We found that evidence supporting the chemosensitizing 
effect of TYMS under expression on 5-FU/Capecitabine 
is mainly from levels II-III retrospective biomarker 
analysis of clinical studies (Figure 2). This hypothesis 
was widely tested and confirmed in gastrointestinal 
cancers especially colorectal cancers (Table 1, 
Supplementary Table 4). However, the only level 
IC clinical trial in our dataset showed contradictory 
evidence where metastatic colorectal cancer patients 
overexpressing TYMS had a trend towards better overall 

survival than the underexpressing cases [69]. The 
chemosensitizing effect of TYMS underexpression was 
not assessable in 11 studies whereas 3 studies showed 
no benefit of TYMS underexpression on 5-FU therapy. 
Further prospective studies in large well-defined patient 
populations are necessary to determine the clinical utility 
of this biomarker. Moreover, ~27 studies in our dataset 
examined the predictive effect of other biomarkers like 
TP, DPD and ERCC1 in addition to TYMS in response 
to 5-FU based therapies. This makes it difficult to 
determine the predictive effect of TYMS alone on 5-FU 
response [70].

Class III beta-tubulin (TUBB3)-taxanes

Pre-clinical studies have suggested that 
underexpression of TUBB3 predicts sensitivity to 
taxanes whereas overexpression predicts resistance 
in breast cancer, NSCLC and gastric cancers [71–73]. 
This hypothesis was mainly supported by 11 level IV 
pre-clinical studies and 14 level III retrospective studies 
(Table 1, Figure 2). We did not find any evidence from 
prospective biomarker driven trials to support the 
predictive effect of TUBB3 underexpression on response 
to taxanes. The results from 9 studies that evaluated 
taxane response in patients under/over expressing 
TUBB3 were not assessable [74–82]. In a level ID breast 
cancer study [76], patients overexpressing TUBB3 had 
a higher probability of response to docetaxel but the 
predictive effect of TUBB3 underexpression was not 
assessable. This unusual predictive effect of TUBB3 
expression has also been reported in patient populations 
that received taxanes in an adjuvant or advanced disease 
setting [83].

Type I topoisomerase (TOP1)-irinotecan/
topotecan

Studies on gastrointestinal cancers have suggested 
that overexpression of TOP1 predicts benefit of 
camptothecin-based therapies [84–88]. However, the 
evidence associated with the predictive effect of TOP1 
expression status and therapy outcome was mostly of 
low-level and studies often reported inconclusive results 
[89–91] (Figure 2). A level ID post-hoc biomarker 
correlative analysis of the FOCUS trial showed an 
overall survival benefit in a subset of colorectal cancer 
patients with moderate/high TOP1 levels measured by 
immunohistochemistry [92]. However, another similar 
level ID study conducted by the Dutch Colorectal 
Cancer Group showed no association between TOP1 
expression and survival benefit [93]. Moreover, 
Meisenberg et al. reported an important correlation 
between TOP1 and TDP1, suggesting the possible role 
of other predictive markers in irinotecan/topotecan 
sensitivity [94].
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Topoisomerase (DNA) II alpha (TOP2A) - 
anthracyclines

The TOP2A gene is overexpressed in several 
cancer types and is hypothesized to predict sensitivity to 
anthracycline-based therapies [95, 96]. However, our only 
high evidence study (level ID) on hepatocellular carcinoma 
patients showed no benefit of TOP2A overexpression on 
anthracycline based therapies [97]. 71% of the studies in 
our dataset showed levels II-IV evidence supporting this 
hypothesis, where either overexpression of TOP2A was 
associated with benefit or underexpression was associated 
with no benefit from anthracycline-based therapy 
(Figure 2, Supplementary Table 7). Since anthracyclines 
are frequently used in breast cancer treatments, we 
found this disease to be most widely represented in our 
dataset, especially in HER2+ breast cancer. However, we 
did not find any high evidence level I studies on TOP2A 
overexpression as a predictor of response to anthracyclines 
in this review and analysis.

DISCUSSION

Herein, we provided a high level quantitative 
perspective on the amount and quality of evidence 
supporting or contradicting the clinical utility of 
chemopredictive biomarkers. In our evaluation, we 
found that biomarker-driven prospective clinical trials 
(levels I-II) for these protein-drug pairs were few 
and often reported findings that were inconclusive or 
contradictory. We found somewhat consistent evidence 
from several retrospective biomarker analyses across 
levels I-III in NSCLC supporting the chemosensitizing 
effect of both ERCC1 and RRM1 underexpression in 
response to platinum and gemcitabine based treatments 
respectively. The evidence supporting the predictive role 
of gene/protein expression of TYMS–5FU/Capecitabine 
in colorectal cancers, TUBB3-taxanes in NSCLC and 
MGMT–temozolomide in brain tumors was modest and 
mainly from level III observational studies and level IV 
pre-clinical studies. There was sparse evidence from 
level III retrospective studies and level IV pre-clinical 
studies supporting the chemosensitizing effect of TOP1 
and TOP2A overexpression in response to camptothecin-
based therapies and anthracyclines in gastrointestinal and 
breast cancers respectively. Other studies that assessed 
promoter methylation in MGMT and amplification in 
TOP1 and TOP2A were not considered in this assessment. 
Our analysis highlights the need for more well-designed 
and higher quality level I evidence studies for the 7 
chemopredictive biomarker – drug pairs.

Standardizing and organizing relevant information 
from different biomarker studies presents several challenges 
1) author preferences in presenting the information 2) 
author bias resulting in discrepancies between the summary 
statements and the actual evidence 3) diversity of methods 

used to quantitatively measure biomarker levels 4) 
inconsistency in results and conclusions from different 
assays, statistical tests or for different endpoints, and 5) 
inconsistency in clinical information across tumor types. 
Moreover, since chemotherapy drugs are often given in 
combination, it may be difficult to determine the predictive 
effect of a single biomarker-drug combination.

The work summarized herein focuses the effort 
on a manageable number of studies, which need to be 
reviewed in greater detail, making such a task feasible. 
Level I evidence outweighs lower levels of evidence 
but within the level I evidence framework all studies 
cannot be considered equal. More detailed curation 
of such studies is required to rank them based on the 
strength of evidence they provide. Critical factors to 
assess within the level I evidence category include study 
population, endpoints, and appropriate controls; amount 
of missing data; assay validation; sample collection and 
processing; statistical and clinical significance of the 
results, and confounders. Evaluation of these criteria 
may help to resolve conflicts between studies if one 
provides stronger evidence than another. Limitations of 
the current level I studies hamper our ability to draw 
firm conclusions about the current clinical applicability 
of these biomarkers.

As more data emerges on novel “actionable” 
pathways in cancers, this evidence framework will need 
further development as outlined above to assess clinical 
actionability. The framework can be applied to enhance 
the value of the increasing volume of retrospective data 
collection. However, the framework will likely highlight 
the need for additional prospective studies and help 
guide their design. These critical future steps will allow 
the cancer precision medicine community to collectively 
evaluate and accept predictive biomarkers for cancer 
therapy.
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